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We make a comparative study of various quasiprobability distributions in phase-sensitive
quantum-optical systems. Starting from a general, linear master equation for the field, which

emerges in different models of correlated-emission lasers, we derive the Fokker-Planck equations in

the CJlauber-Sudarshan P, the antinormal ordering Q, the Wigner W, the complex P, and the posi-
tive P representations and find the steady-state solutions for the five distributions. Simple relations
between the complex and positive P functions are discovered for the first time. Various moments
calculated by using these distributions are found to be identical, as expected. An application of
these distributions to the two-photon correlated-emission laser shows that the intracavity field can
be near-perfectly squeezed in the phase quadrature and the maximum quadrature squeezing is

reached when the mean laser amplitude vanishes.

I. INTRODUCTION

Recently, several mechanisms for the correlated-
emission laser (CEL) have been considered. ' The
correlated emission is based on using atoms prepared in a
coherent superposition of the states between which the
laser emission takes place. The initial atomic coherence
can lead to the reduction in either phase or amplitude
noise. It can even lead to the squeezing in one of the
quadratures of the field. The microscopic theories of the
(single-mode) CEL show that the dynamical equation for
the density matrix for the field mode a can be written in
the form'

(a ) =(A& —A2)(a ) —(A3 —A4)(a")+f . (1.2)

Clearly the usual net gain is A&
—A2 ~ The effects of cavity

loss are contained in A2. The parameters A3, A4, and f
depend on the input coherences of the active atoms and
the corresponding terms are phase sensitive. The A, and

A~ terms are important because they lead to correlated
emission and phase locking and thus give rise to quantum
noise quenching and even squeezing. The term f acts as
a "driving force" and it can also lead to phase locking.
The explicit form of the parameters A depend on the
specific model of the correlated-emission laser. It may be
noted that Eq. (1.1) has a fairly general structure and, in
fact, other models of the CEL presently under investiga-
tion also lead to dynamical equations of the form (1.1).
In view of the widespread applicability of Eq. (1.1) to

p=A, (a pa —paa )+A2(apa —a ap)

+A3(pa —a "pa }+A4(a p
—a pa )

+f[a',p]+H. c. ,

with ReA, )0, ReA2&0. Note that the mean amplitude
satisfies the equation

various models of the CEL, it is important to explore the
general results that follow from Eq. (1.1). This is the
main theme of this paper. One useful way to study the
consequence of Eq. (1.1) is to transform Eq. (1.1) into
equations for the c-number distributions associated with

p. The di6'erential equations for the distribution func-
tions can be solved by standard methods.

The organization of this paper is as fo&lows. In Sec. II
we derive the Fokker-Planck equations for the Glauber-
Sudarshan P distribution, ' the Q distribution, ' ' and
the Wigner distribution 8'. ' ' In Sec. III we solve
these Fokker-Planck equations in the steady state and
show that the variances in the two quadratures of the
field as well as in the photon number found from the
Glauber-Sudarshan P, the Q, and the Wigner

&distribut-

ionss are the same. In Sec. IV we study the generalized P
distributions. ' ' We first obtain the Fokker-Planck
equations in the complex P and positive P distributions
and give their steady-state solutions. Then we use the
two generalized P distributions to calculate variances in
the amplitude and phase quadratures of field as well as in
the photon number, which are the same as those obtained
in Sec. III, as expected. A connection between the two
generalized P distributions is pointed out. In Sec. V, the
general results are employed to study explicitly the two-
photon CEL. Finally, we discuss and summarize our re-
sults in Sec. VI.

II. FOKKER-PLANCK EQUATIONS
FOR TWO-DIMENSIONAL DISTRIBUTIONS

Using the standard transformations, the master equa-
tion (1.1) can be transformed into a diff'erential equation
for a corresponding c-number distribution. In this sec-
tion we use the Glauber-Sudarshan P distribution, the an-
tinormal ordering Q distribution, and the Wigner distri-
bution W (symmetric ordering). These distributions are
related to the density matrix p in the following way ( ~a )
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denotes the coherent state with amplitude a):

p= fP(a, a*)~a)(rz d'a, (2.1)

TABLE II. The drift and diffusion coefficients in terms of the
complex variables u and a [see Eq. (2.4)] in the Glauber-
Sudarshan P, the Q, and the Wigner W representations.

(2.2)

+P*(a—a)]pI . (2.3)

Q(a, a*)=~ '(a~pea),

W'(a, a*)=sr f d f3TrIexp[ —/3(a* —a ) d.
D ~

D

P

ReA,

A4

(A, —A, )a+(A4 —A, )a" +f
ReA2 —,

' Re(A, + A2)

A3 —'(A3+ A4)

Using the transformation rules listed in Table I, we find
the Fokker-Planck equations for the distributions P, Q,
and 8',

BC&(a,a*) 8 ~ c) ~„+
Ba ()o,'

The new drift and diffusion coefficients are listed in Table
III. Note that the diffusion matrix

Dxx Dxy

+ D + D' @(a,a*) . (2.4)
a2

Bcx BA

Here 4& can be P, Q, or W. The drift coefficient d de-
pends on the parameters A and f, whereas the diffusion
coefficients D + and D depend on the parameters A

only. While the drift coefficients are the same in the
three distributions P, Q, and W, the diffusion coefficients
are different in the three distributions. These coefficients
are listed in Table II.

The Fokker-Planck equation (2.4) can also be written
in terms of the quadratures of the field

for the P distribution need not be positive definite.
Finally we also give the form of the Fokker-Planck

equation in polar coordinates

a=re'~, (2.8)

which is useful in studying the phase and amplitude Auc-

tuations,

ae(r, y) 1 a „a„1a'
r ar "

a(t ~ r gr'

a=x +I'y . (2.5)
2+ D~~+ — rD~ N(rP),
r BrB

(2.9)

a =a]+ia2, (2.6)

This corresponds to writing the field annihilation opera-
tor a as where N is normalized according to

f f 4(r, P)r dr d&=1 . (2.10)

where the Hermitian operators aI and az are the two
quadatures. Equation (2.4) in terms of the variables x
and y reads as

The diffusion coefficients in the P, Q, and 8' representa-
tions are tabulated in Table IV, whereas the drift
coefficients can be simply written as

r)N(x, y) 8 r) 8

gy
3'

d„=Re(d e '~)+rD&&,

d& = —Im(d e '~) —2D„&/r .
1

(2.11a)

(2.11b)

a2 a2+ D, + 2D, 4(x,y) .
gy

~ ~-' (3x ()y
It is interesting to note that the usual gain A, (loss A2)

TABLE I. The rules for transforming a master equation into Fokker-Planck equations in the
(Glauber-Sudarshan) P, the generalized P, the Q, and the Wigner &representations.

Generalized P

ap

a'p

aP

a — P
Ba

aa — P
a

a*P

aP

P— P
Ba

aa — P
a

a+ Q
a

Ba

a*+ QBa

1a+ — W
cuba

& aa W
2 Ba

aa —— W
2 Ba

l aa*+— W
2 Ba
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TABLE III. The drift and diffusion coefficients in terms of the quadrature variables x and y [see Eq.
(2.7)] in the P, Q, and &representations. The drift coefficients are the same for all P, Q, and W.

d.
dg

D,„
Dv.
D„

X
—' Re(A, + A4)
—' Re(A[ —A4)
—' ImA4
2

Re(A, —Az —A, +A, )
—y im(A, Ay+Ay A4)+Ref

Im(A, —Az —A, +A~)+y Re(A, —A, +A, —A4)+Imf
Re(A/+A3) 4 Re(A[+ A2+A3+A4)

—, Re(Ap —'R (A, +A —A —A )

—' ImA3 —' Irn(A +A )

III. VARIANCES IN THE TWO QUADRATURES
OF THE FIELD AND THE NATURE

OF THE DISTRIBUTION FUNCTIONS

Using the Fokker-Planck equation (2.7), the variances
in the two field quadratures a, and az can be calculated.
The equations of motion for the variances can be written
in the form

((6x) ) =23 ((6x) )+23„(6x5y )+2D„„,
dt

d
( ( 5y ) ) =2 3 „(6x 6y ) +2 A ( ( 6y )

' ) + 2D
dt

(5x5y ) =( A„„+A )(5x6y )
dt

+ 2 „((6x) )+ A„((6y) )+2D„

where 2; = t)d, !t)j(ij =x,y) is defined by

=Re(Ai —
Aq —A3+ A4),

= —Im(A, —Ai+A3 —A4),

A, =Im(A, —A2 —A3+A~),

=Re(A, —A2+A3 —A4) .

(3.1)

(3.2)

The interpretation of variances in terms of the operators

terms in the master equation (1.1) contribute to the
diffusion coefficients in the amplitude r and phase P of the
field if one uses the P (Q) representation. In the Wigner
representation the diffusion coefficients depend on the
combination of both. In addition, the diffusion
coefficients in all three representations depend on the
phase-sensitive A3 (A4) terms in the master equation
(1.1).

is given in Table V. It is easy to show that

D —
—,'(A +A „)=Dg~+ —,'(A +A, )=D

(3.3)

The relations given in Table V and Eqs. (3.3) are sufficient
to prove that the equations of motion for the quadrature
variances ((Aa, ) ) and ((baz) ) and covariance
((b,a, )(b,az)) are identical irrespective of the choice of
the representation, as expected. The relations (3.3) are
quite interesting. For example, if 3 is negative, then
the diffusion coefficient D in the P representation is
smallest followed by those in the Wigner and Q represen-
tations. It should be remembered that A, (A2) corre-
spond to phase-insensitive gain (loss), and A3 and A4 cor-
respond to phase-sensitive loss and gain. The sign of 3,
depends on the strength of the phase-sensitive terms com-
pared to phase-insensitive ones.

The Fokker-Planck equation (2.7) has the drift
coefficients which are linear in x and y and the diffusion
coefficients which are constants, and hence its solution
can be written down immediately provided that the
diffusion matrix D is positive definite. If the system un-
der consideration exhibits interesting nonclassical fea-
tures, then the P distribution does not exist. However,
the Q and W distributions exist. The Q and W distribu-
tions will be Gaussian if initially they are Gaussian.

In the following discussion, we choose f to be real,
which is always possible by the replacement
a ~a e '" . We further assume that all A's are real
(i.e., A, = A, =D

y
=0), so that a, and az defined by

Eq. (2.6) are the amplitude and phase quadrature opera-
tors, respectively. In order for the system to approach a
steady state, the condition A, —Az ( —

~ A, —A4~ must be
met. Thus the steady-state solutions are

TABLE IV. The diffusion coefficients in terms of amplitude and phase variables r and P [see Eq.
(2.9)] in the P, Q, and 8' representations.

pa

D„„

D~~

D,~

—,
' [ReA, + ~A, cos(0~ —2P)]
[ReA, —~A, ~cos(04 2P)]/2r'—
(2r )

'
~ A, ~

sin(0, 2(b)—
—,'[ReAz+ ~A, ~cos(0, —2i)))]

[ReAz —
~
Az~cos(0, —2P) ] l2r '

(2r) '
~ A, sin(0, —2(t )

I

—'(D„,+D,~)

,'(D~~+DP~)—
—(D,~ +D~~ )

i 04'I, = fi, /e '.
"r,=/r, fe '.
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(isa) )')
((ha, )')

((ba) )iha, ))

((5x )') + —,
'

((5y )') + —,
'

(5x5y )+—'
4

((5x)') —
—,
'

((5y )') —
—,
'

(5x5y )+—'
4

((5x)'&
((5y)')

(5x5y ) +—
4

where

1

21TQ cr ) cT 2

(x —xo) y2
exp

2o
1

20 2

(3.4)

Xp=
A2 —Al+ A3 —A4

(3.5)

and o.
l and o.

2 for different representations are listed in

Table VI. The following relations are noticed:

IV )( P+ Q) (3.6)

The quantity xo has the physical meaning of mean-field

amplitude in the steady state, xo = (a ) = (a ), indepen-
dent of representations. This can be proved by either us-

ing Eq. (3.4) or directly solving Eq. (1.2) and its complex
conjugate. The cr's represent the widths (or, say, vari-
ances) of the Gaussian distributions (3.4),

((5x) ) =o ),
&(5y)'& = (3.7)

The distribution functions (3.4) can be used to calculate
the quadrature variances by direct integrations. It fol-
lows from Table V and Eqs. (3.7) and (3.6) that

((aa ) )=~ +J J 4 J 4 J (3.8a)

A, +A2+(A3+A4)

4[A2 —A, +(A3 —A~)]
(3.8b)

where the plus signs "+"are for j =1 and the minus
signs "—"for j =2. Note that different representations

TABLE V. The relations among the variances and covari-

ance of the field quadratures with those of the Glauber-
Sudarshan P, the Q, and the Wigner W distributions.

p

give the same results, as expected. The relations among
the widths of the distributions P, Q, and W can be found
from Eqs. (3.8a) as cr~& cr & crj (j =1,2). The Heisen-

berg uncertainty principle ((b,a, ) )((b,a2) ) &
—,', gives

rise to the restrictions 4+~lo. 2~ o.~l+o. 2~ and o. , o.
2

~
—,',

for the Q and W distributions, respectively. Squeezing
occurs whenever cr (0 (j =1 or 2), i.e., A, ( ~A4~, and
the P distribution in (3.4) diverges in such cases and is
thus unacceptable.

The distributions (3.4) are also useful in the calculation
of the photon-number statistics. ' In particular, the
mean photon number ( & ) = (a a ) and the Mandel pa-
rameter

&R)

( AIR ) ( R ( R ) [ )(0) I ] (3.9)

( R ) = (aa t) —1=(x'+y') —1
Q

x o'+ o-~1+ 2~ —1

2

=x()+ g (:(ha ):),
j=1

(aaa a ) —(aa ) —(aat)
&R&

(( 2+ 2)2) (x2+ 2)2 ( 2+ 2)

(R)
2

4x o ( o ~)
—

—,
'

) +2 g ( cr ~
—,
' )—

j=l
,'+ &+o-&—1

2

4x()(:(ha, ):)+2+(:(ba )2:)2.
j= 1

2.'+ g (:(~a, )':&

(3.10a)

(3.10b)

can be calculated easily. Here ((ER) ) is the photon-
number variance and g' '(0) the normalized second-order
correlation function. The Mandel parameter QM has the
property of being negative if the width of the photon-
number distribution is narrower than Poissonian. Its
lower bound is —1, corresponding to a pure number
(Fock) state.

For the Q function in (3.4) we find

TABLE VI. The widths (variances) of the P, Q, W, and P+ distributions in the steady state.

P (no squeezing)

P+ (phase squeezing)

P+ (amplitude squeezing)

A(+ A4

2(A, —A, + A, —A4)
Aq+A3

2(A, —A, +A, —A, )

A)+ A2+ A3+ A4

4( Aq —A l +A3 A4)

A, +A4
Aq —A, +A3 —A4

/A, +A,
/

Aq —A 1+A3 —A4

A, —A4

2(Aq —A) —A3+ A4)
Aq —A3

2(A2 —A, —A3+ A4)
Al+ A2 —A3 —A4

4( Aq —A 1
—A3+ A4)

A2 —Al —A3+ A4

Al —A4

A2 —Al —A3+ A4
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Here:: denotes normal ordering of the field operators a
and a, (:(Aai ):) = ( (b,a ) ) —

—,', and use has been made
of Eq. (3.8a). Note that the last expression in Eq. (3.10b)
is representation independent. For a large amplitude
x2 ))o ~(, oz~, it follows from Eqs. (3.10) and (3.8a) that

&n &=x,',
Q =4(ay--,»=4&:(«, )'. & .

(3.11a)

(3.11b)

( —,'(ata+aat)) =(x'+y')~,
—„'(a+ a +a aa a+a a a

(3.12a)

+aa a+aa aa +a2at~) =((x~+y2)2) ~,

and [a, a ]=1,one obtains'

(n &
= &x'+y') ~ —

—,
' =x„'+a(~+a~——'

2

=x + g (:(ba, )':),
j=]

(3.12b)

(3.13a)
((x'+y')') ~ —(x'+y') ~~ —( n &' —

& n )

(n)
2

4xo(o. (
—

—,')+2 + ((r, —
—,
')2

j=]
2+ W+ W
0 1 2

Consequently, sub-Poissonian statistics is equivalent to
amplitude squeezing in this limit. ' For arbitrary xo, it is

easy to see from Eq. (3.10b) that (i) sub-Poissonian statis-
tics ( QM & 0) always means the amplitude squeezing
((r~&& —,

'
) but (ii) amplitude squeezing (cr&~& —,

'
) may not

imply sub-Poissonian statistics (QM &0), especially for
small cr~( (which requires large o z~ via the Heisenberg un-

certainty principle) or small x o.
For the Wigner function W in (3.4), using the rela-

tions

the appearance of squeezed states of light, the Glauber-
Sudarshan P distribution does not exist as a well-behaved
function (c.f. Sec. III). In this situation, the generalized
P distributions are well-behaved, normal ordering func-
tions.

We next discuss the generalized P distributions for the
master equation (1.1). The generalized P distributions ex-
ist for the present problem and are very useful for sys-
tems exhibiting nonclassical features. The generalized P
distributions P(a, P) are nondiagonal expansions of the
density operator in terms of coherent states

(4. 1)

where a=a„+ia, /3=/1 +iP, dp(a, /3) is an integra-
tion measure, and D is the domain of integrations. Two
choices can be made regarding the integration measure
dp(a, P). The first one is dp(a, P)=da dP, where a and

P are to be integrated on some contours C and C', respec-
tively. This leads to what is called the complex P repre-
sentation, P, (a,P). The second is dp(a, f3) =d a d P,
giving rise to the positive P representation, P+( lal ).
Here l a] represents a, P„a~, and P collectively.

The transformation rules for converting a master equa-
tion into the corresponding Fokker-Planck equation in
the generalized P representation have been given in Table
I. For the master equation (1.1), the corresponding
Fokker-Planck equation for the complex P, (a, /3) func-
tion is Eq. (2.4) with replacement a*~/3, and the
Fokker-Planck equation for the positive P+( la] ) func-
tion can be obtained by rewriting that for the complex
P, (a,P) function. ' ' For simplicity, we assume in the
following discussion that f and all A's are real, as in Sec.
III.

A. Complex P representation

The Fokker-Planck equation in the complex P, (a, /3)

representation for the master equation (1.1) is

2

4xo2(:(Aa():)+2 g (:(ba ):)2
2

x,'+ y &:(aa, )':&
(3.13b)

aP, (a,P)
at

a a a'
aa a ~

aalu/3

a2 a2
+ D + D(3p P(aP),

()a ()P
(4.2)

which are the same as those obtained from the Q func-
tion. When xo )) 1, cr (, a 2, Eqs. (3.13) reduce to

&n &=x„',

QM =4(o (
—

—,
'

) =4(:(ha ( ):),
(3.14a)

(3.14b)

which are identical to Eqs. (3.11). A comparison of Eq.
(3.13b) with Eq. (3.10b) indicates that crg —,

' =rr-
(j = 1,2), in agreement with Eq. (3.8a).

IV. EQUATIONS AND SOLUTIONS
FOR THE GENERALIZED P DISTRIBUTIONS

When the diffusion matrix of the Fokker-Planck equa-
tion (2.4) in the Glauber-Sudarshan P representation is
not semipositive definite (i.e., A, & A4), which indicates

with the following drift and diffusion coeScients:

d = ( A, —A~)a+ (A4 —A, )/3+ f,
do=(A, —A2)/3+(A4 —A, )a+f,
Dp =A], D =Dpp=A4 .

(4.3a)

(4.3b)

(4.4)

P, (a, /3) =N exp[(A4 —A, )

X [(A(A2 —A, +A~ —A3A4)a/3

—,'(A, A, —A, A, )(a'+P')

+f (A4 —A()(a+/3)] l, (4.5a)

The steady-state solution of Eq. (4.2) is (when
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which reduces to

A2 —A1
P, (a, P) =/Voexp [A,a/3 —,

'—A~(a +P )
A4 —A1

—xo(A, —A4)(a+P)]

d, =(A, —Az)a +(A4 —A3)p +f,
dg=(A, —Az)p +(A~ —A3)a +f,
d =(A, —Az)a +(A4 —A3)P

d~=(A, —Az)p +(A~ —A3)a» .

(4.7)

(4.5b)

if A3=A4. Here X and Xo are normalization constants
which depend on the integration contours C and C'. No-
tice that when there is no squeezing (i.e., Al) A4), one
can set p=a* in Eqs. (4.5). Thus Eq. (4.5a) reduces to
the Glauber-Sudarshan P distribution in Eq. (3.4) and the
integration in this case is over the whole a plane. The in-
tegration contours C and C' are to be chosen for the
phase- and amplitude-squeezing cases separately. When
the system exhibits phase squeezing (A, &A4), the in-
tegration contours are C, a =0; and C', p =0. On the
other hand, when the amplitude squeezing occurs
(A, +A4&0), the integration contours are C, a, =xo;
and O', P =xo. It is possible to calculate various opera-
tor moments by using the complex P, (a,p) functions
(4.5). We shall return to this point in Sec. IV C after in-
vestigating the positive P function.

aP (Iaj)
at

dp do. dp
aa. ap„ aa, » ap, »

a2 a2 a2
+A4 2 +A4 2 +2A,

Baz Qpz
' I)a Bp,

XP+(IaI ) . (4.8)

Notice that the diffusion matrix D4~4 is now semipositive
definite. In order to solve Eq. (4.8) we make the transfor-
mation

The diffusion terms are different for the phase- and
amplitude-squeezing cases. We give their derivation in
the Appendix. We discuss the two situations separately
in the following.

Case 1. Phase squeezing (A&) Al) 0). The Fokker-
Planck equation for the positive P distribution can be
written as (see the Appendix)

r}P ( I a] )

c}t a.."-
ap.

".

B. Positive P representation

The Fokker-Planck equation in the positive P+(Ia] )

representation for the master equation (1.1) is

P+= a
[(A, —Az —A3+ A4)6 I+ i/2f ]

1

I,=(a +/3„)/i/2, I 2=(p„—a„)/v'2;
then Eq. (4.8) reduces to

(4.9)

(A, —Az+A3 —A4)I 2
— d — d~

d»
— d~ P+({aI)

+diffusion terms, (4.6)

a' a'
+(A, +A,),+(A, —A, ['

aw',
' '

aw',
(4.10)

with drift coefficients
The steady-state solution has the form (when
A, —A, & —~A, —A, ~)

P+=
2~+aph, laph, z

exp
(6"

I
—v'2xo)

2&ph, 1

p2

2~ph, 2

5(a )5(p )

2~soph, laph, z

exp
(a +P„—2xo)

4ph, 1

(p„—a„)'
5(a )5(/3 ),

4ph, 2

(4.11)

where o.
h I and o„h z have been listed in Table VI (ph

means phase squeezing). Here xo still has the physical
meaning of mean-field amplitude, (a ) = (a„)=xo
= (a ). It is straightforward to obtain from the
Heisenberg uncertainty principle that o ph 1

omah z/(1 —2o~h z)) o~h z. A Pictorial rePresentation of
the quadratic form in Eq. (4.11) is shown in Fig. 1(a). A
comparison of o. 's in Table VI shows that

4 2
I I( I)ja

ph, j
P

4 j=1,2 . (4. 13)

I

The quadrature variances can be calculated by using
(4.11) and performing direct integrations

((~., )') =-'+ (:(~., )'. )

=-,' —
—,'( —1)'((5~,)'),

ph 1=2~& ~

P
O ph, 2

(4.12) Here use has been made of Eqs. (4.12). Equations (4.13)
give rise to the same results as those in Eqs. (3.8). The
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(a a aa) —(a a)
QM

( )

2xoo h, + —,(o „„i+cr „2)2 2 2

(n)

4xocr, +2(cr, ) +2(cr2)

X +0 +0

2

4xo(:(ba, ):)+2+(:(ba, ):)
2

xo+ g (:(b,a, ):)
(4. 1 5)

which also agrees with the previous results obtained from
other functions.

Case 2. Amplitude squeezing (A4 & —
A& &0). The

Fokker-Planck equation for the positive P+ distribution
is (see the Appendix)

a&

dP+(Ia] )

at
p 0 0 pap„"" a, "'

ap,
"

—&4 2
—~4, —2A,'a~,' 'ap2 ' a~ap,

XP+(IczI ) . (4.16)
FIG. 1. Illustration of the positions and shapes of two-

dimensional Gaussians in the positive P representation for
squeezed states obeying ((Aa, ) )((Aa, )') =

—,
' (i.e., twice the

quantum limit). (a) Phase squeezing: (2o. h, ) '(6', —&2xo)
+ (2o „„,) '

Dz = 1 [see Eq. (4.11)]; (b) amplitude squeezing:
(2o, , ) '63+(2o, ~ ) 'c.a2=1 [see Eq. (4.19)]. In both cases
three lines represent, from inside to outside, 20%, 50%, and
80% squeezing, respectively. 6,= ( a + f3 ) /v 2, 64 =

( f3 —a ) /v'2, (4. 17)

The diffusion matrix D4~4 is again semipositive definite.
We now use a different transformation to solve Eq. (4.16).
Let us define 63 and 64 by

mean photon number and the Mandel parameter QM can
also be calculated as

then Eq. (4.16) becomes

(&)=(a a)=(Pa)p =(f3,a„)p

(P, —c, ', )

7=
—,'(2xo+o. „,—op„2)

P+= a a a
gp

~ gg» 3 4d — d~ — (A —A —A +A )oa

a——(A —A +A —A )ca1 2 3 4 4
4

=Xo+0 1+0 2

2=x'+ y ( (~a )' )

(4.14)

+~A, +A,
~

—, +(A, —A,), P' a~', ' '
aw,'

(4.18)

The steady-state solution is (if A, —A2 & —
~ A3 —A4 )

P+=— 1

2~+Cram, xaam, 2

g2
exp

2.0 am, 1

p2

20am 2

6(ct„—x„)5(p —xo )

2rr(era lo 2)
1/2

(ct +p )' (p —ar) 6(a„—xo)5(p, —xo),4o, 1 4o,. (4.19)
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where o, , and o., z have been given in Table VI (am
represents amplitude squeezing). A comparison of cr, 's in
Table VI gives rise to

P
oem ]

function by substituting the integration contours C and
C into it and multiplying it by two 6 functions. For ex-
ample, one finds from Eqs. (4.5a), (4.11), and (4.19) that
for phase squeezing,

Oam 2
P

(4.20) P+(a„,P,a,P )=P, (a, P)l ti o5(a )b(P ),

Once again we have (a ) = (a ) =xo. One can find from
the Heisenberg uncertainty principle that
cr, 2

~ o, , /(1 —2o, , ) & cr, , A pictorial illustra-
tion of the quadratic form in Eq. (4.19) is given in Fig.
1(b).

The calculation of quadrature variances from the dis-
tribution (4.19) is straightforward:

& (&, )'& =
—,'+ &:(&,)':)

=-,'+-,'( —1) & ~,'„),
=

—,'+ —,'( —1)~o, , =
—,'+a, , j =1,2 . (4.21)

In the last step above, Eqs. (4.20) have been used. One
sees that the same results as those given by Eqs. (3.8) are
obtained. The average photon number and the Mandal
parameter QM can also be found:

(fi ) = (Pa) =x,' —(P,a, &

2 i (@2 g2)
2

2 l 2 P Pxo i(a~m i tTam ~) xo+ai+az

(a a aa) —(a a)
&e)

2xola, il+ 2(asm, i+a, z)

&e)
4xoo. , +2(o. , ) +2(o~)

xo+o. ]+o.2
which are the same as Eqs. (4. 14) and (4.15).

(4.22)

(4.23)

C. Connections among three P representations

So far we have discussed three P representations: the
Glauber-Sudarshan P representation P(a), the complex P
representation P, (a, p), and the positive P representation
P+( Ia] ). The Glauber-Sudarshan P representation is a
good, simple representation for the classical state,
whereas the generalized P representations are useful,
genuine representations for nonclassical states. It is in-
teresting to note the connections among the three P rep-
resentations. (i) When there is no squeezing, one can ob-
tain the Glauber-Sudarshan P function from the complex
P function by setting P=a* in it and discarding the in-
tegration contours C and C',

P, (a, a*)=P(a) . (4.24)

An example of this relation is two distributions presented
in Eqs. (4.5a) and (3.4). (ii) When squeezing exists, the
positive P function may be obtained from the complex P

and for the amplitude squeezing

P+(a,P,a,P )

=P, (a,P)I t3 5(a, —xo)5(P„—xo) .

(4.25a)

(4.25b)

To our knowledge, simple relations (4.25) connecting the
complex and positive P distributions are found for the
first time.

With relations (4.25) it is easy to see that, for calculat-
ing (a ), (n ), ((b,ai ) ), and QM by using the complex P
function (4.5a), one obtains the same results as those by
using the positive P functions (4.11) and (4.19).

V. TWO-PHOTON CORRELATED-EMISSION LASER

A i ao(P„+Pbb ,' I p.b +pb, I
)—

o(pbb pcc i I pub pbc 21

A, =A4= —
—,'ao[p. , —

—,'(p, b+pb, ) ] .

(5.1)

Here ao=2r, g /I is the linear gain coe%cient, y is the
cavity loss rate, s =r,g/I, r is the atomic injection rate,
g is the atom-field coupling constant (for simplicity taken
to be the same for the a —b and b —c transitions), and I
is the atomic decay rate (same for all levels).

In the following we restrict our discussion to a situa-

The results of the early sections are applicable to a
wide variety of optical systems exhibiting phase locking,
such as various types of (single-mode) correlated-emission
lasers, degenerate parametric amplifiers, systems involv-
ing down conversion, etc. We illustrate some of our re-
sults by applying the formalism of the preceding sections
to the two-photon correlated-emission laser' (two-photon
CEL). The two-photon CEL consists of coherently
pumped, cascade three-level atoms interacting with a sin-
gle mode of the radiation field. We consider the situation
where the jth atom is injected into the laser cavity at time
tj with initial populations pQQ, pbb, and p„
and initial coherences pib(t ) =[p~z, (ti)]' =p,be

pb, (t, ) = [p'„„(t,)] =pb, e ', and p'„(t) ) = [p'„(t, )]—t2vt.=p, e ', where a, b, and c denote the top, middle,
and bottom levels, respectively, v is the laser frequency,
and p,&, p„„and p„are the same for all atoms. We as-
sume that the cavity-mode frequency is on resonance
with both a —b and b —c transitions so that
v=co, —cob =cob —co, (see Fig. 2). Here A'co& (1 =a, b, c) is
the energy of the atomic level 1. The master equation for
the reduced field density operator can be obtained, which
is of the form of Eq. (1.1) with the coefficients A's and f
given below:

f = ts(pab+pbc)
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tion in which the linear gain ao(p„—p„) is less than the
loss y, i.e., Ai &A2. In this case, the laser intensity is
maintained by the atomic coherences p, b and pb, involv-

ing the middle level b, so that such a resonant two-
photon CEL is still an active device. For simplicity, we
assume that the two initial atomic coherences p, b and pb,
have the same phase. Let 0; =argP; (i,j =a, b, c), then
the choice 0,b =0b, = sr /2 leads to f and all A's real (note

0,b =-0,b+0b, ), and all previous steady-state distribution
functions apply here.

It follows from Table III and Eqs. (5.1) that
diffusion coefficients in the Glauber-Sudarshan P repre-
sentation are

D.'. =
—,'tzo[p..+pbb+ Ip., I

—
( Ip.b I+ Ipb, I

)'],
Dyy

=
l &o(p-+Pbb —IP., I »

(5.2a)

(5.2b)

DP Oxy (5.2c)

While D . is always positive, D becomes negative when
p„, +pb„& lp„l, indicating squeezing in the phase quad-
rature a2. The explicit expressions for the quadrature
variances are found by substituting Eqs. (5.1) into Eq.
(3.8b),

FIG. 2. Energy-level diagram for the two-photon CEL with
v = co —~& = cob —n, . Atoms are prepared initially in a
coherent superposition of levels a, 6, and c.

p..+2pbb+p„+21p. , I

—2(lp. b I+ Ipb, I)'+y/~o((~., )'&= "
4(p„—p„+y /ao)

Paa + 2Pbb +Pc 2lp I
+y /~o((ba, )') =

4(p„—p..+y/~o)

(5.3a)

(5.3b)

The mean amplitude follows from Eqs. (3.5) and (5.1),

zs(l p.b I+ ipb, I
)

Xp=
y+~o(p„—P..)

(5.4)

For the initial atomic populations

p„=—,
' [1—e —(X —1)y/a ],

PbI
—~y /o'p

p„=—,
' [1+e —(A, + 1)y /ao]

(5.5)

((b, , )'&=(2 )

((b,a, )') = —,'e«-,-,
& (~a, )'

& ((~a, )') —-„',

(5.6a)

(5.6b)

(5.6c)

which indicates nearly 100% intracavity phase squeezing
and the product of the variances being twice the quantum
limit set by the Heisenberg uncertainty principle.
Meanwhile, the mean laser amplitude and mean photon
number are

(a) =xo=
2k+ 1

] /2
2s

(Xp 2A. + 1

1/2
I

(5.7a)

( n ) =x,'+ & (b,a, )'
& . (5.7b)

To ensure the linear master equation valid, we restrict

and coherences Ip; I =(p, ,p )' (i,j =a, b, c) with
a=[2(2K+1)y/ao]' «1 and (y/ao)'~ &&1, we find

A. (&1 here.
To achieve larger squeezing one should reduce

which, on the other hand, decreases -the mean amplitude
and mean photon number too. The minimum quadrature
noise is reached when A. =0 (i.e., pbb =p, b =pb, =0),

((&a, )'),„=—,'(2y/cto)' ' (5.8)

VI. DISCUSSION

Our study so far is based on the linear master equation
(1.1). For a nonlinear master equation one can linearize
it by setting a = A + (a ), with (a ) being the mean am-
plitude, and dropping terms containing three or more
operators 3 and 3 . This procedure will lead to a new
field master equation of the type (1.1) with f =0 and
a (a )~A (3 ). Our general results presented in this
work are applicable to this linearized master equation.

In summary, starting from the master equation (1.1) we
have derived the corresponding Fokker-Planck equations
in the Cilauber-Sudarshan P, the antinormal ordering Q,
the %'igner 8' the complex P, and the positive P repre-
sentations and made a comparative study of these

In this case, the mean amplitude vanishes, (a ) =xo ——0,
and accompanying distributions are all centered at the
origin of respective coordinate systems. The mean pho-
ton number in this case is just provided by noises

2

(e &
= y (:(~a, )'. & = (2~) '
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quasiprobability distributions. We have proven that the
quadrature variances found from the Fokker-Planck
equations in the Glauber-Sudarshan P, the Q, and the
Wigner representations are the same. Let a =a, +ia2,
with a, and a2 being the amplitude and phase quadrature
operators of the field, respectively, and assuming all A' s
real, we have solved the five Fokker-Planck equations in
the steady state. The Glauber-Sudarshan P function
(when there is no squeezing), the Q function, and the
Wigner functions (3.4) are two-dimensional Gaussian
with diferent widths. When squeezing occurs, the posi-
tive P functions (4.11) and (4.19) consist of a two-
dimensional Gaussian and two 6 functions for both the
phase- and amplitude-squeezing cases. Simple relations
(4.25) between the complex P functions (4.5a) and the
positive P functions (4.11) and (4.19) are found for the
first time. The mean amplitude and mean photon num-
ber of the field, the variances in the amplitude and phase
quadratures, and the Mandel parameter QM (i.e.,

photon-number variance) directly calculated from these
distribution functions (when applicable) are identical.
Moreover, we have applied our general formalism to the
(resonant) two-photon CEL. For the initial atomic condi-
tions (5.5) nearly perfect intracavity squeezing can be
achieved in the phase quadrature. We find further, corre-
spondingly, that (i) the product of the amplitude and
phase noise is just twice the quantum limit set by the
Heisenberg uncertainty principle, and (ii) maximum
quadrature squeezing is reached when ( a ) =0.

which leads to

pa

8 21821+8 228 22 Dpp

(A2)

where Eqs. (4.4) have been used. By separating B into
real and imaginary parts 8=B„+iB,the diff'usion ma-
trix in the positive P representation is given by

4x4

8 8—X —X

8 8—y —X

8 8—x —y

8 8 (A4)

For phase squeezing, we have A4) A, & 0, and thus
8 ', 8",and 8' are real. Consequently, 8 =0 and

—4X4

B.B,T 0

0 (A5)

with

We now have four unknown quantities to be determined
from three equations. We can let 8 =0, giving rise to

B"=+A, ,

B"=A, /QA4,

B 12 [(A2 A2) yA ]1/2
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APPENDIX: DERIVATION OF THE DIFFUSION
COEFFICIENTS IN THE POSITIVE

P REPRESENTATION

Since a symmetric matrix can always be factorized into
the product of another matrix and its adjoint, we write

A4 A1
T=—X —X

1 4
(A6)

—4X4D
0 0
0 8 8, (A7)

with

For amplitude squeezing, we have A4 & —A, &0 so that
8 ",8 ', and 8 ' are purely imaginary now. Thus 8 =0
and

D Dp

Dp- Dpp.

8 ll

821 822 812
821

822 =88 (Al) 8 8 (A8)
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