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We present in this letter a scheme for optical interferometry. We utilize coherent-beam-stimulated
two-mode squeezed light, which interacts with a phase shifter and is then squeezed again before
detection. Our theoretical device has the potential to reach far below the shot noise limit (SNL) in
phase sensitivity. This new proposal avoids the pitfalls of other setups, such as difficulty in creating
the required resource. Furthermore, our scheme requires no complicated detection protocol, relying
instead only on simple intensity measurement. Also, bright, coherent sources “boost” squeezed light,
creating a very sensitive device. This hybrid scheme relies on no unknown components and can be
constructed with current technology. In the following we present our analysis of this relatively
straightforward device, using the operator propagation method. We derive the phase sensitivity and
provide a simple numerical example of the power of our new proposal. Sensitivity scales as a shot
noise limited Mach-Zehnder Interferometer, multiplied by a sub-Heisenberg contribution from the
squeezed light.

PACS numbers: 42.50.St, 42.65.Lm, 42.65.Yj, 42.50.Dv

Accurate measurement is the cornerstone of our un-
derstanding of the natural world. Science has improved
apace with our ability to examine ever more minute, re-
mote, or subtle phenomena.
Optical interferometry is an extremely useful and flex-

ible measuring tool. The Mach-Zehnder Interferometer
(MZI) [1, 2] and its cornucopia of variants have for many
years been the standard devices used in this capacity.
Optical interferometers function by splitting light be-
tween two paths, directing one path towards an object
to be studied, recombining the beams, and observing the
resultant interference pattern. This generic “object” may
be any number of things from a medium, which changes
the properties of the light in the presence of magnetic
fields [3], to a path difference caused by the presence of
a gravitational distortion [4, 5]. The power of optical
interferometry comes partially from its very broad ap-
plicability. It also comes from its capacity for extreme
sensitivity.
The phenomenon we studied is represented by an ab-

stract phase shifter placed in the detection arm of the
interferometer. The measuring power of a given interfer-
ometric scheme can then be characterized by its sensitiv-
ity to changes in this phase.
With solely coherent light input into an interferome-

ter the limit on the sensitivity to this abstract phase is
∆φ2 = 1/NCoh. Where NCoh is the average number of
photons in the coherent beam. This root-intensity scal-
ing is referred to as the shot noise-limit (SNL). In the
past few decades it has been shown that this limit may
be surpassed by taking advantage of the quantum nature
of light. Viewing entanglement as a resource for sensitiv-
ity enhancement there has been much progress towards
achieving the more fundamental Heisenberg limit which

scales as ∆φ2 = 1/N2, where N is (usually) the total or
average number of particles in-putted into the interferom-
eter. There are several main thrusts in this effort: Utiliz-
ing squeezed light as one or both inputs [6–12], creating
maximally path entangled number states (N00N states)
inside the device, use of Bose-Einstein condensates, caus-
ing the light to execute multiple passes through the phase
shift, and other schemes.
Though all these programs show promise, they all suf-

fer from daunting problems in the technical implementa-
tion.
As we shall show, our setup avoids many of these prob-

lems; whilst granting a large improvement in sensitivity.
This flexibility comes from the fact that we allow for the
interferometer to utilize bright coherent sources, which
enhance the effect of squeezed light. We will take as an
example the LIGO (Laser Interferometer Gravitational-
Wave Observatory) project, and show that by using a
squeezing parameter of r = 3 (which is not far outside
the realm of what is currently available) the shot noise
may be reduced by a factor of two hundred. Alterna-
tively the coherent intensity could be reduced by a factor
of forty thousand, while maintaining the original sensi-
tivity. Thus our new scheme has the potential to both
improve the most sensitive devices and to make those
devices more easily accessible.
In 1985 Yurke, McCall, and Klauder [13], building on

foundational work by Wódkiewicz and Eberly [14], in-
troduced a new class of interferometers which, unlike
MZI and Fabry-Perot setups, is described by the group
SU(1,1) – as opposed to SU(2). A realization of these de-
vices may be imagined by taking a traditional MZI and
replacing the 50-50 beam splitters with four-wave mix-
ers. Klauder, et al., showed that the sensitivity of this
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FIG. 1. A strong laser beam pumps the first OPA. The beam
(which is assumed to be undepleted) undergoes a π phase
shift and then pumps the second OPA. The input modes of
the first OPA are fed with coherent light. After the first OPA
one of the outputs interacts with the phase to be probed.
Both outputs are then brought back together as the inputs for
the second OPA. Measurement is done on the second OPA’s
outputs.

device exhibits sub-Heisenberg scaling. Recently Kolki-
ran and Agarwal studied-coherent-beam stimulated para-
metric downconversion as an input into a MZI [15]. Their
work demonstrated the ability to acquire resolution en-
hancement at high signal values with good visibility.
In this work we modify the Klauder, et al., setup by re-

placing the vacuum inputs in the initial four-wave mixer
with coherent states. In our treatment the four-wave
mixers are expressed as optical parametric amplifiers.
The – potentially very bright – coherent light in the in-
terferometer “boosts” the squeezed light from the opti-
cal parametric amplifiers (OPAs) into the high intensity
regime, while maintaining sub-SNL scaling. For some
references on injecting photons from an OPA into an ex-
ternal non-vacuum mode see for example Refs. [16–18].
Take a setup as depicted in Fig. 1. An OPA is pumped

by a coherent source. Assuming the pump beam is unde-
pleted after the first OPA, it then undergoes a π-phase
shift and pumps a second OPA. The first OPA is seeded
with a coherent beam in each of its input modes. The
phase shift to be probed is placed in the upper arm of
the device and interacts with one of the output modes of

the first OPA. Both output modes are then brought back
together into the input modes of the second OPA. The
output of the second OPA is then read out by a detector
in each of the output modes. If the input ports |α〉 and
|β〉 are replaced by vacuum then the scheme reduces to
that of Klauder et al.
This device can be modelled with the transformation

between input modes and output modes given by ~Vf =

M̂3M̂2M̂1 · ~Vo, where

~Vf ≡









âf
â†f
b̂f
b̂†f









, ~Vo ≡









âo
â†o
b̂o
b̂†o









, M̂1 ≡







µ 0 0 ν
0 µ ν 0
0 ν µ 0
ν 0 0 µ







M̂2 ≡









eiφ 0 0 0
0 e−iφ 0 0
0 0 1 0
0 0 0 1









, M̂3 ≡







µ 0 0 −ν
0 µ −ν 0
0 −ν µ 0
−ν 0 0 µ






,

and µ = cosh r, ν = sinh r, r is the gain of the the OPAs,
and the phase of the initial pump has been set to zero.
The matrix M̂1 represents the first OPA, M̂2 represents
the phase shift, and M̂3 represents the second OPA. Note
that M̂3M̂1 = Î. Thus in the case that φ = 2πn, n =
0, 1, 2... the input equals the output.
We wish to analyse the sensitivity of this setup to the

phase φ; given a simple total intensity detection scheme

represented by the operator N̂T = â†f âf + b̂†f b̂f . We

use the standard formula for phase sensitivity ∆φ2 =
(

〈N̂2
T 〉 − 〈N̂T 〉2

)

/
(

∂φ〈N̂T 〉
)2

. In order to perform this

calculation we require the first and second moment of
N̂T . The NCAlgebra package [19] for MathematicaTM

was utilized to create a program specially designed to do
this. The result in our case is a series of rather large
and un-illuminating equations, which are not reported
here. However they may be used to calculate the phase
sensitivity, given in by,

∆φ2 =
µ2ν2

{

B
[

1 + 4 cos(φ) + 3 cos (2φ) + 8 cosh(8r) sin4
(

φ

2

)

+ 8 cosh(4r) sin2(φ)
]

+Ψ− 8
}

256 {|αβ| [µ2 sin(2θ + φ) − ν2 sin(2θ − φ)] + [1 + |α|2 + |β|2]µν sin(φ)}2
, (1)

where Ψ = 32|αβ|2
{

sin(2θ) sinh(2r)
[

2 cosh2(2r) sin(φ)

− sin(2φ) sinh2(2r)
]

+ 2 cos(2θ) sin2
(

φ

2

)

sinh(4r)

×
[

cosh2(2r) − cos(φ) sinh2(2r)
]}

, and θ is the phase
of the input coherent states (which are taken to be
equal), and B = 1 + 2|α|2 + 2|β|2. We can check
this formula by taking limits and comparing to known
expressions. In the limit of α = β = φ → 0 we obtain
∆φ2 = 1/ sinh2(2r), which matches the result from
Klauder, et al. A simplification of Eq. (1) occurs when

φ = 0 and θ = π/4

∆φ2 =
1

NOPA(NOPA + 2)

1

NCoh

, (2)

where the intensity NCoh is the amount of coherent light
at the input (|α|2 + |β|2), and the intensity NOPA =
2 sinh2(r) is the amount of light the OPA would emit with
vacuum inputs. We have taken |α| = |β| for the sake of



3

FIG. 2. A plot of the phase sensitivity as a function of the
probe phase (φ) and the input phase (θ), with r = 0.5 and
the flux of the coherent input equal to what the squeezed flux
would be with vacuum inputs.

simplicity. This setup multiplies the sub-Heisenberg sen-
sitivity of the Klauder setup with the standard-quantum-
limited sensitivity of a coherent light input MZI. The
advantage provided by the coherent-light boosting is ev-
ident, allowing sub-SNL scaling at intensities far beyond
what entangled sources alone can provide.
It should be noted that the result in Eq. (2), though

simple, is not optimal for our scheme. The full expression
Eq. (1) shows that there is a complicated relationship
between pump phase, probe phase, OPA gains, input co-
herent states, and the phase sensitivity. The choice of
φ = 0, θ = π/4 was made only because it caused signifi-
cant simplification. If the amplitude of the input states
and the gain of the OPAs are known, then the bias and
input phases may be chosen such that the phase sensitiv-
ity is maximized. If this is done some additional minor
improvement can be obtained. The effect is most pro-
nounced at low photon numbers. Take as an example
Fig. 2; it is a plot of the phase sensitivity as a func-
tion of the probe phase (φ) and the input phase (θ), with
r = 0.5 and the flux of the coherent input equal to what
the squeezed flux would be with vacuum inputs. For each
value of θ there are values of φ for which the smallest de-
tectable phase shift is minimized. These effects become
less pronounced as either the gain or the coherent flux
are increased. For clarity, slices at constant input phase
(θ) for various photon fluxes are provided in Fig. 3.
Let us take a simple numerical example. Gravitational

wave detectors are essentially the largest and most sen-
sitive interferometers to date. There are many of these
interferometers around the world, the largest of which
are in the LIGO project. Their interferometer arms have
a circulating photon flux on the order of 1023photons/sec
(20kW of circulating power at a wavelength of 1064nm
[20]). If we we take our theoretical setup with a gain
of r = 3 we can use Eq. (2) to calculate the coherent
intensity necessary to achieve the same phase sensitivity

FIG. 3. Slices across Fig. 2 at input phase θ = π/4. Phase
sensitivity as a function of the probe phase, with the flux of
the coherent input equal to what the squeezed flux would be
with vacuum inputs. The gain (r) is set to 0.5 (dashed), 1
(dotted), and 1.5 (solid).

(making the vast simplification that LIGO is a simple
shot-noise-limited MZI) and arrive at ∼ 2.5 × 1018 pho-
tons/sec, forty thousand times less than LIGO. Vacuum
inputs (squeezed light alone, as in the Klauder setup)
would require a gain of r ≃ 13.6. Conversely if the coher-
ent intensity were kept the same and the squeezed light
added then the phase sensitivity would be improved by a
factor of two hundred. Admittedly this is a large squeez-
ing factor. However we would like to point out that a
gain of r = 2.25 has been reported recently, in [21] (a
gain of 4.5 in the language of that paper). So it seems
likely that a gain of three will be available in the near
future.
One could ask two pointed questions about our

new scheme: (1) What advantage does this offer over
techniques which are already planned for use in the
next LIGO iteration and other next-generation, super-
sensitive schemes; namely single-mode squeezed light in-
cident into the dark input of an MZI? (2) In order to cre-
ate bright entangled sources – such as the OPAs in our
setup – one must employ a strong coherent pump beam.
Is it really practically advantageous to employ this quan-
tum light in an interferometer, rather than simply adding
this strong pump laser into the device classically. In other
words, taking into account the fact that very bright lasers
are quite readily available, do squeezed light setups (ours
in particular) really “win out” over the brute force tech-
nique of cranking up the coherent intensity as high as it
will go?
The two questions are linked. To answer the second

first: Super-sensitive interferometers suffer from both
shot noise (NS) and radiation-pressure noise (NRP ). At
lower intensities NS dominates, however in the regime
that LIGO now operates in, NRP has become as im-
portant, meaning that a kind of saddle point has been
reached where either increasing or decreasing the inten-
sity will lead to increased quantum noise (via NRP or



4

FIG. 4. Comparison of three interferometer schemes. The
dashed line represents an MZI with 1013 photons of coherent
light in one input mode and squeezed light in the other. The
solid line is our coherent-light boost (CLB) scheme, with 5×
1012 photons input into each mode. The dotted line is a
standard coherent-input-only MZI with additional intensity
proportional to what would be needed for a pump to create
the equivalent gain in the other two setups: Itotal = 1013 +
1012 sinh2(r).

NS respectively). Therefore it is very advantageous to
use squeezed light as it reduces NS at a much faster rate
than it increases NRP . Furthermore, even just consider-
ing NS , the rapid scaling of squeezed light does indeed
“win”. We can see this with a toy example. Suppose
we have one interferometer which uses a coherent pump
driven OPA to generate the squeezed light, and another
which has a classical input with that same pump added

to the classical input beam (given that it takes approxi-

mately 1012 pump photons to make one pair of entangled
photons [22]). This analysis is presented in Fig. (4). As
can be seen, both a squeezed-light added MZI – and our
coherent-light boosted setup – consistently outperform a
solely coherent-input MZI for a wide range of gains.
To answer the first question, take the high gain limit

of Eq. (2) which reduces to ∆φ = e−2r/
√
2NCoh. Com-

pare this with a SU(2) MZI with one squeezed input (for
NCoh ≫ NSqueezed): ∆φ = e−r/

√
NCoh (see for example

[23]). Thus for large gains (a gain of r = 2 is sufficient
for being called large) our setup is exponentially better
than single mode squeezing. Again we refer to Fig. (4)
for a more complete comparison.
In conclusion we have presented a theoretical analy-

sis of a new interferometric scheme that uses potentially
strong coherent beams to boost the sensitivity of inter-
ferometers employing squeezed light. The result is a
promising form of metrology, which achieves scaling far
below the shot noise limit for bright sources. It uses only
simple intensity measurement and components that are
currently available. The phase sensitivity of this device
scales as a coherent light input Mach-Zehnder interfer-
ometer multiplied by the sub-Heisenberg scaling of the
Klauder et al. squeezed light interferometer.
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