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Multiplicity Results for Semilinear Elliptic Equations in a
Bounded Domain of R2 Involving Critical Exponents

ADIMURTHI - S.L. YADAVA

1. - Introduction

Let SZ c R n be a bounded domain with smooth boundary and /:QxR 2013~ R
be a C I -function with f (x, - t) = - f (x, t). Consider the following problem

When n &#x3E; 4 and I(x, t) = Itln~2 t+At, Brezis-Nirenberg [8] proved that ( 1.1 )
admits a non-trivial positive solution, provided 0  f’(0)  A 1 ). Here Ai(Q)
is the first Dirichlet eigenvalue of -0. In this context, consider the following
natural questions.

(Q 1 ) If 0  f’ (0)  Ai(Q), can one get a solution of ( 1.1 ) which changes sign?

(Q2) If f’(0) &#x3E; a 1 (S2), does ( 1.1 ) admit a non-trivial solution?

Question (Qi) was discussed by Atkinson-Br6zis-Peletier [6] and Cerami-
Solimini-Struwe [10]. In [10] it has been shown that, when n &#x3E; 6, problem
(1.1) admits a solution which changes sign. Using this, they also proved that,
when n &#x3E; 7 and Q is a ball, ( 1.1 ) admits infinitely many radial solutions which
change sign. In [6] (see also Adimurthi-Yadava [2]) it has been shown that,
when n = 3, 4, 5, 6, ( 1.1 ) does not admit any radial solution which changes sign
in a ball of sufficiently small radius.

Question (Q2) was discussed by Capozzi-Fortunato-Palmieri [9] and they
proved that if f’(0) &#x3E; 0, then ( 1.1 ) always admits a non-trivial solution.

When Q is a ball and n &#x3E; 4, Fortunato-Jannelli [11] have proved that, for
f’(0) &#x3E; 0, ( 1.1 ) admits infinitely many solutions. In view of the results of [6],
solutions obtained in [ 11 ] in a ball need not be radial.

Pervenuto alla Redazione il 22 Ottobre 1988 e in forma definitiva l’ 11 Agosto 1989.
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Let n = 2 and f (x, t) = h(x, t) exp(bt2) be a function of critical growth
on Q. Adimurthi [1] proved that (1.1) admits a non-trivial positive solution,

provided lim inf h(x, t)t = oo and sup f’(x, 0)  ÀI (0). In this paper, we
t-cxJ XEQ zES2

discuss questions (Ql) and (Q2) when n = 2 and f (x, t) = h(x, t) exp(bt2) is
a function of critical growth. In this case, in order to get results similar to

higher dimensions, the striking phenomenon is that the dimensional restriction
is reflected in the restriction of growth of h. We prove the following main
results.

Let SZ c l~ 2 be a bounded domain with smooth boundary and 0  ~ 1 (~) 
À2(0)  ... be the eigenvalues of the following problem

Let f (x, t) = h(x, t) exp(bt2) be a function of critical growth on Q (see definition
2.1). Consider the following problem

We have

THEOREM 1.1. Let f satisfy

(1) for some positive integer k

(2) there exist p, &#x3E; 0, T &#x3E; 0 such that

Then (1.3) admits a non-trivial solution.

THEOREM 1.2. Suppose that

(2) given any N &#x3E; 0, there exists tN &#x3E; 0 such that

Then (1.3) has a non-trivial solution which changes sign in Q.

THEOREM 1.3. Let S2 = B(O, R) = {x E 1~2; lxl  R} and f satisfy the
conditions (1) and (2) of Theorem 1.2. Further, assume f (x, t) = 1(lxl, t). Then
(1.3) has infinitely many radial solutions which change sign.
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REMARK 1.4. In Theorem 1.3, condition (1.6) is optimal in order to get a
radial solution which changes sign. If we take f (t) = t exp(t2 + 0  (3  1,
then it has been shown by the authors in [4] that (1.3) does not admits any
radial solution which changes sign in a disc of sufficiently small radius.

If we drop the radial requirement of the solution in Theorem 1.3, then we
have a stronger result.

THEOREM 1.5. Let Q be a ball or rectangle and f = h(t) exp (bt2) satisfy
lim h(t)t = oo. Then (1.3) has infinitely many solutions.
t-00

2. - Preliminaries

Let Q C II~ 2 be a bounded domain with smooth boundary. In view of the
Moser-Trudinger imbedding, the following notion of functions of critical growth
is introduced in [ 1 ] .

DEFINITION 2.1. Let h : R - R be a C 1-function and b &#x3E; 0. The
function t) = h(x, t) exp(bt2) is said to be a function of critical growth on
SZ if it satisfies the following:

There exists a constant M &#x3E; 0 such that, for every E &#x3E; 0 and for all

Let be the usual Sobolev space. For u E and
denote



484

Let f be a function of critical growth on S2. Define

We need the following results from [I ]

THEOREM 2.1. Let f (x, t) = h(x, t) exp(bt2) be a function of critical growth
on Q. Then

(1) J : I~ satisfies the Palais-Smale condition on

(2) Further, assume that

(b) There exists uo E 9B(Q, f), uo &#x3E; 0 such that

and uo is a solution of (1.3).

LEMMA 2.2. Let f be a function of critical growth on Q and f u,, 1, 
be bounded sequences in HJ (0) converging weakly and for almost all x in 92
to u, v respectively. Then

then for every non-negative integer k,
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(iii) Suppose

then

(iv) I(u) &#x3E; 0 for all u and I(u) = 0 iff u - 0. Further, there exists a constant
K &#x3E; 0 such that

(For the proof, see lemmas from 3.1 to 3.4 and the Main Theorem in [ 1 ]).
We also need the following abstract result of Bartolo-Benci-Fortunato [7].

THEOREM 2.3. Let E be a Hilbert space and T E II~ ) be even and
T(O) = 0. Let T satisfy the following:

1. There exists q &#x3E; 0 such that T satisfies the Palais-Smale condition on
(O"q);

2. There exist two closed subspaces VI and V2 of E and positive constants
p, 8, rl’, with 0  6  q’  q, such that

Then there exist at least dim VI - Codim V2 pairs of critical points of T with
values in [S, r~’].

Finally, we end this section with the definition of Moser functions.
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Let xo and L &#x3E; 0 such that B(xo, L) is contained in Q. For 0  ~  L,
define

Then me E and llmtll = 1.

3. - Proof of theorems (1.1) and (1.2)

The proof of these theorems mainly depends on the following lemma
whose proof will be given at the end of the section.

MAIN LEMMA 3.1. Let = h(x, t) exp(bt2) be a function of critical
growth on SZ and V be a finite dimensional subspace of Hol(K2) n H2(S2). Let
ho(t) = t); x E S2} and C(V) = sup {J(v) : v E V}. Assume that one of
the following holds:

(2) C(V) = 0 and there exist T &#x3E; 0, p, &#x3E; 0 such that

(3) For every N &#x3E; 0, there exists tN &#x3E; 0 such that

Then there exists .~o &#x3E; 0 such that, for 0  .~  .~o,

where mi is the Moser function.
Let Ek C Ho(S2) be the eigenspace corresponding to Ak(92) and Pk be the

projection on Ek. Let

The following lemma is proved in [3]. For the sake of completeness, we sketch
the proof.
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LEMMA 3.2. Let f be a function of critical growth on K2 and, for some
integer k,

Then there exist p &#x3E; 0, 6 &#x3E; 0 such that

for all (x, t) E SZ x (0, oo). Hence

for all then

which proves (3.4). T’o ’prove (3.5), let

Using (i) of Lemma 2.2 and sup f’(~, o)  it follows that d(O) &#x3E; 0.
zei

We prove (3.5) when p = d(Q)/2. Suppose (3.5) is not true, then there exists a
sequence in V2,k such that

Let still be a subsequence of which converges to uo weakly and
for almost all x in Q. By Fatou’s lemma, (3.7) and (3.6), we obtain
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Hence from (iv) of Lemma 2.2, uo # 0. From (3.7) and (ii) of Lemma 2.2,

therefore

which is a contradiction. This proves the lemma.
The following lemma has been proved in Solimini [14], Cerami-Solimini-

Struwe [10]. For the sake of completeness, we give the proof.

LEMMA 3.3. Let f be a function of critical growth on Q and sup f ’(x, 0) 
z«5

Then

(1) Let uo E aBi(Q, f ) be such that J’(uo) 0- 0 (J’ denotes the derivative
of J). Then 

- -

(2) Let ul and U2 be two non-negative linearly independent functions in
HJ(O). Then there exist p, q in l1~ such that pul + qU2 E BBl (0, f ).

PROOF. ( 1 ) For p, q, t E R, v E Ho’(Q), define

and

It is easy to see that

Hence we can choose 6 &#x3E; 0, 6 &#x3E; 0 such that, for all (p, q) in !7g. =
[1-~, 1+,-]x [1-,-, 1+,-] 

The last inequality in the above expression follows from the fact that uo c
a B, (C2, f ). Define Lt : Ue - R 2 by
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where

By choosing 6 and 6 sufficiently small, we obtain, for 0  and (p, q) on
--.

where v(p, q) denotes the unit outward normal to 9U,. Hence, by Miranda’s
theorem [12], there exists (po, qo) in U, such that qo) = 0. This implies
z(to, po, qo) E and hence, from (3.8), we have

which proves (1).

and, for v in Ho(Q), define

and, for 0  s  1, vs = (1 - s)ul - SU2. Then by the superlinearity of f, it
follows that

Hence we can choose a 10 &#x3E; 0 such that, for all s E [0,1],

Define

Then, for (s, t) on the boundary of [o,1 x [o, 1 ], it follows from (3.10) that

where v(s, t) denotes the unit outward normal. Hence, from Miranda’s theorem
[12], there exists (so, to) E (0, 1) x (0, 1) such that K(so, to) = 0. This combined
with (3.9) implies ,0toVsQ E a.Bl (SZ, , f ) and this proves (2).
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PROOF OF THEOREM 1.1. Let l~ be the integer such that (1.4) holds. Let
V2,k be subspaces of given by (3.2). By Lemma 3.2, there exists

S &#x3E; 0, p &#x3E; 0 such that

From (3.11) and (2) of Lemma 3.1, there exists .~o &#x3E; 0 such that

From (1) of Theorem 2.1, J satisfies the Palais-Smale condition on
Now the proof follows by taking E = Ho’(0),

in the Theorem 2.3, with p and 6 given in (3.12).

PROOF OF THEOREM 1.2. In view of (1) of Lemma 3.3, it is sufficient to
show that the infimum of J is achieved on BBI (0, f ). To show this, we first
prove:

By definition, &#x3E; a(S2, f ). From Theorem 2.1, let uo E 
be such that

therefore ai (Q, f ) &#x3E; 0. From (2) of Lemma 3.3, for any f &#x3E; 0,

where mi is the Moser function. From (3.13) and by taking V = fpuo, 
in (3) of Lemma 3.1, there exists .~o &#x3E; 0 such that, for 0  .~  .~o, 

B

Now Claim 1 follows from (3.14) and (3.15).
Let be in 9Bi(Q,/) such that 

,..
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Since J = I on 8B1(0, f ), hence from (iv) of Lemma 2.2, we obtain

Therefore we can extract a subsequence of such that

weakly and for almost all x in Q.

From (3.16) and (ii) of Lemma 2.2, we get

From Claim 1, we can choose - &#x3E; 0, mo &#x3E; 0 such that, for all m &#x3E; mo,

this, together with gives

We shall prove this for uo. A similar proof holds for uo . Suppose uo - 0.
Then, from (3.17) and (3.18), we have

Therefore, from (i) of Lemma 2.2,

Since um E 9B(Q,/), therefore from (3.19) we obtain = 0. This,
, , 

together with a(Q, f ) &#x3E; 0, gives a contradiction. This proves 0. Now

suppose
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Then satisfie all the hypotheses of (iii) of Lemma 2.2, and hence

Therefore we have

which contradicts (3.20) and this proves the Claim 2.
Since sup f’(x, 0)  A 1 (0) and

xEQ

it is possible to choose 0  r 1  1, 0  r2  1, such that

(for the details dn the existence of rl 1 and r2, we refer [ 1 ], see step 2 in the
proof of Lemma 3.4). Now

Hence i This completes the
proof of Theorem 1.2. 

-

REMARK 3.4. The above proof also shows’that J satisfies Palais-Smale
condition in

{sufficiently small neighbourhood
of f)l

PROOF OF THE MAIN LEMMA 3.1. Let Ui = Vi + timi be such that tt &#x3E; 0

and 
,
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Since , hence

Now suppose (3.1) is not true, then there exists a sequence such that

Let zo G Q be the point which occurs in the definition of Moser function.
.

STEP 1. and {tn } are bounded.
Suppose, on the contrary, Step 1 is not true. Then either

In the case (i), there exist a subsequence of and a constant Co &#x3E; 0 such

that, for large n,

Since Ilmnll = 1, we have, from (3.23) and Cauchy-Schwartz inequality,

where Since is bounded and vn E V, therefore

is bounded. Hence for x E B(xo, and for large n,

Hence from (H4), (3.21), (3.23), (3.24) and (3.25),
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for some positive constant C2. This implies that

as ~ --~ 0; which is a contradiction and hence (i) cannot occur.
In case (ii), first observe -~ oo. Let

Then, by going to a subsequence if necessary and using the fact that zn E V,
we can assume that

Now

Hence

in Ho’(f2).
From (3.21), (3.27) and Fatou’s lemma,

which is a contradiction. This proves Step l.

Now, for subsequences, we have 

From (3.21), (3.28) and by using (ii) of Lemma 2.2, we have
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Now letting n - oo in (3.22) and using (3.28) and (3.29), we get

From then there exist

such that, for all n &#x3E; no,-

Let

then from (3.28) it follows that ên -~ 0. Hence from (3.21), (3.32) and Step 1,
we have

Therefore from (3.31 ), for all n &#x3E; no,

for some positive constant Cl. Since en -~ 0, ~ ~ 0 oo, (3.33) gives
a contradiction. Hence to = 4’27 and, from (3.30), J(vo) = C(V).0 - b
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STEP 3. There exist positive constants no and Co such that, for all n &#x3E; no,

where

Let M = sup I/un 1/2. For x E B(xo, it follows from (3.25) that there exists

no such that 1 for all n &#x3E; no. Now from (3.21)

By definition of Moser functions

Now (3.34) follows from (3.35) and (3.36).

STEP 4. There exists a Cl &#x3E; 0 such that, for large n,

Since t - F(x, t) is convex, we have, for any ~, 7y real,
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This implies

From (3.22) and (3.38), we get

From Step 1, is bounded and hence is bounded. Hence, for
some positive constant C2, C2,

Obviously I  vn, mn &#x3E; I  ]Avn ]2 ImnB2’ Therefore, from (3.40) and from the
fact that ~tn } is bounded, we obtain

for some positive constant C3. By definition of Moser function, it follows that

Now (3.37) follows from (3.39), (3.41) and (3.42).
We discuss conditions (1), (2), (3) of the lemma separately.

(1) By hypothesis V = 101. Therefore C(V) = 0, vm = 0 and, from (3.22),
427/b. Substituting these values in (3.34), we getb

Since lim ho(t)t = oo, hence This, together with the
t-00

above equation, gives a contradiction.
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(2) By hypothesis C(V) = 0. Therefore, from Step 2, vn -~ 0 in V and
hence -~ 0. Since ho(t)t &#x3E; eP,t for t &#x3E; T and mn(zo) - oo as n - oo, by
(3.34) we get, for large n,

Now, by substituting the value of in the above equation and
combining this with (3.37), we get

Since en -; 0, tn &#x3E; 0 and from the above equation,
we get 0 which is a contradiction.

(3) By hypothesis, given any N &#x3E; 0, there exists tN &#x3E; 0 such that

ho (t)t &#x3E; eNt for t &#x3E; tN. Since mn(zo) - oo as n --&#x3E; oo, by (3.34) and (3.37),
we get, for large n,

Since en, are bounded and tn -+ to &#x3E; 0 as n --~ oo, from the above

equation, we get

for some positive constant C~. Since N is arbitrary, we get a contradiction and
this completes the proof of the lemma.

REMARK 3.5. Let = h(x, t) exp(bt2) be a function of critical growth
on SZ such that lim inf h(x, t)t = oo. Then, from ( 1 ) of Lemma 3 .1, we have

t-+oo 2ES2
for 0  t  ~ for some .~o &#x3E; 0,

which implies
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4. - Proof of Theorem 1.3

First we state a radial version of Theorems 2.1 and 1.2. Let SZ = B(R1, R2).

THEOREM 4. l. Let f (x, t) = h(x, t) exp(bt2) be a function of critical growth
on B(Rl , R2). Further, assume that

Then

(1) If lim inf h(x, t)t = oo, then there exists at least one pair (ul, -ul)
t-00 xE ii

of non-trivial solutions of (1.3), with ul 2:: 0, and ul is infimum of J on
Hr(RI, R2) n 8B(B(RI, R2), f).

(2) If, given any N &#x3E; 0, there exists tN &#x3E; 0 such that inf h(x, t)t &#x3E; eNt
xESZ

for t &#x3E; tN, then there exists at least one pair {U2, -U2) of non-trivial solutions
of (1.3) and U2 is infimum of J on Hr(RI,R2)nBBI(B(RI,R2».

For any integer J~ &#x3E; 0, define .

Ek = {P; P is a partition of [0, R] with 1~ interior points}.

be in Ek and define

For 0  r  s  R, let us denote
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Then ao(r, s), as a function of (r, s), satisfies the following properties:

(i) Since, for every 6 &#x3E; 0, the injection from H,(6, R) into CO(6, .R) is

compact, it follows that for [6, R] (see Lemma 3.1 of Nehari [13]):

(4.3) ao(r, s) is a continuous function of r and s and

(ii) From (i) of Lemma 2.2 and (2) Theorem 2.1, it follows that

(4.4) is continuous on (0, R] and

PROOF OF THEOREM 1.3. From (4.1 ) and (4.2), it follows that for any
integer &#x3E; 0

In order to prove the Theorem, it is enough to show that, for every k, there
exists a  ...  = RI in Ek such that

To see this, from (1) of Theorem 4.1, let 0 E Hr (r9 , , r9) such that

and define

Then u E [PO] and, by applying (2) of Theorem 4.1 in for 1  i  k,
it follows that u is a solution of (1.3) with k interior zeros and this proves the
Theorem.

Now we prove the existence of Po by induction on k. k = 0 and k = 1

follows from Theorem 4.1. Assume that infimum is achieved in (4.5) up to

By assumption, there exist
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in I and a v in [P] such that

From (2) of Theorem 4.1, there exists some u E o9B, (B(O, ri), f ) such that u
satisfies (1.3) in B(O, rl) and

Let 0  fix  r 1 be such that u(f 1) = 0 and define

Then P E [P]. Hence, from (4.9), (4.10) and Claim 1 in the proof of
Theorem 1.2, we have

This proves Claim 1.

 ... ,rml = R} be a minimizing sequence of
(4.5). By going to a subsequence, we assume that ri.

Suppose ri 1 = 0. From (1) of Theorem
such that 

,

and wm(x) be such that = 0 on B(0, and on R).
Then Qm E 1 and w m e [Qm ] . Hence from (4.4)
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as m ~ oo, which contradicts Claim 1. This proves Claim 2.
From Claim 2, and hence, from (4.3) and (4.4), we have

This proves the Theorem 1.3.

REMARK 4.2. As in Solimini [14], in Theorem 1.3, we can prove the
existence of infinitely many radial solutions of (1.3) in a ball without the
condition sup f ’(x, 0)  A 1 (92).

2ES~

5. - Proof of Theorem 1.5

The proof of this Theorem follow exactly as the argument of Fortunato-
Jannelli [ 11 ] . Hence we only sketch the main steps in the proof when S2 is a

rectangle.
Without loss of generality we assume Q = (a, b) x (0,7r), a, b E R . For

j -th eigenvalue of -
corresponding to p,j.

be the eigenfunction

For set

where is the Fourier coefficient of u with respect to ej,k. Thus if u E Ym,
then

Let us denote Qm = (a, b) x (0,7r/m) and um = for u E Ho’(92). We have
the following 

,

LEMMA 5.1. We have

(a) If u E Ym, then Um E and J(u) = mJ(um);

(b) satisfies the Palais-Smale condition in

(c) For every R &#x3E; 0, there exist and p &#x3E; 0 such that
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(d) There exists W E V,,, such that

PROOF. From the results proved earlier, (a), (b), (c) and (d) follow easily
from the following observation.

Let g : 1R ~ R be any even function and W E Ym, then

Therefore if u E V, then from (5.3) we have

PROOF OF THEOREM 1.5. The proof of Theorem 1.5 follows from (b), (c),
(d) of Lemma 5.1 and Mountain Pass Theorem of Ambrosetti-Rabinowitz [5].
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