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Abstract: We present first ever analytical solutions for shape-preserving
pulses in a Kerr nonlinear two-mode fiber doped with 3-level Λ atoms. The
two modes are near-resonant with the two transitions of the atomic system.
We show the existence of quasi-stable coupled bright-dark pairs if the group
velocity dispersion has opposite signs at the two mode frequencies. We
demonstrate the remarkable possibility allowed by the fiber dispersion for
the existence of a new class of solutions for unequal coupling constants for
the two modes. We present the conditions for existence and the analytical
form of these solutions in presence of atomic detuning. We confirm
numerically the analytical solutions for the spatio-temporal evolution of
coupled solitary waves.
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1. Introduction

Coherent pulse propagation in atomic media has been one of the central issues of quantum op-
tics since the pioneering work of McCall and Hahn [1, 2] on self induced transparency (SIT).
Initial studies on SIT focused on shape preserving pulses (e.g., solitons) in resonant two-level
systems [3, 4, 5]. A generalization to two pulses with frequencies tuned to the respective tran-
sitions of a 3-level Λ system led to the discovery of adiabatons [6]. These were shown to be
extremely sensitive to the input conditions. A thorough investigation of two pulse propagation
in three level systems demonstrating the sech and tanh pulse pairs, was carried out by Eberly
and coworkers [7, 8, 9]. Efforts were made to extend the area theorem to three level systems [9].
Soliton cloning and dragging using two lasers on the two transitions of a Λ system was another
interesting discovery [10]. Soliton cloning in a three level system coupled to a two-mode fiber
was investigated numerically [11]. Electromagnetically induced transparency (EIT) in three
level systems opened the floodgates for unprecedented control on pulse velocity, with tremen-
dous potentials for quantum information and many other applications [12, 13]. Slowing down
and storing robust objects like solitons by manipulating the dispersion in the atomic systems is
now an open possibility. In a somewhat different context, mainly for the demands of long-haul
communication industry, solitons in Kerr nonlinear fibers were studied extensively [14]. The
existence of these solitons in a non-resonant nonlinear system depends on a fine balance be-
tween nonlinearity and dispersion. The dynamics of such solitons are governed by the nonlinear
Schrödinger equation (NLS). Note that the physical origin of shape preserving pulses in this
case is quite different from that of resonant nonlinearities, which is reflected by the fact that
SIT-solitons are described by sine-Gordon equation. In the context of NLS-solitons there have
been generalizations to two modes as well [15]. These could be the two modes of two adjacent
single mode fibers or the two orthogonal modes of a birefringent fiber. With opposing character
of dispersion at the two mode frequencies, the system is known to possess coupled bright-dark
states [15]. Issues like control of pulse velocity in systems with non-resonant nonlinearity were
also addressed [16]. Delay and advancement of long pulses were observed experimentally. De-
lay of pulses were shown to be controllable by means of nonlinear coupling between different
frequency components in a temporally nonlocal Kerr medium [16].

Considering the fact that research has progressed so much on the above two types of nonlin-
earity (i.e., resonant and non-resonant) separately, there is a need to combine the expertise and
extract the best from each. Perhaps the first attempt was made by Nakazawa et al., who showed
that both SIT and NLS solitons can coexist in a medium which has both types of nonlinearity
[17, 18, 19]. Such a situation will typically correspond to a nonlinear fiber doped with, say,
rare earth materials. The urgency of such research can be appreciated easily in the light of some
very recent experiments involving EIT phenomena in a fiber geometry [20, 21]. The advantages
of using the fiber leading to large optical depth and tighter confinement of the field, and hence
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Fig. 1. The schematics of three level Λ system interacting with two fields corresponding to
Rabi frequencies 2G and 2g, respectively. The single photon detuning is denoted by Δ.

power densities, are obvious. An optical depth in excess of 2000 was reported in a system where
a photonic band gap fiber was used, which had the Rb atoms released by light-induced atomic
desorption [21]. The tight confinement of the field allowed to have ultralow-level nonlinear
optical interaction with control field powers at nano-watt regime.

Keeping in view the recent experiments and the theoretical trends, we focus on a two-mode
fiber, doped with three level Λ atoms. The two modes are assumed to be near-resonant with
the two relevant transitions of the Λ system (see Fig.1). To the best of our knowledge, such a
system has not been probed for stable propagation of pulse pairs. We derive first ever analytical
solutions for the combined effects of three level resonant nonlinearities and the non-resonant
nonlinearities of the fiber. We thus considerably extend known works on solitons in three level
systems and in fibers [7, 8, 15]. We show that the analytical solutions in the form of solitary
waves are possible even in presence of finite detuning. We make several important observations.
Fiber parameters, namely the group velocity dispersion (GVD), determines the stability aspects
of the pulse pair, while their delay is governed mainly by the 3-level system. We also predict a
new class of solutions with allowance for a frequency shift. These solutions are characterized by
a group velocity, tunable by the GVD of the fiber. Most of the results are presented in analytical
form, while the stability aspects are studied by direct integration of the propagation equations.
We show that quasi-stable propagation of bright-dark pair of solitons is possible if the modes
are chosen on the positive and negative sides of null group velocity dispersion. We also look at
the various limiting cases in order to recover the earlier known results.

The organization of the paper is as follows. In section II we present the mathematical formu-
lation and the analytical results. We also derive the conditions under which such solutions exist.
Section III gives the results of numerical integration of coupled atom-field system, focusing on
the stability aspects of the solutions of section II. Finally, in conclusions, we summarize the
main results.

2. Mathematical formulation

We consider a Kerr-nonlinear two-mode fiber doped with 3-level Λ− atoms as shown in Fig. 1.
Many of the rare earth elements can well be approximated by a Λ− system, while the two
modes of the fiber could be the orthogonally polarized modes of a birefringent fiber. The two
modes of the fiber, assumed to be near-resonant with the transition |1〉←→ |2〉 and |1〉←→ |3〉,
respectively, are defined as

�Ei(z,t) = �Ei(z,t) e−i(ωit−kiz) + c.c,(i = 1,2). (1)

Here �Ei is the slowly varying envelope, ω i is the carrier frequency, and ki is the wave number
of the respective field. We use the Schrödinger formalism for the medium to describe dynamics
of population and polarization of the atoms. The probability amplitudes C i(z,t) of the atomic
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levels |i〉 for the Λ-system within the rotating wave approximation can be written as

Ċ1 = −iΔC1 + iGC2 + igC3 ,

Ċ2 = iG∗C1 , (2)

Ċ3 = ig∗C1 ,

where dot denotes ∂/∂ t. The Rabi frequencies 2g and 2G for the two field modes are related to
the slowly varying amplitudes of �E1 and �E2 according to the relations

2g =
2�d13 · �E1

h̄
, 2G =

2�d12 · �E2

h̄
, (3)

where �di j represents the transition dipole moment matrix element. The single photon detuning
is denoted by Δ. The induced atomic polarization related to the atomic transition between levels
|1〉 and |2〉 is described by

�P = [χ (1) + χ (3)(|E1|2 +2|E2|2)]�E1 (4)

where the quantities χ (1) and χ (3) are known to be the linear and third-order non-linear optical
susceptibilities respectively. The first term in the round bracket is responsible for self phase
modulation (SPM) and the second term leads to cross-phase modulation (XPM). The polariza-
tion �P is a slowly varying function of both space and time coordinates because of the depen-
dence on the slowly varying parameter �E1. We use the nonlinear Schrödinger’s equations(NLS)
to obtain the spatiotemporal evolutions of the light pulses through a doped nonlinear disper-
sive medium. Taking slowly varying envelop approximation and converting the equation for
the Rabi frequencies of the field, we obtain

∂g
∂ z

= −iβ1
∂ 2g
∂ t2 + iγ1(|g|2 +2|G|2)g+ iη1C

∗
3 C1 (5)

∂G
∂ z

= −iβ2
∂ 2G
∂ t2 + iγ2(|G|2 +2|g|2)G+ iη2C

∗
2 C1 , (6)

where ηi determines the coupling to the atomic system for the i-th mode

ηi ≈ η =
4πN ωi|d|2

ch̄
, (i = 1,2). (7)

In Eqs.(5-6), βi, i = 1,2 represents the group velocity dispersion, γ i, i = 1,2 denotes the Kerr
nonlinearity. Note that γ1 and γ2 can differ because of dispersion. Let us show how the various
limiting cases (earlier know results) can be recovered from our general equations. SIT solitons
of McCall and Hahn [1, 2] can be recovered by setting β i = γi = G = 0 in Eqs. (2) and (5). The
SIT-NLS solitions of Nakazawa et al. [17] can be obtained by setting G to be zero, reducing
the problem to one of single mode of the fiber interacting with a resonant two-level system. It
is also clear from Eqs. (5) and (6) that one would recover the case considered by Trillo et al
[15] by setting both the η’s to be zero. We use all these limiting cases as checks of correctness
of our numerical code (see section III below).

Since both the bare fiber and the bare 3-level system allow for sech-tanh pairs of pulses
[7, 8, 15], we use the following ansatz for the solution of Eqs.(2),(5) and (6).

g = A sech(Kz− t
σ

)ei(p1z−Ω1t) (8)

G = B tanh(Kz− t
σ

)ei(p2z−Ω2t) (9)
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C1 ∼ e−iΩ1t (10)

C2 ∼ e−i(Ω1−Ω2)t (11)

C3 = α tanh(Kz− t
σ

)+ (1−α) (12)

In the above equations σ determines the temporal width of the pulse and 1/(Kσ) gives the
envelope velocity in the moving frame. The other constants are to be determined in a self-
consistent fashion. The expression of C3 is chosen in such way that, in the remote past, all
the population is in the ground state. Note that in contrast to Refs.[7, 8], we have allowed for
the frequency shifts Ω1,2. The choice of the temporal exponential factors in Eqs. (8)-(11) is
obvious and leads to the cancellation of explicit time dependence except for a problematic term
i(Ω1−Ω2) in C2 arising from Eq.(2). This term can be eliminated under the condition Ω 1 = Ω2.
Henceforth, we will assume that the frequency shifts are identical for both the fiber modes, i.e.,
Ω1 = Ω2 = Ω. Under such constraints the expressions for the amplitudes C1 and C2 can be
written as

C1 =
(

iα
Aσ

)
sech(Kz− t

σ
)ei(p1z−Ωt) (13)

C2 =
(
−αB

A

)
sech(Kz− t

σ
)ei(p1−p2)z (14)

The solutions (8), (9), (12-14) are then substituted in Eqs. (2), (5), (6) and coefficients for Sech,
Tanh and SechTanh are then collected yielding the self-consistency relations. The Bloch part
yields the following two relations

i(1−α) =
α (Ω−Δ)

A2σ
(15)

A2−B2 =
1

σ2 (16)

The Eq. (15) gives relation between α and Δ as follows:

α =
A2σ2

A2σ2 + i(Δ−Ω)σ
, (17)

The coupled nonlinear Schrödinger part yields the following set of equations

p1 =
|α|2η1(Δ−Ω)

A4σ2 +2B2γ1 + β1(Ω2− 1
σ2 ) (18)

p2 = γ2B2 + β2Ω2 (19)

K =
η1|α|2
σA2 +

2β1Ω
σ

=
η2|α|2
σA2 +

2β2Ω
σ

(20)

2β1

γ1σ2 + (A2−2B2) = 0 (21)

2β2

γ2σ2 + (2A2−B2) = 0 (22)

In writing Eq. (18) we made use of Eq. (15). Equation(20) easily leads to the constraint

|α|2
A2 (η1−η2)+2Ω(β1−β2) = 0. (23)
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It will be shown later that for stable propagation of pulse pairs, it is essential that β 1 �= β2, and
thus Ω can be evaluated using Eq. (23) as

Ω =
|α |2
A2 (η2−η1)
2(β1−β2)

. (24)

Equations (21), (22) and (16) lead to the important relation

3+
2β1

γ1
+

2β2

γ2
= 0. (25)

Equation(25) is one of the central results that should be satisfied by the nonlinearity and dis-
persion in the medium at the two mode frequencies. We show in the next section that this
condition can be satisfied with the same or opposite signs of group velocity dispersion. One
of these solutions is quasi-stable against modulational instability while the other breaks down
quickly.

A close inspection of the argument of the pulse envelopes leads easily to the following rela-
tion satisfied by the group velocity vg

c
vg
−1 = Kσc =

η1σ2(Aσ)2c

(Aσ)4 +(Δσ −Ωσ)2 +2β1Ωc. (26)

It is clear from Eq. (26) that for η1 = η2 = η (leading to Ω = 0), large detuning (diminishing
3-level effect) leads to vg → c, which holds for bare fiber. The other extreme, namely Δ = 0,
reproduces the result of Eberly for perfect resonance c/v g = 1+ cη/A2 [7]. It should be noted
that for η1 �= η2, and hence Ω �= 0, the group velocity gets affected by the fiber GVD β .

We now demonstrate how the results of Nakazawa et al. [17, 18] can be recovered from our
general results. This case along with few other limiting cases are discussed below in the context
of testing our numerical code. We set G = 0 and η2 = 0, η1 = η ,β1 = β in order to recover the
coexistence of SIT-NLS solitons. This yields the following conditions

A2σ2 = 1, 1+
2β
γ

= 0. (27)

The conditions (27) along with the limiting forms of the solutions for g, C 1 and C3 agree well
with those of Nakazawa et al. Further, at perfect resonance (Δ = 0) for Ω = 0, one has simple
relations for the parameters

α = 1, K = ησ , p =−β/σ 2. (28)

3. Numerical results and discussion

In this section we present the numerical results by integrating the full set of coupled Bloch Eqs.
(2) and NLS Eqs. (5) and (6) with the following scalings

τ =
t
σ
−Kz, ζ =

z
z0

, z0 =
πσ2

2β2
. (29)

We use a combination of the Runge-Kutta method and split operator method to simulate the
spatiotemporal evolution of the optical pulses to delineate the effect of both resonant and non-
resonant nonlinearity of the medium. We use initial conditions given by our analytical solutions
to check their stability. The atomic system is assumed to be prepared in the ground state.
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Fig. 2. (a) Propagation of the sech pulses with an area 2π at different propagation distances
in a single mode fibre coupled with resonant nonlinearity. The Fig. 2(b) shows the break-
up of a pulse with area 4π into two pulses with area 2π . The different parameters used
in the numerical simulation are as follows: group velocity dispersion β1 = −0.5 and Kerr
nonlinearity γ1 = 1.

Before we present the numerical results, a discussion of parameters leading to coupled soli-
tons in a medium with both resonant and non-resonant nonlinearity would be in place. It was
shown by the Nakazawa et al. that choosing a realistic system of a nonlinear fiber, doped with
rare earth materials for the coexistence of SIT and NLS solitons is extremely difficult [17, 18].
The difficulty is associated with the fact that the power requirement for the N=1 solitons for
the two cases differ by orders of magnitude. Hence, in their experiment the NLS soliton was
suppressed by choosing the fiber mode with null GVD [19]. We do not offer any resolution of
this problem and use heuristic parameter values. Although our choice of parameters is some-
what away from those of available realistic fibers and rare earth atoms, our calculations reveal
clearly the intricate interplay between the resonant and non-resonant nonlinearities. The pres-
ence of the fiber is shown to lead to hitherto unknown solutions for unequal couplings. Since we
present analytical expressions for most of our results, the suitability of a given fiber or atomic
species can be checked with further development of fiber and materials technology. In our nu-
merical simulations, we consider the width of the pulse σ = 1. As a consequence of our choice
of parameters, most of the results are in arbitrary units and they are suppressed in the plots.

In order to ensure the correctness of our numerical code, we first studied various limiting
cases. We start with the standard SIT solitons of a two-level system and verify the stable prop-
agation of a bright soliton with area 2π , and break-up of a pulse with area 4π into two 2π
solitons (results of simulation not shown). We next verify the case of nonlinear propagation
of dark and bright solitons in two mode optical fibre [15] (not shown). The bright pulse can
propagate without any distortion despite normal GVD, when it couples with the dark soliton
with anomalous GVD through cross phase modulation. It is necessary to choose dark and bright
solitons on the two sides of null group velocity dispersion for the stable solitons solutions.

As the other limiting case we studied the system investigated by Nakazawa et el.[18]. In Fig.
2 we have demonstrated the propagation dynamics of SIT-NLS soliton in a resonant dispersive
medium in the presence of group velocity dispersion and self phase modulation. We show in
Fig.2(a) the stable propagation of a 2π SIT-NLS soliton. As can be seen from Fig.2(b), in
conformity with the earlier results, the input soliton with area 4π splits into two separate 2π
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Fig. 3. Stable propagation of (a) bright and (b) dark solitons in a three level medium in
presence of nonresonant nonlinearity and fiber dispersion. The different parameters are as
follows: Input intensities A2 = 4, B2 = 3, pulse width σ = 1, Kerr coefficient γ1 = γ2 = 1,
group velocity dispersion parameter β1 = 1.0, β2 =−2.5, coupling constant η1 = η2 = 1,
single photon detuning Δσ = 0. Note the opposite signs of the GVD at the two mode
frequencies.

solitons after traversing some distance into the medium. We next provide numerical results
for the medium with competing resonant and non-resonant nonlinearities. Since distortionless
propagation of the pulses is of utmost importance for any practical application, we first present
the results pertaining to the stability of the pulses. In Fig. 3(a) and 3(b) we show the spatio-
temporal evaluation of the bright and dark solitons for η 1 = η2 = 1 and Δσ = 0. We have
chosen the intensities of input bright and dark pulses as A2 = 4 and B2 = 3, respectively, such
that they obey the self-consistency relation (16). Like in the case of Trillo et al. [15] we choose
the group velocity dispersion of the bright and dark pulses above and below the null dispersion.

Fig. 4. Growth of instability for (a) bright and (b) dark solitons in a three level medium
in presence of nonresonant nonlinearity and fiber dispersion. Parameters are the same as
in Fig. 3, except that now group velocity dispersion β1 (=-0.25) and β2 (=-1.25) have the
same sign.
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Fig. 5. Spatio-temporal evolution of the (a) bright and (b) dark solitons in (i) a two-mode
fiber (solid curve), (ii) 3-level system (dashed-dot curves) and (iii) in a doped fiber (dotted
curves). Cases (ii) and (iii) are plotted for Δσ=0 and 5, respectively. Case (ii) also corre-
sponds to a doped fiber with Δσ = 0. The other parameters are as follows A2 = 4, B2 = 3,
σ = 1, η1 = η2 = 1, β1 = 1, β2 =−2.5

Keeping in mind condition (25), we have used β 1 = 1.0 for the bright pulse and β2 = −2.5
for the dark pulse, respectively. It is clear from Fig. 3(a) that the bright soliton moves without
any distortion even in normal dispersion regime. This quasi-stable bright soliton propagation is
possible because it couples with dark soliton via the cross phase modulation. After sufficient
propagation distances, the dark soliton starts showing signs of modulations instability. In order
to highlight the need for choosing opposite character of GVD for the two modes for stable
bright-dark pairs, we show in Fig. 4 the case where β1 and β2 were chosen to have the same
sign, still consistent with Eq. (25). It is clear from the figure that both the constituents of the
pair disintegrate after propagating short distances.

In order to appreciate the contributions of the constituent systems separately, and also to
assess the effect of detuning, we undertake a detailed comparative study of the bare sytems
(fiber and 3-level atoms) with the doped fiber. The results for the spatio-temporal evolution
of the bright and dark pulses are shown in Figs. 5(a) and 5(b), respectively. The solid and the
dashed-dot curves give the results for the bare fiber and a resonant (Δσ = 0) 3-level system,
respectively. In fact, the latter curves are identical with those for the fiber doped with perfectly
resonant atoms. The results for finite detuning, namely Δσ = 5 is intermediate between these
two extremes (see dotted curves in Fig.5). For very large detuning, the doped fiber results are the
same as those for the bare fiber. It is thus clear that the delay aspects of the pulses in the doped
fiber is derived mainly from the strong dispersion in the atomic dopants. All these conclusions
are consistent with Eq.(26).

As mentioned earlier, for η1 �= η2, the fiber GVD can modify the group delay. This is shown
in Fig.6 where we have plotted Kσ (= 1/vg−1/c) as a function of the normalized detuning Δσ
for η1 = 1, and for two values of η2, namely, η2 = 1(solid curve) and η2 = 2 (dashed curve).
The plots are obtained by two different means, namely, (a) by direct integration and interpreting
the location of the peaks as in Fig. 5(a) and (b) by using Eq. (26). Both these methods led to the
same curves. The results for bare 3-level atoms with η1 = 1,η2 = 2 is also given by the solid
curve. Both these cases of bare 3-level system with unequal coupling constants and a doped
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Fig. 6. Kσ = (v−1
g − c−1) for a doped fiber as a function of normalized detuning Δσ for

η1 = 1 and for two values of η2, namely, η2 = 1 (solid line) and η2 = 2 (dashed line). The
results for a 3-level system with η1 = 1 and η2 = 2 is also given by the solid curve. The
other parameters are as in Fig.5.

fiber with equal coupling strength have no contribution from the rightmost term in Eq. (26). It
is clear from this figure that the solutions with finite frequency shift (Ω �= 0 for η 1 �= η2) can
lead to larger delays.

4. Conclusions

In conclusion, we have studied propagation of shape-preserving pulses in a two-mode fiber
doped with Λ atoms. We have obtained the analytical form of the solutions, as well as the
conditions for their existence with allowance for atomic detuning and frequency shifts. We have
also simulated the spatio-temporal evolution of pulses by means of a combined Runge-Kutta
and split-step method. We show that the stability aspects of the pulses of the doped fiber are
inherited from the fiber, while the delay aspects are governed by the atomic system. Our results
clearly reveal the important role of group velocity dispersion on stable propagation of these
pulses. Quasi-stable propagation results in case when the two pulses are tuned at frequencies
with opposing signs of GVD. The opposite case leads to a quick breakup of the pulses due to
modulational instability. This is in tune with the findings of Trillo et al. [15]. We also reported
a new class of solutions for unequal coupling strengths for the two modes. We presented a
detailed study of the group delay with clear demarkation of the contributions from the fiber
and the Λ atoms. Further, we demonstrated how other known results can be recovered from our
general results both analytically and numerically.

Acknowldgments

GSA thanks J H Eberly for several discussions on analytical solutions. TND is grateful to
Bimalendu Deb for interesting discussions. SDG is thankful to the Council of Scientific and
Industrial Research, Government of India for financial support.

(C) 2008 OSA 27 October 2008 / Vol. 16,  No. 22 / OPTICS EXPRESS  17450
#100986 - $15.00 USD Received 2 Sep 2008; revised 13 Oct 2008; accepted 13 Oct 2008; published 15 Oct 2008


