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ABSTRACT

This work is a sequel to a previous paper where a new set of equations for
one-dimensional motion in Radiation-Gas-Dynamics (RGD) has been derived.
These equations are valid for an arbitrary but constant value of opacity and for all
values of g, the ratio of the gas pressure to the total pressure, and they clearly show
the existence of radiation induced waves, which have been called °* precursor
radiation’” by Lick and Moore. In this paper non-linear waves, with special
reference to the formation of shock waves in stellar medium, are discussed by a
general method developed by Whitham. §2 contains a general discussion of the
cquations of motion. The interactions of waves of different orders are discussed
and damping distances, decay times and diffusion coefficients are determined. The
terms giving rise to the fifth, fourth and third order waves are found out and it is
shown that the equations with third order terms can be used as approximate
equations in RGD, when one is interested in changes in flow and physical parameters
over distances which are large compared to the mean free path of radiation, i.e.
““flow in large”’. The formation of shock waves from a given compression wave
is discussed by the method of characteristics and it has been found thata
discontinuous front is formed only if the initial disturbance is sufficiently strong.
Simple waves and Rankine-Hugoniot conditicns for shock waves are also
considered. It is found that the Rankine-Hugoniot conditions, derived by Sachs
apply only to shock waves in * flow in large’”’. Formation of shock waves in
spherical, cylindrical and plane motion is also considered and the results obtoined
by Pack are rederived by a very simple alternative method.

1. INTRODUCTION

The present work is concerned with the waves in Radiation
Gas-Dynamics (RGD) with special reference to formation of shock waves
in very hot neutral gaseous medium. Due to the dependence on direction of
the specific intensity of radiation, the problem of three dimensional waves in
RGD is extremely complicated and not much progress has been made in this
direction. But one-dimensional waves in RGD can be easily discussed and
we shall limit ourselves only to the one-dimensional motion. It is true that
“ radiation-hydrostatics * attracted attention almost fifty years ago and the
effect of radiation on the equilibrium of stars has been discussed in detail but

* This investigation has been undertaken under a scheme sponsored by the Research
and Development QOrganisation, Ministry of Defence, Government of India.
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only recently some work has been done in RGD. 1In “radiation-hydrostatics ™
various steady state approximations (e g. Eddington’s approximation and
Rosseland’s ditfusion approximation) to the radiative transfer equation were
made and they are taken as basic equations even in RGD for discussing waves
in a medium, where radiation pressure is comparable to the gas pressure.
The expressions for the radiation pressure and radiation energy density, in
terms of specific intensity, contain ¢, the speed of light in the medium, in
denominators and hence when these quantities are comparable to the gas
pressure and gas internal energy density we cannet neglect the time derivative
in the radiative transfer equation through it comes with a factor 1/c. The
neglect of the time derivative in radiative transfer equation suppresses one mode
of wave propagation excited by the radiation.

For the reasons given above, the exact nature of shock wave in RGD is
not fully understood, as it is evident from the various assumptions made in
the investigations of Sachs®, Prokof’ev’, Elliot’, Marshak®, Sen and Guess®,
Wang'' and Bhatnagar aud Sachdev'®. The successful attempts to analyse
shock waves in more general terms with neglect of radiation pressure appear
to have been initiated by Zel’dovich'? who proved the existence of a sharp
discontinuity in shock wave structure for strong shocks. This work is
followed by another approximate but very interesting work by Raizer. The
papers by Vincenti and Baldwin'* and Heaslet and Baldwin'® are also worth
mentioning, The first one contains a detailed discussion of small amplitude
waves in RGD and in the second Zel’dovich’s assertions are supporied by
theoretical work and numerical computations.

Based on Zel’dovich’s qualitative picture of the structure of a strong
shock, we have determined in a previous paper’ the distributions of various
flow and physical parameters with optical thickness measured from the sharp
discontinuity. The present work is a sequel to another paper> of ours,
hereafter referred as paper I, containing a derivation of equations for one-
dimensional motion in RGD and a discussion of small amplitude waves.
The new set of equations, derived there, is valid for a medium with arbitrary
but constant opacity and even when the radiation pressure is comparable to
gas pressure. It is hyperbolic in nature with distinct characteristics and
finite values of characteristic speeds.

2. EQUATIONS OF MOTION AND THE ACOUSTIC EQUATION

We shall reproduce here some of the equations which we have derived
in Paper I for sake of ready reference. Under the assumptions: -

(i) the volume absoprtion coefficient « is constant,

(ii) the medium is grey and the source function B is given by
B=(¢/x) T [2.1]
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where T is the temperature and ¢ is Stefan constant, and

(iii) the specific intensity I of radiation is taken according to the
following scheme

I=1, for0<u=l
=1. for 1€ u=<0
where w is the consine ¢f the-angle which I makes with positive direction of
x-axis,

the equations for one dimentional radiation-gas-dynamics are

op p kY] -
— 4+u—+ =0, 2
ot lax Pax [.4]
p(Zvul)us 2o rp) =0, 23]
3 ax
3 > Er aF
p(—+u—»)(EG+ >+(pc+p1e)—+-——0 [2.4]
a3t ox/t P ax
1
2 2 . B
A B SR IR R [2.5]
ax* ¢ ot dx ¢ ot
A A
. Loyt
~111-
VY
1 3 A
__...»_.;—c-Ar.{)-R-{-aF:O [2.6]
c ot ox
A v
and Ep =3pg. [2.7]

Here pg is radiation pressure, Ex radiation energy- density, F radiation flux,
p density, u particle velocity in positive direction of x-axis, pg gas pressure
and Eg the gas internal energy density. Under the assumption (ii), [2.6] is a
general relation between pp and F and assumptions (i) and (iii) are not
necessary to derive it.

Using Eg =[pc/(y =1) p] and p; = Rp T, where R is the gas constant
and y the rartio of specific heats, we can derive from these equations
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The equation for small perturbations, defined by
W=u—0, p =p—po» Po=Pc=Pco » F'=F=0, pr=pr—Ppro »
about a constant equilibrium state

u=0,Pc=pos ,» T=Ty, F=0 , pg=pro=1{40/3c) T; , (see Paper 1)

. 3 /3% & 3\ , 3%\
3 [C—Z(SF— 3 axz)(;?—a”ax’ ) ?
3ai , 6a)(* 2 V(3" o &
2T e Nod T et \ad T Y R
2 2 2
2 0002 g2 )9,
+[3(a += )(atz a% ax:)gt](pmo, [2.9]
where ¢ is defined by
' 29 3¢
==L |, po+pr=—po— 2.10
W=\ P Pr=—po = [2.10]
3 .
b o 2ae(y—1) =B 16y =NeaT [2.11]
B Rp
ar=pelp [2.12]
a: = {y +4(y = ) pe/pctar [2.13]
3
2o W) -1n2(y-1Np+16(y-1) » 2 [2.14]

I-2G-1)}F+12(-1) 5

2 2 2
aio, azp = Ali\/(Al;;algﬂoBl) [2.15]
1

B =pc/l(4¢/3c)T* + pe)) [2.16]




152 PHoOLAN PRASAD

a a a (1 @ ’I
s o 8y ¢ I +6 To o, 6 Y% 4no Fge 11
i 3 ('v - l) (x(‘ ¢ [ 7]
Jay 6
B, = ,.,f‘zi? g [2.18]
¢ 4

In the equation [2.9] the quantities a5, asy and asy appear with a second
suffix 0 to represent the values of a4, as, and ag in constant state.

The left hand expression of the hyperbolic differential equation [2.9]
which is symmetric in space coordinate is grouped in three square brackers,
each containing a homogeneous differential operator of orders five, four and
three respectively. If we denote these operators by Ps, P, P; (2.9) can be
written as

Ps¢p+Pp+Pip =0, [2.19]

As in paper I, we define the solutions {¢} satisfying P,¢ =0 (n=5, 4, 3) as
n-th order waves.
The characteristics of [2 9] are

dx[dt = + /3, ' [2.20]
dx/dt & -y [2.21}
and dx[dt = 0 [2.22]

and thus these are the only curves in x-¢f plane across which discontinuities
in the flow quantities and their derivaiives can exist. The range of influence
and domain of dependence are bounded by the outermost characteristics
[2.20]. A disturbance, created in a region, is initially divided into three
groups. The first group corresponding to characteristics [2.20] travels with
speeds comparable to ¢ and forms “ radiation induced wave.” The second
group, corresponding to [2.21] travels with speed a5 and forms * modified
gas-dynamic waves.” The third group, corresponding to [2.2] may be called
“ convective waves ” and these can give rise to contact surfaces. But as
these waves propagate the dispersion and damping change completely their
nature. From [2.15], [2.17] and [2.18] we can write |

2 2 2 2
(4 d a | 0
[m g G0 ) G +6yu46 }

9 2 e
0 G20 5 (30%0/6 + 6(1) & L3('}’ l)(IC j
(G‘fo aro( 2 am a,o) ”"‘l ‘

where terms of order (aTO/c)“ are neglected,
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When radiation pressure is comparable to gas pressure, I2.! 1] shows that
alofe=0[12(y — 1)a] and it is possible to expand

4 2 6 y 12
ja,o aTy 2 aip a0 d
[+l e = 4 12 a (= 2)—
¢ & (3(y-l)a e (r )c>§
in ascending powers of a%,/c® provided the speed of light in the medium is
large compared to the isothermal sound speed aro. Retaining only the terms
up to first power of a7o/c* one obtains from [2.23]

o2 & abfe+ (ahole®) {aio/3(y - o] +3af fo+6aly —1)] [2.24]
B afo/c-r?.a

and (1;%() =~'077'"0 . [2.25]

In [2.24] we can furiher neglect the second term in the numerator on the
right hand side to get

» _ & able & 6ly-1(-p) ’
O e+ 2a 3 6(y —1)(1- o) + fo [2.26]

Therefore, when pgo = 0 (pgo) and aro < < ¢?, one of the speeds of propaga-
tion of fourth order waves is isothermal sound speed, as in the case of
vanishing radiation pressure, ie. ppo < <pgo. The equation [29] can be
written as

3/ & ?\[d? &2 o \ag
PR Ty et 3 T G50 T S
A\arr 3 axt/\ar? dx2/ ot

1y .‘\)2 5 ~2 5
4 3 ( (12 + ‘EJ_Q.(E><;-— - a,;g *s“);i)"é =2 [2'27}

where oy is given by [2.26].
With L as a characteristic length in the flow field we define the non-
dimensional quantitics

.
X arot aio

X=-——’t=

- )

arox 2ro

2
» 4 =
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so that equation [2.27] becomes
LY [30h, 38 ) & b 2')$
aL ¢ o axz) ot akg axz)st
1 3adako | car\[ 3 ok 3N/ 3% \—
] e | sremmit i | g gy e g Y =gy ] @
oL/l ¢ ¢ /\dt° ape d3x°/\ot dx~
32 2 32 \>
(1 PLECLT ( L, 2 ) ?] -o. [2.28)
c a3 a7y a ot

It has been shown in paper 1, that when pg and pp are of the same
order of magnitude the neglect of the term (1/¢) (37/3¢) in the radiative
transfer equation leads to solutions significantly different from those obtained
by retaining this term.

3. INTERACTION OF WAVES oF DIFFERENT ORDERS

As pointed out in paper I fifth, fourth and third order waves dominate
in a signalling problem at various times. Therefore. a consideration of
interaction of waves of different orders is important. The phrase “iateraction
of fifth and fourth order waves” will be used for the modifications in the
fifth order waves due to the presence of the fourth order operator and vice-
versa. In general such a division of a differential equation (2.27) into the
three groups does not imply that any wave motion can also be divided into
three groups (such a division of waves is however possible for a signalling
problem), but this is just a mathematical approach to the basic understanding
of the waves and as it is evident from the investigations of Whitham, it helps
in approximating the full differential equations by lowest order terms. We
shall closely follow Whitham’s approach in this investigation.

(a) Interaction of fifth and fourth order waves. When the third order
terms are neglected, the equation (2.27) becomes

~

3 ( 3?2 & ( 3 _ 2\
LI L N o
i 3 ax? [\asd ax? ) at

alo 2a\[ d* 2% \/3? wz
4+ 3(:129 +__c—)(é?2 — (1120 ;x*z’ g‘t— e C("210 o (i) 0 [3.!]

The behaviour of the various wave motions can be found using the
principle that in a wave motion with velocity o the derivatives /¢ and
-o(a/éx») of any quantity are approximately equal. Accordingly, for the
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fifth order radiation irduced waves we can substitute 3/3r = — (c/4/3) >/3x
in equation [3.1] except for the terms forming the factor 3/>¢+ (¢/4/3) />x
Thus, in the neighbourhood of the curve dx/(dt)=c/V ¢,

Yp ¢ ¢ atg _
‘( +~/3ax)+ac x

or, omitting the factor 3%/ax* from the operator,

\¢ «;3 ¢+ac¢ 0, 3.2

with the general solution
4/3ax
¢=nile—(c/v3)i]e : [3.3]

where f; is an arbitrary function of its argument. Thus this wave is
exponentially damped, the exponential damping distance being

ds, o/ w3 =1/(¥/3a). [3.4]

Similarly, for the fifth order modified gas dynamic waves we substitute
(3/31) = —ax (3/> x) in [3.1] and obtain

Qo a’ 02 a; .
OR g 28 . 00 e g g, [3.5)
ot ax 2 aso

The exponential damping distance, in this case, is

g g [3.6]

aio (0520 = a%‘o) ;

When pgro=0 (pGo), a,zo/c =0(a) and hence ds, asy =0 (a50/a c). [3.7]

From [3.4] and [3.7] it is evident that ds, . /43 =1/4/3 (mean free path of
of radiation) and ds,asy <<ds, o/ 43 0 that the fifth order modified gas
dynamic waves are damped very rapidly. :

It is interesting to put 3/d37=0 in [3.1] except in the factor 3/d¢ of the
fifth order operator, in order to investigate the * convective waves” corres-
ponding to the characteristic dx/d¢=0. In this case one obtains

26 gl 4 _g [3.]
ot 0\0
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with general solutions 7
agg 0
¢ =f2(x) Exp. [— s f] [3.9]

50

where f, (x} is an arbitrary function of x. Therefore, due to radiation, the
discontinuity in contact surfaces is exponentially damped, with * decay time”

2
. = [3.10]

75900 3 o
a1 a1

These results are in agreement with the results of paper 1, where a
sotution for a signalling problem is given. For a signalling problem, in which
there is a uniform region at rest for ¢z < 0 and a disturbance is created at
some point of it at t=0, the convective waves will be absent. But in an
initial value problem with variable initial density distribution, these waves
must be present and they will be rapidly damped, because s, is small.

For the fourth order radiation induced waves, [3.1] may be approximated
by using 3/3¢ = —aye (3/3x) in all terms except the factor 3/3¢ -0, (3/5 x)
in the fourth order operator. This gives, neglecting a%o/c2 in comparison to

unity,
2

"3x 3 (aho/c +2a)* ox

[3.11]

(8]

ot

which represents diffusion of waves with difiusion coefficient

@
. 3,12
(afo/c +2a)2 [ ]

k4s ap =

win

The numerical value of kg, o,, is of order of ¢/a-

The fourth order modified gas dynamic waves are also found to be
governed by a diffusion equation of form [3.11] with diffusion coefficient

2 9,
asp — g

=— 3.13

243, [3.53]

7 k49 G1e
To get/an idea of the magnitude of k,, are W take a typical astrophysical
situation with 7, = 10°°k, and pro =0 (pg,). In this case we find

2 2 2
B0~ 719 6(10%), 2 <0 (o)
¢ ¢
even though afo/c* =0(1077). We also notice that

k4: alo = > k4» @ro
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(b) Interaction of fourth and third order waves. When the fifth order
operator is omitted, the differential equation [2.27] takes the form

3 3% 5 2" ,
(a,0+2 (az"ﬂfo\’a— —_”Tﬂii ¢
€.\ ¢ ot X a7t X"

\ \

2 ~2 2 ~
b3ty )2 g ) 20 . [3.14]

\ c 217 ax°/ ot
As in the previous case, the fourth order waves will be exponentially
damped and the third order waves will diffuse. We can easily show that the
damping distances of the fourth order waves and the diffusion coefficients of
the third order waves are

2 \/(a?o/c) N/(a%o/c+2 «)

Do , 3.15
HART Vi (aloa/c +a?) [3.15]
P ar, @i [3.16]
"0 3o (adofc + a) (ak — a30)
kv, = S0 (70— 01) [3.17)
S0 G aso (afpfc +a)
ai, a5
and ky, o= gt , [3.18]

3a a%g (aly/ec +a)

In the derivation of these expressions, terms containing af,/c* are neglected in
comparison with terms of order unity.

Under astrophysical conditions with pro =0 ( pge) We notice that

diy 0y =0(1/a) , [3.19]
diyar =0 (c/a aro) [3.20]
ks, 0, =0 (ca) [3.21]

ks, 0 =0 (c/a) . [3.22]

(c) Interaction of fifth and third order waves. The neglect of fourth
order operator, reduces equation [2.27] to

3 (3 & 32N 2 2% \ 3¢
il R A ) s
A \arr 33 xz} at? ax* [ at

<2
+3( +ﬂ°—?‘—)<°—-aéo 2)f'/’ : [3.23)
C X C
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The operator 3/3¢ is a common factor of the left hand side of [3.23]
and hence the third order operator does not affect the fifth order convective
waves and vice versa. ‘These waves, in the absence of fourth order operator,
move with the fluid particles without attenuation and dispersion.

For any other fifth order wave, the equation [3.23] can be approximated by

[ 3\
(-5—+m3—-\ £+n¢=0

3¢ ax/ 3t

where m (< o) is a fifth order characteristic speed and # is another non-zero
constant. In this case we substitute ¢ = ¢"“** and obtain

klw=1/m = (n/m) 1/? - [3.24]

Thus the wave number & is a real function of « and there is no attenuation or
amplification of fifth order waves due to the third order operator. Again

[3.24] gives
d [k 2n 1 -
7 (*) T [3.25]

w

and sioce the fifth order waves are high frequency waves, this means that
there is insigificant dispersion in these waves.

Approximating [3.23] in the neighbourhood of dx/dt=ags by using
(‘/a X= - (1/aso) 3/3 t except in the factor a/a t + (aso) a/a x and substituting
¢ = €"“**) in the result we obtain

kiw=1lasg+ 4 &* , [3.26]

where 4 is a non-zero constant. Here again we find that k is a real function
of w so that there is no attenuation and amplification of the third order

waves. Also
dldw (k/lw)=2 4w [3.27]

and since the third order waves are low frequency waves [3 27] means that
there is no significant dispersion in these waves due to the fifth order operator.

It is easy to trace the terms in equation [2.2] —[2 8] which give rise to
operators of different orders in [29]. The continuity and momentum
equations are taken as they are in all the three cases and the difference arises
on account of the occurrance of different terms in the energy and radiative
transfer equations in these operators. We have marked the combinations in
[22]. [2.5] and [2.6] by V. LV and 11l according as they appear in fifth order
or fourth order or third order operators. Since we shall discuss the third
order waves in detail in the following we collect here the terms in the energy
and radiative transfer equations determing these. These are
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(i+“i)(170 +pr) - 7PG+4(""1)PR(§_+,,_?_),,

at X p ot 3x
d Ry
+By—-4){—+u— =0. 3.28
( ¥ )<at uax)pg [ ]
0=4na (3B/>x) +3a*F [3.29]
and c(dpr[ox) + a Fe 0. {3.30]

We shall call these equations along with the continuily and momentum
equations as set I1I. Now we ask the following question *“ Is it possible to
approximate the set of full equations [2-2] - [2-8] by the set III and if so
under what circumstances ?”” The answer to the first part is in affirmative.
To answer to the second part we have to examine the non-dimersional equation
[2:28]. This equation shows that the third order operator becomes more and
more dominant with decreasing values of 1/aZ which is the ratio of the mean
free path of radiation to a characteristic length in the flow field. In eguatien
[2:28], the fifth and fourth order terms contain square and first power of
1/aL respectively as factors. Thus we have two different situations when
1/aL is small. (i) 1/aL is small so that the fifth order terms can be
neglected but not so small that the fourth order terms can also be neglected.
Such a flow may be called “ Rosseland flow * since in this case 3F/dx is
retained in [2-8] while equations [2-5] and [2-6] reduce to

oB 6a dF

O=dma—+-— 2= 43a’F [3.31]
d3x ¢ ot
and —L§E+ca—p3+aF=0 [3.32]
c dt ox

giving Rosseland diffusion approximation to radiative transfer equation when
the terms containing 1/c are neglected. (ii) l/aL is sufficiently small so that
both the fourth and fifth order terms can be neglected. We define such a
flow to be “flow in large”. Thus the set IIl can be used when we are
interested in changes in flow and physical parameters over distances very
large compared to the mean free path of radiation in the medium. When a
characteristic length, say the distances between two points P and Q, of the flow
field is much larger than the mean free path of radiation, and flux from P is
almost absorbed before reaching @ and the motion of the medium takes place
without any heat exchange between points whose mutual distance are much
larger than the mean free path of radiation. This is not the only example
where a set of differential equations is approximated by retaining only those
terms which lead to the lowest order operator. In magaetoliydrodynamics,
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the assumption of infinite conductivity is made to achieve such a goal. [n 2ero-
dynamics, the assumptions of zero viscosity and zero heat conductivity remove
the higher order terms. It is surprising to note that in all these three cases
the approximate equations represent isentropic flow. Whatever may be the
opacity of a medium, it should be regarded as one with low opacity if the
changes in flow and physical parameters are to be considered across distances
over which a ray of radiation is not significantly absorbed; otherwise the
medium should be regarded as optically thick. While considering the
structure of a shock wave, the interest lies in the changes across the shock
region and we cannot presuppose the width of the shock region to be much
larger than the mean free path of radiation in order to apply Rosseland
diffusion approximation. It is worthy of notice that Masani’s’! work on the
propagation of shock waves is based on the equations in set III. He
comnsiders the propagation of shock waves in hot and massive stars deflned by
Boury’s'® models where « is of the order of unity in C G.S. system and L can
be taken to be radius of the star. Actually for temperatures of the order of
10° °K, the set IIT can be used when 1/aL < 107°. Thus the present
analysis, while pointing out its limitations, gives a theoretical support to
Masani’s work.

The discussion of the interaction of waves in this section has been done
in somewhat arbitrary fashion. While discussing the effect of fifth and fourth
order operators on the third order waves one should proceed in a more logical
sequence starting with a solution of the lowest order equation and building
up the effect of the higher order terms as perturbations. Here we shall take
the signalling problem, discussed in reference 2, and find out asymptotic
solution for large aL. This will clearly show the diffusive effect of higher
order terms in the “flow in large ™.

We wish to solve the equation [2:28] for x > 0, t > 0 with the following

initial and boundary conditions :

At t=0, #;céétzgn-‘/"m=<ﬂm-0 for x>0 [3-33]
At x=0, (3¢/3x) =(aL)3 for t=0
=0 for t <0 1
[3.34]

(2¢/3t) = —(aL) € for t=0 J
=0 for t =0
B=ar B and pye=pyatoe are the velocity and total pressure respectively

imposed on x=0 for t=0 in an otherwise undisturbed medium. ¢, being
a potential function, is taken to be continuous at x=0, t=0.

Using the Laplace trasform

¢ = J ¢ e P dt [3.35]
0
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the solution is found to be
Gl f 3 ¢t dp [3.36]
'E

27vl

where I' is the path such that Rep =constant and to the right of the all
singularities and

i/-, = A, ¢:;| X 4 As eT"z‘ 3 [337]
- = 82 + \/bv -4 b% —8.
, Ya= — s 3.38
Y1, 7Y [ > 8, ] [ ]
py=BERYRE .y BEEWE [3.39]
Py = 72) P’ (72—’/1)
LI RV L. o [3.40]
(aL)' : (a L) .
_ 1 3a2 3a 10 2
& ((XL)_ ‘ c2 J l ( (010 ) P P
+3(1 +aj/c)adp [3.41]
508 1 [3a} 1 aj
b PP (T4 6] —p+ 3(1 + —‘0) 3.42
f (aL)® ¢ (a L)( c d c " [3.42]
and (; = 319‘ y g0 = “'('IS(')‘ y C= _‘f‘_ : [3'43]
aryp artg Gyg

Assuming 1/aL to be small one can appropriate Vi y2, Ay, A; by
exp.nding these functions in ascending powers of 1/aL . 1t is fourd that

vi= =& VaLp? =(&/Val) P2+ - - [3.44]
- 1 Eyag0 2

o i [ 20 4o e 3.45
e as()l 2\0L}p [ ]

B—;J/as‘o+[235053/2(0L)]p+ e e 1 [3 46]

—gl‘/;‘_i{l”ll(fxaso\/a)l)mi- s % P

_ - (Bl VeDip Py -+ 1 [3.47]
| T l/(glaso'\/(XLy 12 % e e Ps



162 PHOOLAN PRASAD

where the constants &, , &, & etc., are very complicated functions of
aio» 8sg » € and a;p. But neglecting terms or order 1/¢* with comparison
with terms of order unity, it is found that

£ = (aso/aw)B +3 (azzn/c)]m :
s (aéo e 1) 310/{2330 (3 + 33%0/°)1/2§ [3-48]

3%0 (3‘éo ~1)

amd £ - .
TS (3+ 3akfc)
One can write [3.3¢] as ¢ =@, + &, [3.49]
hizs - [ W B [3.50]
2
i
End 52 = JA [‘ A2 e’” *+Mdp [3.5!]
2mi J r

The characteristics of the third order operator are dx/dt=-0 and
dx/a‘t - +4+A8g9. The first corresponds to the convective waves, while last two to
isentropic waves. In the present signalling problem convective waves are
absent due to uniform initial state but there is diffusion from the disturbance
at the wall at x = 0 and this diffusion is represented by ¢,. In this case it is
sufficient to retain only the most dominant terms in v, and A, so that

- 1 < te 1 e T
B ‘/a“’ ﬁ‘— - elpe-£:Valxe ' gp

4jl| R e RS

2mi klN/ al l"' 31
and this leads to
- - - 240 Lt { 3
Py = "(/5"‘ e/aso)[ Vol == CXP‘I Q—{m/c 2, (« L)—}
“/"'(3 + 33:0/0) ago 4af,
_(aL)xarfc {332 3( alo/c) Y *,)E‘} [3.52]
2am At
: 2 5 ~
where erfely; = — ‘. e " dr.
N/'rr J
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This clearly shows the diffusive effect of the fourth and fifth order
terms on the third order convective wave., But it is important to realise that
@, is not significant for a signalling problem since its efiect is confined to a
region close to the wall at x=0. The third order isentropic wave is
represented by ¢, and this is the most important term. We can write

= e o 12
= i B e =(B/&VaL)p - _17 5P gp [3.53]

278 ) 1— 1/(¢,850 VaL)p
o 4 538s0 2, 3.54
¥ g(p) < asot)P Z(QL) t P [ ]

The method of steep>st descent used by Lick® can te employed here
also to evaluate 52 when |x— 850 t[ is small. It is found that

$2= — ¢ (t—x/as0) (a L) H (t - x/ag)

% € Biasolx —asot|/[(ad— 1)"]}”1[( P} e |x —agot| 8 ofe {c_lhi_:_amtl«/:xz

XHZ

1— {x—ast|/[(as — 1) x]} 1" aso
- gy (al x)" expJ ¢i (x - agot (o)) ] [3.55]
( X J
where H (t - x[as) =0 when t < x/aso

=] when t > X/aso s

c l a3 ]“2(3+3afo/(:)”zaso
bl

2 (ago = l) a0
and C o= as— 11" 10 .
) 2w ady aso (3 +3a5¢)'”

This solution is valid for small values of |x —agot|, ie. near the wave
front x =aget and under present approximation
« — BV {al [x—agt| [ [(af - I)»x]}
1= {[x—ast] [ [(af0— 1) =]}

should be taken to be ¢ and in fact this has already been done in the first
term of g—bz. However, we have retained this term in order to show that out
of the two boundary values ¢ and B the effect of B is small in comparison
with that of ¢ on the “flow in large.” This solution represents a wave
moving with third order characteristic speed ag, and diffusive effects of higher
order terms in it.

!
J
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4. VARIATION OF THE FIRST DERIVATIVES ALONG CHARACTERISTIC LINES

Non-linear wave propagation :

A general property of the characteristics of a system of differential
equations is that the variations along these curves in the mth order partial
derivatives of the dependent variables can be completely determined if all the
lower order derivatives are given oan them @ee Courant and Hilbert?,
page 618). In this section, the variations of the first order partial derivatives

are determined along the characteristic
dx/dt =c/+/'3 [4.1]

and dx/dt = as +u. [4.2]

1t is to be noted that in RGD [4.1], [4.2] and (dx/dt) = u are the only curves
across which a discontinuity in certain derivatives of dependent variables can

exist.

Consider discontinuities in the first derivatives of the flow quantities
propagating along the characteristics [4.1]. As [4.1] is one of the outermost
characteristics, the flow ahead of it remains undisturbed and it is convenient
te take the flow ahead to be of constant state given by T=T,, pg="rco>
Pr=pro=(40/3¢) T¢, u=0, F=0 and p =p;.

The equation of the characteristic can be written as #—[4/3/c] x=0,
and the flow quantities behind it can be expanded as

PG = Paco + Pai (X)'T+ R
PR=PR0+PR1(X)’:'+ R
p=po+p(X)r+ -+

u=0+u,(x)r+ - - - . [4.3]
and F=0+F(x)r+ - -
where 7=t—[+3/c]x [4.4]

Then pg; (x), pri (x) etc., give the magnitudes of the discontinuities in
t-derivatives. Substituting [4.3] in [2.1]—[2.3], [25]—[2.6] and [28] and
equating the various powers of 7 it is found that

d Fy (x) . V' 3-af, (a3 — a%o)
o R Lot v vy LICHI S

A 3-a2, L
poi (x) = FU=32)d) F(x), [4.6]
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0 ()= g R (D) [47]
() =5 B ), [4.5]
'\/3 (a~(\——axo) ~ 4
Ty (x) = R_pO_ES—(_I 3 a\”/(; ) Fy (x) [4.9]
aad pr1 (x) =[1/c 4/3] F, (x)- [4.10]

From [4.5] and i4.10]

3 a3,
Pt = T 34078) 7N (x). [4.11]

In the right hand expression of [4.5], the second term in the square
brackets can be neglected in comparison with the first. This equation shows
that the non-linearity of the equations of motion does not contribute anything
to the radiation induced waves and whatever may be the initial value of F,,
it ultimately =0 as #— oo. Thus the discontinuities in the first derivatives
of the flow quantities in radiation induced waves are exponentially damped
and formation of a front, carrying discontinuities in the flow quantities
themselves, is not possible from a continuous flow. From the expressions
[4 6] —[4.11], it follows that the quantities Pg;, uy, p1 and T are small
compared with Fy and pr; as it should be in radiation induced waves.

Now consider discontinuities in the first derivatives of the flow quantities
propagating along characteristic [4.2]. In general, the flow ahead of this
curve will be disturbed by radiation induced waves. But we have just ssen
that for radiation induced waves u;, pgi, p;, T, are small compared to
pry and F; and hence the main effects can be seen for the special case in
which u=0 and pg, p, T are constant ahead of [4.2]. Now the equations
[2.5], [2.3] and [2.8] give

/ w2 23 N \
(;;_3__.3T 3 b ;_..3&) F=0, [4.12]

2pr/ox =0 [4.13]
and 3(y - 1) 3prfat+(y-1) (3F/ax) = 0. [4.14]

Elimination of py between [2.6], [4.13] and [4.14] gives
B Ffax® =0 [4.15]
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and (1/c) GF/>t) + « F=0- [4.16]

The flux F satisfies an over-determined system of two partial differential
equation namely [4.12] and [4.15]. Equation [416] is not independent of
[4.12] and [4.15]. Now let us consider a particular solution F=0 of [4.15]
and {4.16). 1In this case, from [4.14] (3pg/37) =0 and from [4.13] pg = con-
stant. Thus the assumption made just now leads to a particular solution
F -0 and pg =constant ahead of [4.2]. Now the flow quantities behind
characteristic [4.2], which now may be written as t—x/asy =0, can be
expanded in the form [4.3] where the relation [4.4] is to be replaced by

‘,"=I—X/afgg'

Substituting in [2.1]—[2.3], [2.5]—[2.6] and [2.8] and equating various
powers of = it can be shown that

p1 (x) = (po/aso) uy (x), [4.18]
Par (x) = pg aso s (x) [4.19]
and Fy(x) =pr; (x) =0, [4.20]

where azm/c2 is neglected in comparison with terms of order unity. The
equation [4.20] implies that whatever may be the nature of discontinuities in
the time derivatives of u, pg. p the time derivatives of F and pr are always
continuous. The first term in the right hand side of [4.17] corresponds to
small amplitude waves governed by linear equation. This term represents
the exponential damping of u;, and the damping distance agrees with that
given by [36]. The second term results from the non-linearity of equations.
The solution of [4.17] is

1
Uy - , 4.21
' BlA+(1/U, - B]4)e™* [4.21}
a’s a%— a5
where A2 0 [4.22]
2a5  as
B =Z.l’?_7_1,
2 1)

and U, is the value of u; at some point, say x =0. Since we are moving
along a characteristic dx/dr = asp > 0, x> 0 in [4.21].
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When U; < 0, 1/U; — B[4 < —B[4d but |1/U;—B/4| > B/A so that
u; remains negative for all finite values of x > 0 and monotonically increases
from U, to G as x varies from 0 t0 oo.

When 0 < U; < 4/B, u; (x) monotonically decreases from U, to 0 as x
increases from 0 to oo.

When U, > A/B, 1/U, -~ B/4 <0 and u, monotonically increases from
U, to infinity as x increases from 0 to X, given by

X=(1/4) In {U\/(U, - A|B)}~ {4.23]

Now u; < 0 corresponds to an expansion wave, while #; > 0 to a compression
wave. Therefore, as in ordinary gas-dynamics, expansion wave never leads
to the breakdown of continuity of the flow. But for a compression wave
the situation is completely different. In ordinary gas-dynamics a compression
wave always leads to the formation of a shock front, whereas in RGD a
compression wave leads to the formation of a shock front if and only if

2 2 2
v, > A g (@ = ai) [4.24]
B (y +1)as

The numerical value of the expression on the right hand side when 7,=10°
and pgro =0 (pgo) will be of the order of 10" «. This is an important result
as it tells us that a shock front can be formed only if the initial disturbance
producing the compression wave, is sufliciently strong. This also explains
why Zel’dovich' and Heaslet and Baldwin'® find a discontinuity in pg, p. T, u
in the structure of only strong shock waves. Again, if a shock front is
formed, the discontinuity will be only in pg, p, #, T and notin pr and F, as
shown by equations [4.17] —[4 20]. This result is also in agreement with the
results of the authors cited above. The above result also gives a theoretical
support to the basic assumptions made in a previous paper® on the structure
of a shock wave with radiation.

5. SiMPLE WAVES AND SHoOCK WAVES IN RGD

At the end of § 3 the conditions, under which the equations of
motion in RGD can be approximated by the set IIl, have been stated. In
this approximation, as it can be seen from equations [3.29], [3.30] and [2.7],
radiation pressure and radiation energy density are replaced by their values in
thermodynamic equilibrium

pr =(46/3c) T*, Ep=(de/c) T*- [5.1]
The equation of energy does not contain the flux term as if the motion is

isentropic in large. Using [5.1] we can write the equations [2.2], [23] and
[3.28] as
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’p+u:£+p?-ti- 0 [5.2]

€ axX ax

&t Su 1 ap

—tu—t——=0 5.3

o1 dx p Ox 92l
and (i—a—d—u—b—-\p—(f /—a—+u£\ 0 [5.4]

3 ax) S(at ax) ? ;
where P =Pc + PR’ [5.5]

ag is given by [2.14] in terms of B and B is related to the densily p and total
pressure p by

{l‘—- "’) p' 4é¢ . [5.6]

/),!pfi. = 3CR4

The equations [5.2]—[5.4] can be replaced by an equivalent system of
three characteristic equations

dp + agpdu=0 on dx/dt=u+as, [57]
dp~aspdu=0 ondx/dt=u-~as {5.8]
and dp—aidp=0 on dx/dt =u. [5.9]

For the discussion of forward facing simple wave running into a region
of constant state (see Courant and Friedrich'’), the two relations [58] and
[5.9] are taken to be valid throughout the flow field, so that

P

~

P- o =J as dp [5.10]

Po

and i
W= J asdp/p. [5.11]

7o

Now the expression [2.14] is written as
ai=TI(plp) [5.12]

, _@-3y) -2y -1y p+16(y-1)
where r -n2@-Dig+12(z-1) [5.13]
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involves £, which is a complicated function of p and p as shown by [36]
In ordinary gas dynamics I" = ¢, which is a constant and equatiors [510] «nd
[5.11] can be at once integrated. However, [5. 0] with [5.¢], [512] and
[5.13] expresses p in terms of p and [5.11] expresses # in terms of p  On
characteristic dx/df = u +as all the three equations [5.7] - [5.9] are valid and
hence p, p, u are constant along this characteristic. Thus the velocity of
propagation of the wave is u +as. From [5.6], [5.10] --[5.13] it is found that

252 9 (4rag) =g (B)+ 4 {p) [5.14]
p dp ,
where ¢ (2) and ¢ (B) are functions of B only, given by
¢ (B)=r(1+T) [5.15]
and
4B 4 3)@-3m) 80 -pI1-12(y -1} +24(y - DB -16(y 1]

(#-3p)[{1—12(y =D} p+12(y - 1))
[5.16]

It can be shown that for 0< f< land I1sy<2, ¢(B)+4(B)is always
positive, so that in this case

(didp) (u +as)=>0

and the propagation speed u +as is a monotonic increasing function of p and
hence of p. Therefore the wave region of higher density and pressure moves
with higher velocity and a compression simple wave ultimately ends in a
discontinuous flow., The appearance of discontinuity in the third order
simple wave ultimately ends in a discontinuous flow. The appearance of
discontinuity in the third order simple wave means that the approximate
equations are not valid now and the neglected higher order terms, introducing
diffusion in these waves, are crucial. However, as Whitham pointed out in
the case of bores, the higher order terms need not be included explicitly.
The solution by third order terms can be saved by introducing discontinuities,
satisfying “ Rankine-Hugoniote conditions ** for the set III. Such discontinu-
ities, still called shock waves, will be different from shock waves in RGD in
which the radiation flux, radiation pressure and radiation energy density will
be continuous. The Rankine-Hugoniot conditions for the third order
terms are

pyL Uy = pytip =m (say) [5.17]

PG+ Pri + pL YL = PGy + Pra + p2 13 : [5.18]
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and
Egy + Exi/p1 + ’iuf +(uy/m) (pey + pri)
= Eco+ Exafp2 + 3 45 + (uz/m) (poz + pro) [5.19]

where pg and Egr are given by [5.1], suffixes 1 and 2 refer to quantities on
the two sides of the shock and uy, u, are velocities relative to the shock front.
Thus the Rankine-Hugoniot conditions [5.17]—[5.19], first derived by Sachs®,
apply only to the reduced set I1I i.e,, for flow in large. Findingstructureofa
shock in RGD means joining the parameters on the two sides ‘1’ and <2’
{supposed to be at infinity on both sides) by solutions of the full equations of
RGD and the structure may contain a discontinuous front satisfying the
Ranking-Hugoniot conditions

P33 = pglsg=m, [5.20]

Pos+ patls=pcs+ patis [5.21]

and

1 . N 1
Egy+—us+ oLt + — (ER =+ FR)
2 m P3

1
=Eci + 5.t vl 2O L Bk 4pp) [5.22]
2 m P4

for full ditferential equations in RGD, where suffixes 3 and 4 refer to states on
the two sides of the shock and Eg, pr are the non-equilibrium values of
Egr, pr on the both sides of shock. It is important to note that in both
sets [5.17] —[5.19] and [5.20] [5.22] the radiation flux does not give any
contribution.

Now we shall come back to the discussion of simple waves. The
function ¢ () in [5.14] is due to the dependence of I" on B and hence on p.
The numerical values of ¢ () and ¢ (B) are given in Table 1 for y =3 and
this table shows that ¢ (3) can be neglected in comparison with ¢ (f).
Therefore for y-=—§~, I" can be taken to be constani and the discussion of
simple waves in RGD_ becomes exactly the same as that for a polytropic gas

given by Courant and Friedrich!’.

6. FORMATION OF SHOCK WAVES IN SPHERICAL, CYLINDRICAL
AND PLANE MoTION
The propagation of spherical shock waves in stellar envelopes has

been studied extensively with a view to study the phenomena of ejection of
mass from the stars.. The general investigation of formation of shock waves
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TaBLE
B ¢ (B) &)
0.0 3.111 0 00000
0.1 3.173 - 0.00021
0.2 3.238 — 0.00086
0.3 3.307 - 0.00199
0.4 3.379 - 0.00368
0.5 3.459 - 0.00506
0.6 3.549 — 0.00941
0.7 3656 —0.01429
0.8 3724 - 0.02173
0.9 4.005 —0.03194

1.00 4.444 — 0 00000

in plane, cylindrical and spherical motion in RGD will be considered here.
For one dimensional motion, this problem has already been considered in §4
with full equations of RGD and it has been found that even for plane motion,
shock wave is formed only if the initial disturbance is very strong. Therefore,
it is assumed here that the changes in flow quantities over small distances
(e.g, distances comparable to mean free path of radiation) are not important
and our interest lies in ¢ flow in large”. This assumption can be made for
discussing waves in hot and massive stars such as defined by Boury’s'® models.
This problem has also been investigated by Pack'? in the absence of radiation
but here we shall include radiation terms and show that his results can be
immediately obtained by a very simple alternative method. The equation of
continuity is

P Lyl p-:'ﬁ+qpum0, [6.1]

ot ax ox X

where « =0, 1, 2 for plane, cylindrical and spherical motion and x represents
radial distance when a =1, 2. The equations of momentum and energy are
[53] and [5.4] with relations [3.6] and [5.12] in physical variables, From
these equations we can obtain

(d 3] (3 ) apoiu
i— 4 (utag)—'p+pasi—+{utas) —u+—"—-< 6.2
taz+( S)SX," e lat ( ) Fx.k x [6.2]
(3 d) (2 3 aposu

and i— $(u-as)—'} p— pas f—+(u—as)—tu+—L="=0- [6.3]
(ot dx) (32 3x) x
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]

Let us consider a forward facing wave (diverging wave for a=1,2)
running into a uniform state given by p=py, p=pg and u=0. Then, since
the front of the disturbance must be bounded by dx/dt =u + ag=agy, there
exist discontinuities in the first derivatives of the flow quantities across the
characteristic x — asg? = 0 with a proper choice of the origin of . We can
expand the flow quantities behind this characteristic as

p=potp (X) 7+ v,

p=ptp(X)rt -, [6.4]
u=04ux)r+ -

with T = tﬂ‘X/axQ.

Substituting [6.4] in [53], [56], [5.12], [6.1] and [6.2] and equating
different powers of = it is found that

%+§m=£~ou¥» [6.5]

p1 = polasy [6.6]

and © P1= poaso U [6.7]
where D= (1/2T0) [$(Bo) + ¢ (Po)] '

and the suffix O represents the values of guantities in the uniform state. The
equations [6.5]—[6.7] are the same as those obtained by Pack.

If U; be the value of #; when x=Xx,, the solution of [6.5] is found
to be

\a/2 ¢ )
3-=(1) LIPS I T I (%
iy Xp W, (2-a)ay ) (2—a)ay
and Lox [«}‘———?—- log —AE—J , for a=2. [6.9]
Uy Uixy 059 Xo

Same results [6 8] and [6.9] are obtained for a backward facing wave
(convergent wave for « =1, 2) by proceeding exactly in the same way except
with 7 =1 + x/ay and substituting [6.4] in [6.3] instead of [¢.2].

u; becomes infinite i.e., a shock wave is formed at x =y given by

x-a!z:xO*a/z‘/U;+[2D/{(2-,a2“§0“x0,for a=0,1 [6.10]
2D[(2 - a)al

¥

and y=xo Bxp. [%/(DU xg)] , fora =2 [6.11]
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- U; represents the time rate of change of u at the wave front when it is
at ¥=1x; and for a forward facing compression wave U; > 0 and for a back-
ward facing compression wave U/, < 0,

(A4) Effect of change in volume due to cylindrical and spherical motion :

The quantity aZ/|U,! D has the dimension of length and we define the
non-dimensional quantities £ and &, by
lv\| D Uy D
£ = 1"*12’* Y §o=l‘12l* Xo+ [6.12]

a0 dso

[6.1€] and [6.11] give

§1—a,2=§0—al2 §0+2'"__£l_l]|_' . for C!=0,l [6.13]
2 U,
‘ i .
i & = & Exp. 15 ) , for a=2- [6.14]
U, &

The graphs of £ versus &, are shown in Fig. 1. Curves in set | represent
forward facing wave with U; > 0 and these in set Il backward facing wave
with U; <0. The curves, for a =0, in both sets are straight lines showing
that breakdown of contmmty occurs after the propagation of wave through
a constant distance |§ §0! =1. The curves for a =1 and a = 2, in both sets,
asymptotically tend to that for a =0 as &;—> oo." For a forward facing wave
the distance & — &, travelled before the shock is formed, is greatest for
spherical motion and least for the plane motion and in cases a=1,2;
£-&— oo as & —>0. Thus a forward compression wave, creaied near
origin, ends into a shock wave at a very large but finite distance in cylindrical
and spherical motion, For U <0 and a=1, [613] shows that for £, =1 =
U ->oo at £=0; for & >+ , u; —> oo at points for which ¢ >0 and there
is o positive value of ¢ where u;—> o for & <1 In this case the right
hand side of [6.8] vanishes for x=0. Thus in set 11 &é— &; curve, for a =1,
is a part of & axis for 0 < £y <. Thus in cylindrical and spherical motion
converging compression wave.ends in discontinuity either at origin or before
reaching it.” Putting all the results together we find.that a comprcssmn wave
always ends in a shock wave of the set I1I,

(B) Effect of variation df Uyony:
The non-dimensional quantities 5 and ¥; are introduced by
o and P R EL (6 15]
Xo

@50
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Equations [6.10] and [6.11] reduce to

\2/2-a
,!;.(1 +3,T£_17) . for a=0;1 [6.16]

and ] ="t for a=2. [6.1'/]

Here V; > 0 corresponds to forward facing compression wave and ¥; <0
to backward facing compression wave. Fig. 2 gives graphs of 5 versus V.

For a =0, n—¥; curve is a rectangular hyperbola with ¥, =0 and
n=1 as its asymptotes. As lV1|—> oo, the values of y for a =1 and 2
tend to be those for « =0. For a forward facing compression wave, smaller
the initial value V, larger is the value of 5 in all cases a =0, 1, 2 and for a
fixed value of ¥;, 5 is least for plane wave and greatest for spherical wave.
For a backward facing compression wave n—>0 for a =1,2 and —> — oo
fora=0a2as ¥V;— —0.

(C) Effect of Radiation :

Here the values of pg, pg, o and U; will be kept fixed and the variation
of y with £, will be investigated.

For plane ard cylindrical motions, it is convenient to introduce the
non-dimensional quantity

L= '{(}’/Xo)l‘c‘lz— 1} e % valie [6-18]

and for spherical motion the quantity

Ly = (p[xp)Pe ol [6.19]

| Then [6.10] and [6.11] give us
L =[(2-a)21 (/D) , for a=0,1 [5.20]
and {,=exp. (I'y/D) , for a=2- [6.21]
In this case &; and {, are functions of £y only. Their values for different

values of £y are given in Table IT which shows that changes in the values of
{, and {; with fg are not significant. Thus
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TasLe 11

Y T L ] 4

' - Y
Bo o e

1 oq=0 ‘ a=1 a=2
0-0 1143 | 05714 | 3.136
0.1 1.149 0.5746 3.155
0.2 1.156 0.5778 3176
0.3 1.162 | - 05812 3.198
0.4 L1689 | 0.5849 3.22i
0.5 | 1.178 . 0.5888 3.247
0.6 ; 1.187 05933 3.276
0.7 L1997 | 0.5985 3310
0.8 | 1.210 | 06052 3.355
0.9 1.229 L 0.6147 3.419
1.0 } 1.250 l 0.6250 3.490

we come to an important conclusion that if we are interested in the variations
of flow quantities over large distances, such that the equations with third
order terms are sufficient approximations to full equations in RGD, the
radiation does not appreciably affect the formation of a shock wave.
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