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SOME REMARKS ON THE DIRICHLET PROBLEM
WITH CRITICAL GROWTH FOR THE n-LAPLACIAN

ADIMURTHI

1. Introduction. Let CIR"" be a bounded domain with smooth bound-
ary. Let f(¢) = h(t)e?!!"""™" be a function of critical growth (as in [1], see
also definition (2.1)) and consider the following problem

—Anu = f(w)u"? in Q

1.1
( ) u € Wol’”(Q)

where Ap,u = div (|Vu|*~2Vu) is the n-Laplacian. Now the natural ques-
tions one can ask are : under what conditions we can obtain

a) existence of a positive solution?
b) existence of multiple solutions?

In the case (a), if we assume that Q = B(R), the ball of radius R, then
by standard shooting argument it follows that (1.1) admit a positive radial
solution if R is sufficiently large. In [1], this result has been extended to

an arbitrary by a variational method. More precisely, for u € W}"(Q),
define

(1.2) i = [ 1Vulds

(1.3) T = " ~ [ Plu)de

(14)  OB(®,1) = {ue W@\ {0k Jul = [ f(wu"1do)
(1.5) @ = inf{J(u);u € IB(R, f)}

(1.6) M@ = int{ful"; [ fuldz = 1}
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then under the conditions f'(0) < A1(Q),limy_ o A(£)t""! = oo, it has
been shown that infimum is achieved in (1.5) and a minimizer is a positive

solution of (1.1).
In this paper, we study the continuity of a(§2, f) with respect to f and
prove the following | 5

THEOREM 1.1. Let f(t) = h(t)el slef/n= be a function of critical growth
such that
(1.7) lim A(t)t" ™! = oo

t—o0

For A > 0, denote ay = a(§2,\f). Then A — ay is continuous for A €
(0, (/5 O)

In the case (b), again if we assume that Q = B(R), and f'(0) = 0,
then by the shooting argument we can show that for a given integer k£ > 0,
there exist a R, = R,(k, f) such that for all R > R,, (1.1) admit at least
k-pair of non trivial solutions.

In this paper we exhibit the above phenomena by using the variational
principle when ) is an arbitrary domain. More precisely, we have the

following. 5,

THEOREM 1.2. Let f(¢) = h(t g/“l"/n " be a function of critical growth
such that f'(0) =0, lim, , (t)t” 17{&//)1,”"—1;> 0. Let k > 0 be an integer.
Then if §? is of type (k, f) (see definition (2.2)) then (1.1) admit k-pair of

nontrivial solutions.

2. Preliminaries. In this section we recall some definitions and
known results from [1].

Definition 2.1. Let 2 : R — R be a C'-function and b > 0. Let
F(&) = R()eb™" ™" We say that f is a function of critical growth if the
following holds:

There exist constants M > 0, § € [0,1) such that for every € > 0 and
for every t > 0

(Fh) - £©0) =0, /(1) > 0, f()"! = F(=t)(=1)"""

(Hy) f'(t) > £2 where f/(t) = 4(2)

(Hs) F(t) < M(1+ F()m=2+5) where F(f) = [ f(s)s™=2ds is
the primitive of f.

(Hy)  lmy_ oo h(8)e=H™ "™ = 0, limy_, 0 A(£)el™" ™ = co.
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Let 2 C R™ be a bounded domain with smooth boundary and f(¢) =

h(t)e?’ """ be a function of critical growth. For z € Q, let d(z,d0) to
denote the distance from z to 92 and

1 1{ be \™* 1 n—1\"""
—_—— 1 n—_i. >
(2.1) i (n_ 1) mf{h(t)t > ( 7 ) }

(2.2)  wy = Vol(S™1)

(2.3) an = nwl/m1

then we have

Definition 2.2. Let £ > 0 be an integer. We say that (2 is of type
(k, f) if there exist k distinct points z1,...2 in Q, (Ry... Rx) and (I3 ... k)
of positive numbers such that

(i) R; <d(z;,090),B(z;,R;))NB(z;,R;)=¢ fori#j
nfn—

(i) log L+ (7)
(111) kma‘xlsfﬁk (log};.-lit.-) i S _::n_

Let us recall now some known results which are needed for the proof
of the theorems. Let f and €2 be as above. Then

1
< log R;

THEOREM 2.1.
1) J : Whn(Q) — R satisfy the Palais-Smale condition on the interval

a,1n—1
(00,2 [22]"7"). .
2) Let f'(0) < A1() and lim;_, h(t)t""! = co. Then there exists u > 0
in W}»™() satisfying (1.1) and

O R

For the proof, see [1].

LEMMA 2.1.
a) Let f'(0) < (). Then for u € W} ™(Q) \ {0}, there exist a unique
v > 0 such that yu € 0B(SQ, f) where

(24) OB, f) = {u e Wh™@)\ {0}; Jull = / Fluyundz)
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Further if ||u||* < [, f(u)u"~'dz, then v < 1.

b) Let {um}, {vm} be sequences in W} () converging weakly to « and v
respectively. Then ,
— (i) If Mmoo [Ju]|™ < (9-5&)”_1, then for any integer ! > 0,

flum) o HONPN
(2.5) m_@/ﬂ rltyde = [ Dot
(ii) If sup,, [ f(um)u® 'dz < oo, then
(2.6) im_ / Flup)dz = f F(u)dz
(2.7) Jim f | (2| d2 = f |f(w)u"2|da

c) Let I{u) = [,[f(u)u™"! —nF(u)ldz. Then there exist a constant M; > 0
such that for u € WH(Q),

(2.9) /9 fu s < My(1+ I(w)

For the proof of (a) see step (2) in Lemma (3.4) and for (b) and (c),
see (3), (4), (5) in Lemma (3.1) of [1].

3. Proof of the Theorems. :
Let f and 2 be as in section 2. For A > 0 and u € W} ™(Q), let

(31 Taw) = —lulf? = A f F(u)dz
(3.2) I(u) = ] [ (w)um nF(u)]d:c

63 B e W)\ Ol N | #er-ida)
(3.4) OBy = {u € By;|u|* = Afg Fwu*tdz}
(3.5) by = HLHA)"

A
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PROOF OF THE THEOREM 1.1:
From (3.1), (3.2) and (3.4) we have for u € 8B,, J(u) = 2I(u) and
from.(a) of lemma (2.1) it follows easily that for A < A1(Q)/f'(0)

by = M = -—mf {J(u) u € 0B, }

= —mf{ I(u),u € 83) }
= inf {I(u),u € By}

(3.6)

For Ay < Az, By, C B), and hence from (3.6) by, < by,. Therefore b, is a

non increasing function of A. N
. Let {Ar, ukte>o € (0,2 (Q)/f' (O)ﬁng such that
(37) klim Ak = )\o, b)u, = I(uk)

Note that for given Ag, then from theorem (2.1) uy exist satisfying (3.7)
Step 1. For a subsequence of {A, ur} we will prove that

(3.8) k@o ba, < by,

From (a) of Lemma (2.1) we can choose ; > 0 such that vy = yru, €
0B),. We claim that {7} is bounded. Suppose not, then by Fatou’s
lemma, we have

00=2X, [ lim Mu:}“ldm < lim Ak/ m—ku?-)-ug‘ldx
Tk

Q k—oo Yk
= lim Jju, ||
k00

which is a contradiction. Hence {7} is bounded. Let a subsequence i —
Yo. Since Yiue — YoU, in W (1), hence we have

Yo [ Fuayuids = fuo]”
Q
= lim )\kf Mug—ldx
Q Tk

k—o0

— Ao ] f(70u0) u:—ldx
Q Yo
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This implies that v, = 1. Now v; € 8B), and v — u, in W2 (Q) implies
that
k@o b < JEEO I(w)
= kli_ﬂgo(f(vk) ~ I(vo)) + I(uo)
= I(uo) = b)\o-

This proves step (1).
Step 2. For a subsequence of {Ak, ur} we will prove that

(3.9) by, < lim by,.

k—oo

Since I{ui) = by,, therefore from theorem (2.1) 0 < I(ug) < ,\l—k

(%}) "1 Hence from (c) of lemma (2.1) {fg f(uk)uz"ldx} is bounded.
Since uy € OB,, implies that {||ur||} is bounded. Let for a subsequence

(3.10) ux — u weakly in W!(Q) and almost every z € Q.
and one of the following holds

(1) /\k S )\o

(11) Ak > /\o

In the case of (i) and by the monotonicity of by, we have

by, < -lim by,

k— oo

In the case of (ii) we have the following.
Claim 1. u € 33,\0(9).
Suppose u = 0, then from (2.6), we have

(3.11) lim f Flux)dz =0
0

k— o0

then by monotonicity of by, (3.11) and from theorem (2.1), we have

I — n —
oW Lim |[ugl|® = lim {I(uk)-{-nf F(ug)dz}
o k—oo k— o0 Q
- i

1 an n—l
< — (==
<h, < A, ( )
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this implies that limg_.e ||ur||™ < (%ﬂ-)n_l. Hence from (2.5), we have

(3.12) lim f flup)uf~tdz =0

k—oo 0

Let Ay = sup{\t}. Then by monotonicity of by, (3.11) and (3.12) we have

0<bA+S li_mb;\k= ll_IIlI('U,k)"-"—'O

k— oo k—oco

which is a contradiction. Hence u 3 0.
Let ¢ € C°(Q?), then from (2.7) and by dominated convergence the-
orem, we have

(3.13) Jim [ (s pdz = jﬂ fw)u"2pda
since uy satisfy
/{; |Vug|"2Vuy, - Vpdz = A ./Q f(uk)uZ"zda:

From (3.13) and letting k — oo in the above equation, we obtain for all
p € Co°(2)

/|Vu|”_2Vu-qud:r=/\o/f(u)u“"z(pda:
Q Q

this implies that u € 8B, and this proves the claim

Now from (a) of lemma (2.1), we can choose 7 > 0 such that vy =
Ttk € OB, .

Claim 2. ({n} bounded a.nd Imgoeo 7e < 1.

Suppose {7k} is unbounded. Since u # 0, then by Fatou’s lemma

00 =X, [ lim f () ""ld:r < lim Jlug|® < oo
Q k—ro0 RL k— 00

which is a contradiction. Hence {7} is bounded.
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. Suppose Iim vy, > 1, then for a subsequence, we can choose an € > 0
such that

(3.14) 1+e < Yk and v — 7o

Since ||ug|| is bounded and v = yrug € 0B, (§2), we have from (3.14)

sup/ F((1 + &ug)uy'dz < co.
k Jo

This implies that

lim /fuk Yup 1da:m/9f(u)u"—1dx

k- o0
Hence we have from (3.15)

JJul® < Lim o]

k— o0

This shows that u; — u in W})™(Q). Therefore we have

Mo /Q f(uwyumtdz = |Jul]”

= lim ||ug|”
k—o0

= A, lim /f(%uk)uz_ldx
Tk )

k—oo

f(")’ou) un-—-—ldx
Q Yo

- JO

This implies that v, = 1 contradicting (3.14). This proves the claim (2).
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Let for a subsequence, 7x — 7o, Vs — You weakly in W1 ™(Q) and
almost every z € Q. Since v, € 8B, and {||vk||} is bounded and hence
from (2.6), claim (1),

klincr’lo {fQF(uk)d:r:—- /QF(vk)dm} <0

by, < lim I(vk)

k—oc

= lim {I(vx) — I{ux) + I(ur)}

k— oo

- lim {(}_,Z 3 _) luel|™ + _/(F(uk) (vk))dx+bxk}

k—oo

< Lm by,.

k—oo

Therefore

and this proves the step (2).

Now from step (1) and (2) it follows that A — by is continuous and
hence from the definition of bx,A — a, is continuous. This proves the
theorem.

In order to prove the Theorem (1.2), we need few lemmas.

Let 0 <! < R, then define the Moser function [3] m; g by

(log R/ o< 2| <1
1 log Rf|z
(3'15) ml,R(x) - wlln (1085R//l%1;" 1< le <R
' " 0 |z| > R

Clearly m; p € W1 ™(R") with support contained in B(0, R) with ||my gl =
1.

For z, € 2,0 < I < R < d(z,,0Q), let Wy r(z) = m; r(x — z,). Then
Wirll =1, Wi r € WH™(S2) with support contained in B(z,, R).

LEMMA 3.1. Let n be as in (2.1) and z, € ). Assume that there exist
0<l< R<d(z,,00) such that

)n/nfl < log R

(3.16) log | + (?
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then

Wy, n—1 \"!
(317) - rtne%x J(th,R) < ? (m) .

PRrROOF: Let t, > 0 such that J(t,W; g) = maxier J(tW r) and

to
A

T =1t,W r(l) = (log R/l)("”‘l)/" then

=l / ftoW r)W 5 da
Q
> ¢! / F(t Wi r)W) g dx
B(z,,l) ’

= wnl” h(”r)'r“_leb"n/n_1
n

that is

Tn ln n—1 an/n.--]
(3.18) (log RJI7"1 > ;h('r)'r e

we claim that

(3.19) < ("’ - 1)(11_1)/,,,-
-Suppose (3.19) is not true, then we have for
. (,n B 1)(n—1)/n
(3.20) N

Hence from (3.20) and (3.18) we have

n—1 n—1
1> 10"(log R/D™1 (nbe 1) inf{h(s)s”“l; s> (n ; 1) }

= ?—i-g(log R/DH™ 1,




SOME REMARKS ON THE DIRICHLET PROBLEM 11

This implies that log B < log 1 + (2)™"7, contradicting (3.17). This
proves (3.19). Now we have from (3.19)

I{IE%Y J(th R) J(toW.!,R)

n—1
< Wn n— 1
n (blog R/ l)
This concludes the lemma.

As an immediate consequence of this lemma, we have the following.

COROLLARY 3.1. Let k > 0 be an integer and Q is of type (k, f) (see
definition 2.2). Let Wi(x) = my, r,(x — x;), then

(3.21) max  J(LW 4 ) < = (32)7
' I L RIS D '

Proo¥r: Since W; has disjoint support and from lemma (3.1)

o Tt W4+ 1, W) = ZI&%X J(AW;)

< kwn n—1 n-l
max —_
~ n 1<i<k \ blog R,‘/li

95

LEMMA 3.2. Let f'(0) = 0, then there exist a 0 < L™ < (“—gt)n_l and a
6 > 0 such that

This proves the corollary.

(3.22) J(u) > & for ||ju|| = £



12 ADIMURTHI

PROOF: Suppose (3.22) is not true, then for every £ in (O, (%ﬂu)("_l)/"),
there exist a sequence {uy ¢} in WDH™(Q) with |juk,z|| = £ such that

ur — ure weakly in W1 () and
(3.23) almost every z €

limg oo J(tk,c) =0

From (b) of lemma (2.1), and (3.23) we have
hm /fukg)ukﬁd:v-/f(uz ulldz

lim [ Flugc)de = f Flug)dz

k—oo Jo Q
Hence from (3.23) and (3.24), we have
= Juxel” = Jim {n(une +n [ Flunc)iz]

= n/ F(ug)dz
Q
This implies that uz # 0. Next we claim that for each £,
(3.26) < / flug)uds
Q

Suppose not, then from (3.25), we have

0< /Q[f(ug)uz_l —nF(ug)ldz <0

(3.24)

(3.25)

which is a contradiction. Hence (3.26) holds. Let vz = iy and ve — v,

weakly in Wh™(Q). Since Jluz]| < £, hence from (3.26) and (b) of Lemma
(2.1) we have

L0 Q Ug

= / f(0)vldz =0
q :

which is a contradiction. This proves the lemma.
“In order to complete the proof of the theorem (1.2), let us recall an
abstract theorem of Bartalo-Benci’-Fortunato [2] (See also Rabinowitz [4]).
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THEOREM 3.1. Let E be Banach space and I € C'(E,R) be even with
I(0) = 0. Let I satisfies the following.

1) There exist a positive constant 3 such that I satisfies Palais-Smale
condition on (0, 5)

2) There exist two closed subspaces V; and V3 of E and positive con-
stants £, 6, 8’ with é < 3’ < 3 such that

I(u) < p forallue V;
I(u) > 6 for all uw € V, with |lu|| =L
dim V] < oo, codim V, < oo.

Then there exist at least (dimV] — CodimV3) pair of critical points of I with
values in [8, 5'].

PROOF OF THE THEOREM 1.2: Let W;(z) = my, p,(z — z;). Taking E =
Win(Q),I = J,8 = 1(2)"""  V, = E,V; = Span {Wi,... W} in the
theorem (3.1), it follows that the hypothesis of the theorem (3.1) is satisfied
by making use of (1) of theorem (2.1), corollary (3.1) and lemma (3.2). This
implies that J have k pair of critical points which implies the theorem.
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