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Micromaser spectrum
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We calculate the spectrum of the micromaser for a wide range of pump parameters and propose a
multiple microwave field method similar to the Ramsey fringe technique to measure this spectrum. Thus
it becomes possible to investigate the phase diffusion in a fundamental system such as the micromaser.
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The micromaser [1] is a unique tool for the investiga-
tion of quantum aspects of the interaction of radiation
and matter as well as subtleties of the quantum measure-
ment process [2]. The most prominent examples are the
measurement of the collapse and the revivals of the atom-
ic population predicted by the Jaynes-Cummings model
[3], the generation of nonclassical light with a sub-
Poissonian photon statistics [4,5], and number state gen-
eration by state reduction [6] or trapping states [7].

In this paper we investigate another feature of this
most fundamental maser system: here we present the mi-
cromaser spectrum. The decay of the expectation value
of the electric field [8]

(E(t))—g (n+1)' 'p„„+,(t)
n=0

governs this quantity. Hence the micromaser spectrum is
different from the above-mentioned effects in two regards:
(i) it envolves the off'-diagonal elements p„„+,=—p'„" of
the radiation-density matrix, rather than the photon
statistics, that is, the diagonal elements p'„' and (ii) it re-
quires their full time dependence rather than their
steady-state values.

We introduce an analytical approach to calculate the
linewidth D of the micromaser. Two novel features, quite
distinct from the familiar Schawlow-Townes linewidth
[8], come to light in Fig. 1 (i) the trapping states [7] im-

press sharp resonances onto D as a function of the pump
parameter 8. (ii) For large values of 8 the linewidth D de-
creases, and can even oscillate, a phenomenon alien to the
monotonic dependence of the Schawlow-Townes
linewidth. We compare these analytical, but only quasiri-
gorous results to an exact numerical treatment [9] of the
relevant density-matrix equation [5].

We conclude this letter by proposing a modified
Ramsey-type scheme [10—12], shown in the inset of Fig.
2, to observe this linewidth. To measure the decay of the
off-diagonal elements p',", starting from a well-defined in-
itial value p'„"(t =0) is our strategy. But how do we
prepare p'„'? Atoms prepared in a coherent superposi-
tion via a microwave field before entering the micromaser
cavity indeed fulfill this task [11]. This in turn leads to a
fixed phase of the radiation field in the micromaser cavity
[13]. The atoms leave the cavity and move through
another microwave field which turns the coherent super-
position of their atomic states into a simple population in
upper or lower maser level. The decay of the so-
measured atomic population beginning after the switch-
off of the first field corresponds to the decay of the elec-
tric field of the micromaser due to phase diffusion, as per
the discussion at the end of this article.

We begin with the equation of motion for the density
matrix p„„+k—=p'„' of the maser field, that is, with Eq.
(8) of Ref. 5

p„(t)=—r[1—cos(gr&n +1)cos(gr&n +1+k )]p'„—y(nb+1) n+ —p„" ynb n +—1+—p'„'

+r sin(gr&n ) sin(gr&n +k )p'„"' (+ynb&n (n +k)p'„', +y(nb+1)&(n + 1)(n +1+k)p'„"+, . (2)

Here r is the injection rate of the atoms whose time of
Aight through and coupling strength with the cavity field
are ~ and g, respectively. The cavity decay rate we
denote by y and nb is a mean thermal photon number.

The quantum theory of the laser [8] calculates the off-
diagonal elements based upon the ansatz [8,14]

(k) y (k)( (0) (0) )1/2 exp[ p(k)t ]

where F(k) is some arbitrary function of k. This ansatz
assumes that the off-diagonal elements p'„' resemble the
diagonal elements p'„'. In the limit of a large photon
number n and small number of thermal photons this is
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indeed an excellent approximation. However, the micro-
maser does not meet these conditions.

In this paper we therefore pursue a different approach.
Two strategies offer themselves. (i) The equation of
motion for p'„"', Eq. (2) couples only the nearest neighbors
o p' ', that is, it couples p'„' to p'„+, and p'„"' » but does
not introduce a coupling in the k index. We therefore
face a three-term differential recurrence relation of com-
plicated but time-independent coeKcients. A Laplace
transformation casts this equation into an algebraic equa-
tion and a scalar continued fraction [15] treatment pro-
vides immediately the eigenvalues. This approach we dis-
cuss in detail elsewhere [9]. (ii) The second approach, an
approximate but analytical one, derives the lowest eigen-
value [16] from a detailed balance condition.

In the present paper we focus on the second approach.
When we add and subtract the appropriate terms, Eq. (2)
reads

(k) l (k) (k) (k)
pn p pnpn + n —1pn —1 npndt

where

—,'p„(k) =2r sin (&n +1+k —v'n +1)

+y(n +1) n+ ——&n(n+k)k
b 2

+ynb n +1+——&(n +1)(n +1+k), (4)
k

together with

c„1(k)=rsin(gr&n ) sin(gal n+k )+ynbv'n (n +k),

and

d„(k)=y(nb—+ 1)&n (n +k) .
(k) (k)

(cnpn n+)pn+1) ~ (3) The ansatz

n
(k) — n (k)(p) — n ~ J 1 (0)(p)

j=1 j
D„(t) (0)

—" nt r sin(gr&j ) sin(gr+j +k )=e "
p0 0

nb+1 y(nb+1)&j(j +k)

suggested by the detailed balance condition
c„p'„"'=d„+,p'„"+', (and hence c„p'„"',=d„p'„"') yields with
Eq. (2)

where in the last step we have replaced [17] n in )Lt„by
the average number of photon ( n ). This relation
reduces Eq. (1) to

1 +d (1 n —1 n )+c (1 e n+1 n
) (E ) e (D/2)t y (n +.1)1—/2 (1)(())

n=0
(9)

Thus far the analysis is exact. We now expand the ex-
ponents and find to lowest order

D„(t)= ,'p„t . ——

Here we have assumed that

and analogously for D„+,—D„. This condition is cer-
tainly satisfied (i) for short times t and (ii) when )((,„,Eq.
(4), is a slowly varying function of n Equations . (5) and
(7) then yield

p'„"(t) e" p'—„"(0)=-exp[ —
—,')M„(k =1)t]p'„"(0)

=-exp( —
—,'p„&„)t)p„"'(0),

and with the help of Eq. (4), the linewidth D of the maser
reads

y(2nb+ 1)D—=p„=&„)(k=1)=4r sin +
4 n 4 n

(10)
Here we have also expanded the square roots for k =1.

In Fig. 1 we depict the detailed behavior of this ap-
proximate phase diffusion constant D (solid line), as a
function of the pump parameter 8='(/Ng r for
N=r/y =50 atoms and nb=10 thermal photons. The
sharp resonances in the monotonic increase of D are rem-
iniscent of the trapping states [7]. To bring out this simi-
larity we show in the same figure the average photon
number as a function of 8 (dotted curve). We note that
the phase diffusion is especially large when the maser is
locked to a trapping state, that is, when ( n ) is caught in
one of those sharp minima. Equation (10) reveals this be-
havior in the limit of short interaction times or large pho-
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FIG. 1. The relative linewidth D/y based on Eq. (10) (solid curve) and mean photon number (n ) /10 (dotted curve) as a function
of the pump parameter 0=X' g~ for %=50 and mean thermal photon number nb=10 . The inset shows the exact relative
linewidth D/y based on a numerical solution of the density matrix Eq. (2) for large pump parameters 0 for X =20 and nb = 1.

ton numbers, that is when g /r4(n )'/ «1. We expand
the sine function and arrive at the familiar Schawlow-
Townes linewidth [8]

a+ y(2nb + 1)
4(n )

where

a=y(N' g~) =y8

The complicated pattern of the micromaser linewidth re-
sults from the complicated dependence of (n ) on the
pump parameter indicated in Fig. 1 by the dotted curve
which enters in the denominator. We emphasize that the
maser linewidth, Eq. (10), goes beyond the standard
Schawlow-Townes linewidth. The sine function in Eq.
(10) suggests in the limit of large 8 values an oscillatory
behavior [18] of the linewidth. The exact numerical
treatment shown in the inset of Fig. 1 confirms this.

We conclude by outlining a measurement scheme sum-
marized in the inset of Fig. 2 to test these predictions.
The proposed experiment consists of two steps: (i) We
prepare a maser field of well-defined phase and (ii) we
probe the diffusion of this field (see also Ref. [11]for com-
parison). Before the atoms enter the cavity they are
(weakly) driven by a coherent microwave field into a
coherent superposition of their ground state

~
b ) and ex-

cited state ~a ). Here the probability amplitude for the
lower level is much smaller than that of the upper level so
as to not alter the photon number distribution of the mi-
cromaser field when (in the second step of the experi-
ment) the microwave field E& is shut off. The atoms —so

prepared —pass into the maser cavity and produce a
phased state of the maser field with off-diagonal elements
p'„", that is, the atoms have established a maser field of
definite phase. In the second step of the experiment we
switch off the field E, and maser field begins to "phase
diffuse. " In such a case, the atoms enter the maser in lev-
el

~

a ), emerge in a superposition of ~a ) and
~
b ), and

then pass through the second microwave field E2. We
may write the density matrix for the atoms after the in-
teraction with field E2 as

p = Tr „„[U2(r2)U (~)p, (to)

I3 p (to)U+(r) U,+ (r, )],

where p, and p denote the density matrix for the atom
and maser field, respectively, and U and U2 are the time
evolution operators for the maser-atom system and the
atoms in the second microwave field Ez, respectively.

Now it is an easy calculation [9] to obtain the joint
time evolution operator U2U . We may assume the
atoms are in resonance with both fields and that the
second one is taken as classical. For the sake of sirnplici-
ty we arrange the Rabi angle in the second field such that
02~2=3m/4. Here, Q2 and ~2 denote the Rabi frequency
and the interaction time in the second field, respectively.

Suppose we count the atoms emerging from the second
field E2 in the excited state ~a ). Equation (11) provides
the probability
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FIG. 2. The approximate analytical relative linewidth D/y for N =50 and nb =10 calculated from Eq. (10) (solid curve) com-
pared and contrasted to the linewidth from counting atoms in the excited state in the Ramsey-type measurement (dotted curve)
shown in the inset: Experimental setup for the preparation and measurement of nondiagonal elements of the radiation field density
matrix. The setup is, in principle, similar to the Ramsey technique. The first field is only applied for an initial period in order to
"seed" a phase in the micromaser cavity. The phase of E, and E2 are coupled so that phase diff'usion can be Ineasured.

P, =
—,'+ g cos(y —P) cos(gr&n +2)

X sin(gr&n + 1)p'„"(t) (12)

P, =
—,
' + exp( ,'Dt) g cos(y —P—) —cos(gr+n +2)

X sin(gr&n +1)p„"'(0) . (13)

Thus the atomic probability P, and the off-diagonal ele-
ments p'„" have the same diffusion coefficient D, Eq. (10).
For this case the linewidth D obtained via a measurement
of the atomic probability P, is independent of the initial
condition p'„"(0) and is identical to the linewidth of the
micromaser field.

In Fig. 2 we compare and contrast the diffusion rate
(dotted curve) of the atomic probability P„Eq. (12) with
the approximate analytical expression for D, Eq. (10)
(solid curve). The dotted curve is based on a numerical
solution of the density matrix equations, Eq. (2), for p'„".
The initial condition p'„"(0) we determine from a numeri-

that an atom is in the state ~a ) at a time t after the first
microwave has been switched off at t =0. Note that the
time t denotes the interval since the field E& was switched
off and is not to be confused with the interaction time ~.
Here y and lg denote the phase of the field E2 and the ini-
tial phase of the micromaser field, respectively.

When we substitute the ansatz Eq. (8) for p'„"(t) into
Eq. (12) we find

cal steady-state solution of the relevant density-matrix
equations describing the maser with injected coherence
[11]. Figure 2 clearly demonstrates that the linewidth D
obtained via the diffusion of P, is close to the calculated
linewidth. Hence by probing atoms as a function of time,
after phase diffusion has begun, we measure the maser
linewidth.

We conclude by summarizing our main results: In this
paper we derive the linewidth of the micromaser. We
derive an analytical expression for the corresponding
diffusion coefficient and compare it with an exact numeri-
cal evaluation of D. Two true quantum phenomena man-
ifest themselves in the dependence of D on the pump pa-
rameter: (i) The trapping states create sharp resonances
in the familiar Schawlow-Townes result and (ii) the possi-
bility of full Rabi cycles in the maser, that is, the pres-
ence of the sine function in Eq. (10), causes D to oscillate
as a function of the pumping. Two additional microwave
fields, one before and one after the micromaser cavity,
that is, a modified Ramsey setup, allows us to measure
the phase diffusion coefficient by simple counting the
number of atoms in an excited state. This proposed ex-
periment will lead to a precise measurement of the
maser-laser linewidth. A detailed discussion of the mi-
cromaser spectral properties is planned to be given else-
where [9].
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