ANNALI DELLA
SCUOLA NORMALE SUPERIORE DI PISA
Classe di Scienze

ADIMURTHI

S.L. YADAVA

Multiplicity results for semilinear elliptic equations in a bounded
domain of R? involving critical exponents

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4¢ série, tome 17, n° 4

(1990), p. 481-504.
<http://www.numdam.org/item?id=ASNSP_1990_4_17_4_481_0>

© Scuola Normale Superiore, Pisa, 1990, tous droits réservés.

L’acces aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe
di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique 1’accord avec
les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une infraction pénale.
Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

‘NuMDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=ASNSP_1990_4_17_4_481_0
http://www.sns.it/it/edizioni/riviste/annaliscienze/
http://www.numdam.org/legal.php
http://www.numdam.org/
http://www.numdam.org/

Multiplicity Results for Semilinear Elliptic Equations in a
Bounded Domain of R? Involving Critical Exponents

ADIMURTHI - S.L. YADAVA

1. - Introduction

Let Q ¢ R" be a bounded domain with smooth boundary and f : QxR — R
be a C'-function with f(z,—t) = —f(z,t). Consider the following problem

—Au = f(z,u) in Q

1.1
(1 u =0 on 0Q.

When n > 4 and f(z,t) = |t|ﬁ t+t, Brézis-Nirenberg [8] proved that (1.1)
admits a non-trivial positive solution, provided 0 < f'(0) < A\;(Q). Here \;(Q)
is the first Dirichlet eigenvalue of —A. In this context, consider the following
natural questions.

(@) If 0 < f'(0) < A1(Q), can one get a solution of (1.1) which changes sign?
(@) If f'(0) > A(Q), does (1.1) admit a non-trivial solution?

Question (Q;) was discussed by Atkinson-Brézis-Peletier [6] and Cerami-
Solimini-Struwe [10]. In [10] it has been shown that, when n > 6, problem
(1.1) admits a solution which changes sign. Using this, they also proved that,
when n > 7 and Q is a ball, (1.1) admits infinitely many radial solutions which
change sign. In [6] (see also Adimurthi-Yadava [2]) it has been shown that,
when n =3,4,5,6, (1.1) does not admit any radial solution which changes sign
in a ball of sufficiently small radius.

Question (Q,) was discussed by Capozzi-Fortunato-Palmieri [9] and they
proved that if f'(0) > 0, then (1.1) always admits a non-trivial solution.

When Q is a ball and n > 4, Fortunato-Jannelli [11] have proved that, for
f'(0) > 0, (1.1) admits infinitely many solutions. In view of the results of [6],
solutions obtained in [11] in a ball need not be radial.

Pervenuto alla Redazione il 22 Ottobre 1988 e in forma definitiva 1’11 Agosto 1989.
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Let n =2 and f(z,t) = h(z,t) exp(bt’) be a function of critical growth
on Q. Adimurthi [1] proved that (1.1) admits a non-trivial positive solution,
provided tlim inf h(z,t)t = oo and sup f'(z,0) < A1(Q). In this paper, we

% zeQ z€eQ

discuss questions (Q;) and (Q.) when n =2 and f(z,t) = h(z,t) exp(bt?) is
a function of critical growth. In this case, in order to get results similar to
higher dimensions,the striking phenomenon is that the dimensional restriction
is reflected in the restriction of growth of h. We prove the following main
results.

Let Q C R? be a bounded domain with smooth boundary and 0 < A((Q) <
A2(Q) < ... be the eigenvalues of the following problem

—Au = u in Q

1.2
(1.2) u =0 on 9Q.

Let f(z,t) = h(z,t) exp(bt?) be a function of critical growth on Q (see definition
2.1). Consider the following problem

(13) —Au = h(z,u) exp(bu?) in Q
u =0 on 0Q.
We have
THEOREM 1.1. Let f satisfy

(1) for some positive integer k

14 () < inf f'(z,0) < sup f'(z,0) < Apar (Q);

zeQd zeQ
(2) there exist 4 >0, T >0 such that

(1.5) inf h(z,t)t > e, for all t > .
zeQ

Then (1.3) admits a non-trivial solution.
THEOREM 1.2. Suppose that
(1) sup f(z,0) < A1(€);

z€Q
(2) given any N > 0, there exists ty > 0 such that

(1.6) inf h(z,t)t > eV, for all t > ty.
zeQ

Then (1.3) has a non-trivial solution which changes sign in Q.

THEOREM 1.3. Let Q = B(O,R) = {z € R%, |z| < R} and f satisfy the
conditions (1) and (2) of Theorem 1.2. Further, assume f(z,t) = f(|z|,t). Then
(1.3) has infinitely many radial solutions which change sign.
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REMARK 1.4. In Theorem 1.3, condition (1.6) is optimal in order to get a
radial solution which changes sign. If we take f(t) =t exp(t®+|t|’), 0< B <1,
then it has been shown by the authors in [4] that (1.3) does not admits any
radial solution which changes sign in a disc of sufficiently small radius.

If we drop the radial requirement of the solution in Theorem 1.3, then we
have a stronger result.

THEOREM 1.5. Let Q be a ball or rectangle and f = h(t) exp (bt?) satisfy
tlim h(t)t = 0o. Then (1.3) has infinitely many solutions.

2. - Preliminaries

Let Q C R? be a bounded domain with smooth boundary. In view of the
Moser-Trudinger imbedding, the following notion of functions of critical growth
is introduced in [1].

DEFINITION 2.1. Let h: Q x R — R be a C'-function and b > 0. The
function f(z,t) = h(z,t) exp(bt?) is said to be a function of critical growth on
Q if it satisfies the following:

There exists a constant M > 0 such that, for every € > 0 and for all
(z,t) € Q % (0, 00),

(Hl) f(xa0)=01 f(fl?,t) >0’ f(:l}, —t)i_f(zat);
H)  f,t)> L&D

where f'(z,t) = % (z,1);
(H3) F(z,t) < M+ f(=,1)),

t
where F(z,t) = [ f(z,s)ds;
0

(Hy) tlim sup h(z,t)exp(—et?) =0, tlim inf h(z,t) exp(et?) = oo.
T zeQ T zeQ

Let H(Q) be the usual Sobolev space. For u € H}(Q) and p > 1, we
denote

P = [ (Valida,  up= [ uds,
Q Q
. |u|oo = ess.sup |ul,
Q

u" =max (u,0), u~ =max (—u,0).
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Let f be a function of critical growth on Q. Define

dBQ, f) = {u € H (Q\{0}; |lul? =/f(:c,u)u dz},
Q

0BI(Q, ) = {u € dB(Q, f); u* € 9B, )},

J(u) =% ”u||2 —/F(m, u)dz,
Q

I(u)=% /f(z,u)udz—/F(z,u)dz,
Q Q

2
@I _ e
2 8B(Q,f)
al(Qa f)2 = J
2 3BIQf)

We need the following results from [1]
THEOREM 2.1. Let f(z,t) = h(z,t) exp(bt?) be a function of critical growth
on Q. Then

(1) J:HLQ) — R satisfies the Palais-Smale condition on (—oo, 2})

(2)  Further, assume that lim inf h(z,t)t = oo, sup fl(z,0) < A\(Q). Then

t—o0 .’EGQ IGQ
@ 0<a@, f7 < 4,
(b) There exists up € 0B(Q, f), ug > 0 such that

Q 2
NWJ%Q

and ug is a solution of (1.3).

LEMMA 2.2. Let f be a function of critical growth on Q and {u,}, {v,}
be bounded sequences in H}(Q) converging weakly and for almost all z in Q
to u,v respectively. Then

() If lim |ju,]]? < 4”, then for every non-negative integer k,
n-—00 T ’y

lim / f(@, un) vf,d:r:/ f,w vFda;
Un u
Q Q

n—oo

(i) If sup [ f(z,un)usdz < oo, then
n Q
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n—oo

Q Q

lim fF(z, Uy )dz = / F(z,u)dz;
(iii) Suppose

. 2
(a) T}ggo J(un) < _;_r_ sup / f (@, up)updz < oo,
" Q

(b) uw#0 and ||ul|*> /f(z, wu dz,
Q

then

n-—+00

lim (@, up)undz = / f(z,wu dz;
Q Q

@(iv) I(u) >0 for all u and I(u) =0 iff u = 0. Further, there exists a constant
K > 0 such that

/f(x, wyu dz < K1 + I(u)).
Q

(For the proof, see lemmas from 3.1 to 3.4 and the Main Theorem in [1]).
We also need the following abstract result of Bartolo-Benci-Fortunato [7].

THEOREM 2.3. Let E be a Hilbert space and T € C'(E,R) be even and
T()=0. Let T satisfy the following:

1. There exists n > O such that T satisfies the Palais-Smale condition on
©,n);

2. There exist two closed subspaces Vi and V, of E and positive constants
p,6,m', with 0 < 6 <n' <n, such that

Tw)<wq', forall uinV,
T(u)>6, for all u in Vo with ||u|| = p,
dim V; < 00, codim V, < 00 and
dim V; > codim V;.

Then there exist at least dim V, — Codim V;, pairs of critical points of T with
values in [6,7'].

Finally, we end this section with the definition of Moser functions.
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Let zo € Q and L > 0 such that B(z, L) is contained in Q. For 0 < £ < L,
define 12
(log %) , 0< |z —xo| < 2

1) log(g4;)

V2r [Iog %] "

0 s |m - .’IJ()I > L.
Then m, € H(}(Q) and ”me” =1.

me(z) = , £<|z—=zo|<L

3. - Proof of theorems (1.1) and (1.2)
The proof of these theorems mainly depends on the following lemma
whose proof will be given at the end of the section.

MAIN LEMMA 3.1. Let f(z,t) = h(z,t)exp(bt’) be a function of critical
growth on Q and V be a finite dimensional subspace of H}() N H*(Q). Let
ho(t) = inf {h(z,t); = € Q} and C(V)=sup {J(v) : v € V}. Assume that one of
the following holds:

(1) v={0} and tlim ho(t)t = oo,
(2) CV)=0 and there exist r > 0, u > 0 such that

ho(t)t > e, for all t > 1;
(3) For every N > 0, there exists ty > 0 such that
ho(t)t > €M, for all t > ty.

Then there exists £y > O such that, for 0 < £ < £,

3.1 sup J(v+tmy) < C(V)+ 2—”,
i ’

where my is the Moser function.

Let E, C H}(Q) be the eigenspace corresponding to A\x(Q) and Py be the
projection on Ej. Let

E;, Vor = ® E;.

1=k+1

D=

3.2) Vig=

K}

il
—

The following lemma is proved in [3]. For the sake of completeness, we sketch
the proof.
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LEMMA 3.2. Let f be a function of critical growth on Q and, for some
integer k,

(3.3) A(Q) < 1nf f'z,0) < sup f'(z,0) < Aes1 ().

€Q
Then there exist p >0, § > 0 such that
(34) J(u) < 0, for all u in Vl,k
3.5 J(u) > 6, for all w in Vo, with |ju|| = p.

PROOF. Since inf f'(z,0) > M\ (Q), from (H),
zeQ

1D s r@o,

for all (z,t) € Q x (0, 00). Hence
A (Q)t?
Fo,t) > k(z) ,

for all (z,t) in Q x (0, 00). Let u € Vy, then

k(Q)

k
1 2
Jw) < 3 ; ()| Pl — lulf <0

which proves (3.4). To prove (3.5), let

d(2) = inf {||u||, u € V2 \{0}, |lu|* < / f(z,wu dz}.
Q

Using (i) of Lemma 2.2 and sup f'(z,0) < A41(Q), it follows that d(Q) > 0.

zeQ
We prove (3.5) when p = d(Q)/2. Suppose (3.5) is not true, then there exists a
sequence {um} in V3 such that

d(Q)

(3.6) ([t | = lim  J(um) =0,

d(Q)2

3.7 =|| ,,,||2 /f(z Um) U dz.

Let {un} still be a subsequence of {u,} which converges to uo weakly and
for almost all z in Q. By Fatou’s lemma, (3.7) and (3.6), we obtain

0< I(w) < lIim I(um) < hm J(up) =0.

m—o0
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Hence from (iv) of Lemma 2.2, ug = 0. From (3.7) and (ii) of Lemma 2.2,

lim | F(z,uy)dz =0;

m-—00

Q

therefore

d(Q)?

= lim Hum[[2 =2 lim {J(um)+/F(a:,um)da:} =0
Q

which is a contradiction. This proves the lemma.
The following lemma has been proved in Solimini [14], Cerami-Solimini-
Struwe [10]. For the sake of completeness, we give the proof.

LEMMA 3.3. Let f be a function of critical growth on Q and sup f'(z,0) <

zeQ
M(Q). Then ©

(1) Let ug € 0B1(Q, f) be such that J'(up) Z 0 (J' denotes the derivative
of J). Then
J(wo) > inf {J(u); u€ dB(Q, f)}.

(2) Let uy and uy be two non-negative linearly independent functions in
H}(Q). Then there exist p,q in R such that pu, + qu, € dB(, f).

PROOF. (1) For p,q,t €R, v € H}(Q), define
n(t,v) =v —tJ'(v),
o(p, q) = pug — quy

and
2(t,p, @) = n(t,0(p, ).

It is easy to see that

. d
ggrgl 3 TP, = =l @)l
piq—)

Hence we can choose ¢ > 0, § > 0 such that, for all (p,q) in U, =
[1—¢, 1+elx[1—¢, 1+eland 0 <t <4,

(3.8) J(2(t,p, @) < J(2(0,p, ) < J(up).

The last inequality in the above expression follows from the fact that ug €
0B1(Q, f). Define L, : U. — R? by

Lt(p? Q) = (P[Z(taP7 Q)+] - 17 p[z(tap’ q)-—] - 1) )
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where

ff(z,'u)v dz
pv) = ¢ 3
Il

By choosing ¢ and 6 sufficiently small, we obtain, for 0 < tp < é and (p,q) on
oUe,

< Lto(pa q)a V(p7 Q) > Z 01

where v(p,q) denotes the unit outward normal to dU.. Hence, by Miranda’s
theorem [12], there exists (pg,qo) in U, such that L. (po, go) = 0. This implies
2(to, po, qo) € 0B1(L, f) and hence, from (3.8), we have

J(2(to, o, g0)) < J(uo)

which proves (1).
(2) Let fi(z,t) = f(z,t) — f'(z,0)t and, for v in HL(Q), define

f fi(z,v)v dz
Q

(3.9) piw)y={ lvl* - gfl f!(z,0)v?dz

if v#0

0 ifv=0
and, for 0 < s < 1, v, = (1 — s)u; — sup. Then by the superlinearity of f, it

follows that

lim sup pi1(y vs) = o0.
170 5e(0,1]

Hence we can choose a ~y > 0 such that, for all s € [0, 1],
(3.10) p1(Yovs) = 2.
Define K = (K, K3) : [0,1] x [0,1] — R? by
Ki(s,t) = pi(otv;) — pi(votvy)
K (s, 1) = pi(yotvy ) + pr(Yotvy) — 2.
Then, for (s,t) on the boundary of [0, 1] x [0, 1], it follows from (3.10) that
< K(s,t), v(s,t) > >0,
where v(s,t) denotes the unit outward normal. Hence, from Miranda’s theorem

[12], there exists (sq,to) € (0,1) x (0,1) such that K(sg,to) = 0. This combined
with (3.9) implies ~otovs, € B1(L, ) and this proves (2).
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, PROOF OF THEOREM 1.1. Let k be the integer such that (1.4) holds. Let
Viks Vo be subspaces of HI(Q) given by (3.2). By Lemma 3.2, there exists
6 >0, p> 0 such that

(3.11) J(u) <0, for all u in Vi,
(3.12) J(u) > 6, for all u in Va with [[u|| = p.
From (3.11) and (2) of Lemma 3.1, there exists £y > 0 such that
2T
sup J(v+tmy) < —.
vGVl,k b

teR

From (1) of Theorem 2.1, J satisfies the Palais-Smale condition on (0, 2675)
Now the proof follows by taking E = H}(Q),

2
Vi=Vik ®R me, Va=Vag, n= 7, n'=sup J@), T=J
veV;
in the Theorem 2.3, with p and § given in (3.12).

PROOF OF THEOREM 1.2. In view of (1) of Lemma 3.3, it is sufficient to
show that the infimum of J is achieved on 8B (Q, f). To show this, we first
prove:

CLAM 1. 0< al(%’J)z < “(Qz’f)z +ZT7F'

By “definition, a;(Q, f) > a(, f). From Theorem 2.1, let uy € dB(R, f)
be such that

2
(3.13) sup J(aug) = J(up) =.M >0
a€R 2

bk

therefore a;(Q2, f) > 0. From (2) of Lemma 3.3, for any £ > 0,

2
UL < sup o +a mo),

(3.14)
2 p,g€R

where m, is the Moser function. From (3.13) and by taking V = {pug, p € R}
in (3) of Lemma 3.1, there exists £, > 0 such that, for 0 < £ < ¢,

a(€2, f)2 %1_['

3.15) sup J(pup+q my) < .
p,qE]R 2 b

Now Claim 1 follows from (3.14) and (3.15).
Let {u,} be in 8B;(Q, f) such that

2
lim J(uy,) = a@ /)

m—oo 2
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Since J =1 on 8B;(XQ, f), hence from (iv) of Lemma 2.2, we obtain

(3.16) Sup ||um|| < oo, sup/ f(z, um)umdz < oo.
m m a

Therefore we can extract a subsequence of {u,,} such that

+

I our weakly and for almost all z in Q.

u

From (3.16) and (ii) of Lemma 2.2, we get

m—o0
Q Q

3.17) lim F(z,u,in)dz=/F(z,uoi)dz.

From Claim 1, we can choose ¢ > 0, mo > 0 such that, for all m > my,

@@, 17 €2 ) < 0@, P+ 5 —¢;

2
this, together with J(uf) > (L(QZLD—, gives

2r
b

(3.18) J@i) <

N ®

CLAM 2. uf #0 and ||u3|?® < [ f(z,u3)uy dz.
Q

We shall prove this for uj. A similar proof holds for ugj. Suppose uj = 0.
Then, from (3.17) and (3.18), we have

m—0o0

lim |ju}]*=2 lim {J(ufn)+/F(z,u:’n)dz} < 4—:— — €.
Q
Therefore, from (i) of Lemma 2.2,

(3.19) lim | f(z,u))u;,dz =0.

m—00

Q

Since u}, € 0B(, f), therefore from (3.19) we obtain lim ||lu},|| = 0. This,

together with a(, f) > 0, gives a contradiction. This proves uj # 0. Now
suppose

(320) ]2 > / f(z, utyulds.
Q
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Then {u},,ul} satisfie all the hypotheses of (iii) of Lemma 2.2, and hence

11m /f(a: v urdz = /f(z,ua)ugdz.

Therefore we have

lglP < tim (sl = lim [ fo, e = [ foupuida
Q

which contradicts (3.20) and this proves the Claim 2.
Since sup f'(z,0) < A\(Q) and
zeQ

lluﬂle/f(z,u(?)u&dz,
Q

it is possible to choose 0 < r; < 1, 0 < 7y < 1, such that
v=r1Uuy — ruy € 0B1(Q, f)

(for the details on the existence of r; and r,, we refer [1], see step 2 in the
proof of Lemma 3.4). Now

2
WD < 1) < 1) = Ty + Trag)
< I@) +I(g) < Lim Iup)
2
= lim  J(um) = ﬂ%i

Hence ri =r =1, up € 0B1(Q, f) and J(up) = a_l_(£_2_f__ This completes the
proof of Theorem 1.2.

REMARK 3.4. The above proof also shows that J satisfies Palais-Smale
condition in

st (_oo’ “If 20

N {sufficiently small neighbourhood
of 8B 1(9, f)}

PROOF OF THE MAIN LEMMA 3.1. Let u, = vy + t;m; be such that £, > 0
and
J(ug) =sup J(v +1t my).

veV
teR
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Since J'(ug) =0 on {v+tmy, veEV, t R}, hence

(3.21) ‘l’lJ,g‘lz:/f(Z,ug)Ugd.'L'.
Q

Now suppose (3.1) is not true, then there exists a sequence {£,} such that
£, — 0 as n— oo and, for v, =vg, my, =my,, t, =tg, Un = Uy,

(3.22) CcV)+ 2; < J(up).

Let zo € Q be the point which occurs in the definition of Moser function.
STEP 1. {||v,||} and {t,} are bounded.
Suppose, on the contrary, Step 1 is not true. Then either
. =— ity .. . ty
i lim-—>0 or (i) Im —— =0.
n=eo [|uy|| n=o [|vg|

In the case (i), there exist a subsequence of {v,,t,} and a constant Cy > 0 such
that, for large n,

(3.23) WZLH >Cob and t, — oo as n — oo,

Since ||m,|| =1, we have, from (3.23) and Cauchy-Schwartz inequality,

(3:24) l[uall® = 2 +2tn < vn,mn > + |loa]® < Cuty,

where C; = 1+ U26 + _C% Since {“%’1“} is bounded and v, € V, therefore
0 n

{ vg oo} is bounded. Hence for z € B(z,£,) and for large n,

Un(T) = vp(T) + LMy (T)

v, () 1
tn M)

(3.25)

=t,m,(x) (1 + > > % tomy(x).
Hence from (Hj), (3.21), (3.23), (3.24) and (3.23),
Cit2 > |jua|* = / f (@, unYundz

o

> / ho(uy )un exp(buf.) dx

B(zo,n)

> Crenp (Gtimiian) ) &
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for some positive constant C,. This implies that

bt? L 1
ClzCzexp{m’;r log Z—~2 log 4——2 log tn}—»oo

as £, — 0; which is a contradiction and hence (i) cannot occur.
In case (ii), first observe that |lv,|| — co. Let

_ U t2 4 2tn
lloall” ™ lloall* * [lonll

2n < Zp,Mmy >

Then, by going to a subsequence if necessary and using the fact that z, € V,
we can assume that

(3.26) lim 2z, =2z, 2z €V\{0}, lim €,=0.
Now
”u,,||2 = ”'Un”2 +2ty, < vp,mp > +t3.
= |lvnP(1 + &,).

Hence

u 1 t
3.27 T = t —— my, | — 0
G27 = ey (4 o ) =02
in H\(Q).

From (3.21), (3.27) and Fatou’s lemma,

2
oo:/ lim f(z,u,) (un ) dz
J mooo  Un [luall

< lm —— / f(@, upYndz = 1
Q

m—co [un|f?

which is a contradiction. This proves Step 1.
Now, for subsequences, we have

limv,=vy inV, lim t,=¢

n—o0o n—oo
(3.28) u, —»vo weakly in H}(Q) and
for almost all z in Q.

From (3.21), (3.28) and by using (ii) of Lemma 2.2, we have

(3.29) lim F(z,u,)dz = / F(x,vp)dz.

n—oo
Q Q
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Now letting n — oo in (3.22) and using (3.28) and (3.29), we get

2 2
(3.30) o)+ 277’ < J(vy) + %- <o)+ 529

STEP 2. 3 =4 and J(vp) = C(V).

From (3.30), t3 > f%“— Suppose t(z, > 4T7r’ then there exist 0 < ¢ <.1, nyg >0
such that, for all n > ny,

(3.31) t2 > (1+¢) i*bf.

Let

2|vn(2)|
2€BGoty) tnMMn(2)

En =
(3.32)
=i €,
C= ﬁg ho(t)t exp ( 2bt ) ,

then from (3.28) it follows that €, — 0. Hence from (3.21), (3.32) and Step 1,
we have

M =sup ||u,,||22/f(z,u,.)undz
" Q

> / ho(un)u, exp(bul) dz

B(z0,05)
>C / exp[(l—%) buf,] dz
B(zo,¢s)
>C / exp[(l— %) a —a,,)btf,mf,(zo)] dz.
B(z0,¢,)

Therefore from (3.31), for all n > ny,

M zlc / exp [(1+§) a —s,,)47rm$,(zo)] dz
(3.33) Bo.to

- Cle;z[(1+§)(1—eﬂ)—1]

for some positive constant C. Since &, — 0, £, 550 as n — oo, (3.33) gives
a contradiction. Hence t2 = 4T7r and, from (3.30), J(v) = C(V).
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STEP 3. There exist positive constants ny and Cy such that, for all n > ny,

4 1 1
(3.34) (ti - {) m2(z) — 7 Enmn(@0) + 7 log pa(z0) < Co,
where

&n = 2bt, sup|v,(z)|,
zeﬁ

pn(z0) = iﬂf{tho(t); te [% tama(zo), Ztnmn(xo)] } .

Let M = sup ||u,|*. For = € B(zo,%,), it follows from (3.25) that there exists

no such that u,(z) € [5 tnmn(xo),Ztnmn(zo)] for all n > ng. Now from (3.21)
M > ||un)? =/f(x,un)un dz !
Q

> / ho(up)uy, exp(bui) dz

B(zo,n)

(3:35) > pu(xo) / exp(bufb) dz

B(zo,¢r)

> pa(z0) / exp { bltzm2 (o) + 2t,mu(zo)vn(2)]} da
B(IO;Zn)

> wpu(z0) €5 exp [btime(z0) — Enmin(zo)] -
By definition of Moser functions
(3.36) l,=L exp[—2wmi(m0)].

Now (3.34) follows from (3.35) and (3.36).

STEP 4. There exists a C; > 0 such that, for large n,

‘ Y2 g4
(3.37) <log ;) (T’r —tﬁ) < Oy |Aval.

Since ¢t — F(z,t) is convex, we have, for any £,7 real,

F(z,8 > F(z,n) + f(z,n)(€ — ).
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This implies

Q Q

(3.38) /F(z,un)undzz/F(z,vn)dm+tn/f(z,vn)mnd:c.
Q

From (3.22) and (3.38), we get

0w+ 2T < )

(3.39) 2
<OWV)+ 3" ity d <V, My > — | f(z,v)mpdz o
Q

From Step 1, {||lv.||} is bounded and hence {|v,|.} is bounded. Hence, for
some positive constant C}, C,,

/ f(zyv’n) 'vn'mndz
5 n

’U < Cé I'Un|2 lmn|2

(3.40)

< Co|Avg |z |miy)o.
Obviously | < v, my, > | < |Avg|z |my|2. Therefore, from (3.40) and from the

fact that {t,} is bounded, we obtain

(3.41) tn < Cs |Avg|y |mal2,

< Up, My > —/f(z,vn)mndx
Q

for some positive constant C;. By definition of Moser function, it follows that

(3.42) |mpl2 =0 <<log ;—)7i> .

Now (3.37) follows from (3.39), (3.41) and (3.42).
We discuss conditions (1), (2), (3) of the lemma separately.

(1) By hypothesis V' = {0}. Therefore C(V) =0, v,, =0 and, from (3.22),
2 > 4777 Substituting these values in (3.34), we get

1
Cy > 3 log p,(zo) for all n > ny.

Since tlim ho(t)t = o0, hence p,(zo) — oo as n — oo. This, together with the
—00
above equation, gives a contradiction.
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(2) By hypothesis C(V') = 0. Therefore, from Step 2, v, — 0 in V and

hence |Av,|, — 0. Since ho(t)t > e# for ¢t > 7 and my(z) — oo as n — oo, by
(3.34) we get, for large n,

ptn  €En Cy 47 2
om _-n _ <[ = — .
( 26 b m,,(a:o)) = ( b t”) ™M (o)

Now, by substituting the value of m,(zp) in the above equation and
combining this with (3.37), we get

H_& _En V21 Cy

C
< lA’U,.Iz.
12| —
2b b (log L)/ V2r

n

Since €, — 0, t, — to > 0 and |Av,|; — 0 as n — oo, from the above equation,
we get %tbg < 0 which is a contradiction.

(3) By hypothesis, given any N > 0, there exists ¢ty > 0 such that
ho(t)t > €Nt for t > ty. Since myu(zo) — oo as n — oo, by (3.34) and (3.37),
we get, for large n,

Nt, e, V21 Cy

Ci

_— - < IA'Un'Z-
% b 7| S
(log ZL) 2

n

Since €,, {|Av,|;} are bounded and t, — to > 0 as n — oo, from the above
equation, we get

Nty

<

26 !
for some positive constant C}. Since N is arbitrary, we get a contradiction and

this completes the proof of the lemma.

REMARK 3.5. Let f(z,t) = h(z,t) exp(bt?) be a function of critical growth

on Q such that tlim inf h(z,t)t = co. Then, from (1) of Lemma 3.1, we have
=0 zeQ
for 0 < £ < £, for sorﬁe £y >0,

2
sup J(tmg) < —
teR b

which implies a(Q, f)? < 4.
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4. - Proof of Theorem 1.3

For 0<S R, < Ry <R, let
B(R;,Ry) = {z €R?* R; < |z]| < Ry},
BO,R)={z¢€ R%|z| < R},
H, (Ri,Ry) = {u € H)(B(R1,Ry)); u is radial}.
First we state a radial version of Theorems 2.1 and 1.2. Let Q = B(Ry, R;).

THEOREM 4.1. Let f(z,t) = h(z,t)exp(bt?) be a function of critical growth
on B(Ry, Ry). Further, assume that

f@b=f(al,t),  supfi(z,0) < M(B(Rs, Ro).

zeQ
Then
my If tlim inf h(z,t)t = oo, then there exists at least one pair (ui, —u1)

of non-trivial solutions of (1.3), with w; > 0, and wuy is infimum of J on
Hr(RbRZ)maB(B(RI,RZ)) f)

(2) If, given any N > 0, there exists ty > 0 such that inf h(z,t)t > et

zeQ
for t > tn, then there exists at least one pair {uz, —u} of non-trivial solutions
of (1.3) and uy is infimum of J on H.(Ry, Ry) N 8B1(B(Ry, Ry)).

For any integer k > 0, define
%k ={P; P is a partition of [0, R] with k interior points}.

Let P={0=r9p<r <...<rk1 =R} be in Zx and define

[P]= {u € H,(O,R); u(ri)=0, Q; =B(ri_1,7:), u; =ulg,,

(=0 >0, |lu*= / f(z,u;)u;dz, for ¢ > 1},
Q

(4.1)
0B, ={[P]; P €},

2
% = inf {J(u);u € 8By}

For 0 < r < s <R, let us denote

a’O(Ty S) = a(B(r, 3)7 f)
al(ry 3) = al(B(T, S), f)'

4.2)
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Then ay(r, s), as a function of (r,s), satisfies the following properties:

(i) Since, for every § > 0, the injection from H,(6,R) into Cy(6, R) is
compact, it follows that for r,s € [, R] (see Lemma 3.1 of Nehari [13]):

“4.3) ay(r, s) is a continuous function of r and s and

ao(r,s) — oo asr—s—0;

(ii)) From (i) of Lemma 2.2 and (2) Theorem 2.1, it follows that

. 4
4.4) ao(0, s) is continuous on (0, R] and hrré a3(0,s) = Tw

PROOF OF THEOREM 1.3. From (4.1) and (4.2), it follows that for any
integer k > 0

k+1
2 _ . )2
(4.5) aj = inf z_;ao(nﬁl,r,) .

In order to prove the Theorem, it is enough to show that, for every k, there
exists a Pp={0=r) <r) <...<r),, =R} in Z; such that

k+1

(4.6) a; =) ao(rl ).
i=1

To see this, from (1) of Theorem 4.1, let 0 < v; € H,(r? ., 7% such that

i—10"g

1
@.7) J@) = 5 aoriy, )’
and define
(4.8) uw(z) = (= 1) ui(z) for z € B(r ;,rd).

Then u € [Po] and, by applying (2) of Theorem 4.1 in B(r)_,r?, ) for 1 <¢ <k,
it follows that u is a solution of (1.3) with k interior zeros and this proves the
Theorem.

Now we prove the existence of P, by induction on k. k=0 and k =1
follows from Theorem 4.1. Assume that infimum is achieved in (4.5) up to
k-1, k>3.

CLAM 1. a <a?_| + 477’.

By assumption, there exist

P={0=rg<ri<m<..<r=R}
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in £;_; and a v in [P] such that

2

ap_1 _

From (2) of Theorem 4.1, there exists some u € dB1(B(0,r), f) such that u
satisfies (1.3) in B(0,r,) and

01(0, ”'1)2

(4.10) J(u) = 5

Let 0 < 71 < r1 be such that u(71) =0 and define
P={O=T0<'F1<T1<...<Tk=R},

| u), z € BO,r)
w(@) = { —u(z), z € B(r|R).

(4.11)

Then P € X, w € [P). Hence, from (4.9), (4.10) and Claim 1 in the proof of
Theorem 1.2, we have

2
a
7" < Jw) = J@)+ J(w) — J@|Bo.m))
< a2 , N a1(0,71)* _ ao(0, 1)
- 2 2 2
2
By, 27
<72t

This proves Claim 1.

Let P, ={0=r' <r"< <...<r, =R} be a minimizing sequence of
(4.5). By going to a subsequence, we assume that r* — r,.

CLAIM 2. r; #0.

Suppose ri = 0. From (1) of Theorem 4.1, let 0 < u* € H,(r[",,7") be
such that

1
J) = an(ri”il, r;”)z.
Let v™(z) = (— 1) 'u™() for z € B(r™,,r™),
Qm={0=r <1 <...17%5 =R}

and w™(z) be such that w™(z) = 0 on B(0,r*) and w™(z) = —v™(z) on B(T*, R).
Then Q,, € X1 and w™ € [Q,,]. Hence from (4.4)

a2_ m m m a2 2
< J@m =T - T — 3=
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as m — oo, which contradicts Claim 1. This proves Claim 2.
From Claim 2, r; #0 and hence, from (4.3) and (4.4), we have

k+1 k+1
2 _ 2 2
ap = lim E ap(r,, )" = E ap(ri-1,7:)".
m—oo £

1=1 i=1
This proves the Theorem 1.3.

REMARK 4.2. As in Solimini [14], in Theorem 1.3, we can prove the
existence of infinitely many radial solutions of (1.3) in a ball without the
condition sup f'(z,0) < ().

zeﬁ

5. - Proof of Theorem 1.5

The proof of this Theorem follow exactly as the argument of Fortunato-
Jannelli [11]. Hence we only sketch the main steps in the proof when Q is a
rectangle.

Without loss of generality we assume Q = (a,b) x (0,7), a,b € R. For
z € Q, we set z =(2,t), ' € (a,b), t € (0,m). Let A = uj+k2, where p; be the

2
j-th eigenvalue of —%Z : H}(a,b) — H™!(a,b). Let v;(z') be the eigenfunction
corresponding to u;. iet

ejk(z',t) = v;(z") sin(kt), (z',t) € (a,b) x (0, 7).
For m € N, set
(5.1 Vim = {u € Hy(Q); uji =0 if k/m &N},

where u;; is the Fourier coefficient of u with respect to ej;. Thus if u € V,,,
then

(5.2) Cu@, )= Y ujmkejmi(@, ).

J,keN

Let us denote Q,, = (a,b) x (0,7/m) and u,, = ulg, for u € H}(Q). We have
the following ‘

LEMMA 5.1. We have
@) If ueV,, then u,, € H&(Qm) and J(u) = mJ(uy,);
(b) Jlv,, satisfies the Palais-Smale condition in (~oo, Zb‘l_fm) ;
(c) For every R > 0, there exist m € N and p > 0 such that

Jw) >R for all uw eV, with ||u|| = p;
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(d) There exists W € V,, such that

sup JW) < gﬁ m.
teR b

PROOF. From the results proved earlier, (a), (b), (c) and (d) follow easily

from the following observation.

(5.3)

Let g :R — R be any even function and W € V,,, then

b /m

b «
/ f gW)ds' dt=m / / gW,)dz' dt.
a 0 a 0

Therefore if u € V,,,, then from (5.3) we have

54

(5.5)

llul? = m [lum |

/ Fuwdz=m / F(uy,)dz.
Q Qn

PROOF OF THEOREM 1.5. The proof of Theorem 1.5 follows from (b), (c),

(d) of Lemma 5.1 and Mountain Pass Theorem of Ambrosetti-Rabinowitz [5].
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(2]
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