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Existence of Positive Solutions of the Semilinear Dirichlet
Problem with Critical Growth for the n-Laplacian

ADIMURTHI

1. - Introduction

Let Q be a bounded open set in R™ with smooth boundary. We are looking
for a solution of the following problem:
Let 1 < p<mn, find u € W,?(Q)\{0} such that

Apu = f(z,uw)|uP2 in Q
(1.1

u >0,

where Ayu = div(|Vu[P~2V u) is the p-Laplacian and f : QxR - R is a
C'-function with f(z,0)=0, f(z,t) >0 for ¢t > 0 and of critical growth.

For p = 2 and n > 3, Brézis-Nirenberg [4] have studied the existence
and non-existence of solution of (1.1) when f has critical growth of the form
u™2/=2) 4 Ay, A generalization of this result, on the same lines, for the p-
Laplacian with p < n and p? < n, has been studied by Garcia Azorero-Peral
Alonso [7]. When p = n, in view of the Trudinger [13] imbedding, a critical
growth function f(z,u) behaves like exp (blu[*/®~D) for some b > 0. In this
context, when p=n=2 and Q is a ball in R2, existence of a solution of (1.1)
has been studied by Adimurthi [1], Atkinson-Peletier [2]. The method used
by Atkinson-Peletier is a shooting method and hence cannot be generalized to
solve (1.1) in an arbitrary domain. Whereas in Adimurthi [1], (1.1) is solved
via variational method which is in the spirit of Brézis-Nirenberg [4] and, based
on this method, we prove the following main result in this paper.

Let f(z,t) = h(z,t)exp (b|t|’" V) be a function of critical growth and
F(z,t) be its primitive (see definition (2.1)). For u € WOI’"(Q), let

(1.2) J(u)=;1l—/[Vu!"dz—/F(z,u)dz
Q

Q

Pervenuto alla Redazione il 22 Ottobre 1988 e in forma definitiva 1’11 Agosto 1989.
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(1.3) A(uw) = inf {/ |Vu|*dz; ue W(,]’"(Q), / |u|" dz = 1}

Q Q
(1.4) o = nw!/®™ Y where w, = Volume of S"~".

THEOREM Let f(z,t) = h(z,t)exp b[t|”’™ V) be a function of critical
growth on Q. Then

1) J: Wol’"(Q) — R satisfies the Palais-Smale Condition on the interval
1 (an\" Y.
(= b))

2) Let f'(z,t) = ;% f(z,t) and further assume that

(1.5) sup f'(z,0) < A1(Q)
zeﬁ
(1.6) Tim inf Az, "' = oo,
t—00 70

then there exists some uy € WOI "(Q\{0} such that

Ao = f(z, uo)ugy 2 in Q
(1.7) ug >0
ug =0 on 0Qd.

The method adopted to solve (1.7) in Brézis-Nirenberg [4] does not work
because of the critical growth is of exponential type. Here we adapt the method
of artificial constraint due to Nehari [11]. The main idea of the proof is as
follows:;

Define

(1.8) a@, /)" = inf{J(u); / |Vul"dz = / fz,upu™ 'dz, u# 0} ,
Q

n
Q

then the minimizer of (1.8) is a solution of (1.7).
It has to be noted that o, is the best constant appearing in Moser’s [10]
result about the Trudinger’s imbedding of W(,""(Q). In view of this, one expects

n—1
that J should satisfy the Palais-Smale Condition on <—oo, %—(%ﬂ) )

Therefore, in order to get a minimizer of (1.8), the question remains to show
that

Qp

(1.9) aQ, f)* < (T)"_1
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and this has been achieved by showing the following relation

(1.10) sup / F(@, 0@, HHuw™ " dz < a(@, f).
f |Vw|* dz<1 Q

In the forthcoming paper (jointly with Yadava), we discuss the bifurcation
and multiplicity results for (1.7) when n =2.

2. - Preliminaries

Let Q be a bounded domain with smooth boundary. In view of the
Trudinger-Moser [13,10] imbedding, we have the following definition of
functions of critical growth.

DEFINITION 2.1. Let h : Q x R — R be a C!-function and b > 0. Let
f(z,t) = h(z, t)exp (b]t|"/™ D). We say that f is a function of critical growth
on Q if the following holds:

There exist constants M > 0, ¢ € [0, 1) such that, for every ¢ > 0, and for
every (z,t) € Q x (0, c0),

(H) f(z,00=0, f(z,t)>0, f(z,)0"" = f(z, -)-t)*"";

() '@t > L% whete f@,1) =L@, 1y
(H3) F(z,t) < M( + f(z, H)t"2*7), where

t
F(z,t) = / f(z, s)s" 2ds
0

is the primitive of f;
(Hy) tlim sup h(z, t) exp (—et"/‘"*‘)) =0,

z€Q

lim lnf_h(:[,t) exp (Etn/("‘l)) = oo.

t—00 5
Let A(£2) denote the set of all functions of critical growth on Q.
EXAMPLES. In view of (H)), it is enough to define f on Q x (0, co).

1) Forle,b>0,ﬂ20and0§a<h—'1—1,f(m,t)=
t™ exp(8t®) exp (bt"/™D) is in A(Q).

2)  fz,t)=t%"t exp (tV/™D) is in AQ).

3) Let f(z,t) = h(z,t) exp (bt"/®~V), satisfying (H) and (Ha).
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Further assume that h'(z,t) > h(%Q for (z,t) € Q x (0,00). Then f is in
A(Q).
For

|

f'(z’t) _ h,(z’t) + nb tl/(n-—l) > z

f(z,t)  h(z,t) n-—1

and hence f satisfy (H>).
Let e >0, and ¢ =

n—1
t
_ _n-1 —— n/(n-1)
F(z,t) — F(z,¢) s h(z, s)s i exp ( bs ds

n—1 n—2—o n—2—o
S _‘;I—)—_ [f((l?,t)t - f(zv 6)6 ] .

This implies that there exists a constant M > 0 such that F(z,t) <
M1+ f(z,t)t"277] for (z,t) € Q x (0, 00). This shows that f satisfy (H3) and
hence f € A(Q).

Let WOI’”(Q) be the usual Sobolev space and f(z,t) = h(z,t) exp (bt"/™D)
be in A(Q). For u € WOI’"(Q), define

2.1 [Jw|™ =/ |[Vu|" dz
Q
2.2) J(u) = %”u”" - / F(z,u)dz
Q

2.3) I(u)= %/f(a:, wu" ldz —/F(m,u)dz

Q Q
(2.4) dBE, f) = {u € Wy (Q\{0}; |lu|” = / flx, upu™! dz}

Q

2.5) 9—(—Qn’—f)z =inf{J(u); u € 9B, )}

2.6) /\1(Q)='inf{ ull™; / |u|"dz=1}
Q

o =nw!/® D where w, = Volume of ™!,
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DEFINITION OF MOSER FUNCTIONS. Let zp € Q and R < d(zo, Q2), where
d denotes the distance from zg to Q. For 0 < £ < R, define

(log %)1_% if0<|z—mo| < ¢

1 log 2 .
My p(Z,20) = —— § — =L fl<r=|z—x9| <R
LR 0 w}l/n (log%) | |

0 if |z — zo| > R.

Then it is easy to see that myp € Wy"(Q) and ||myg|| = 1.
For the proof of our theorem, we need the following two results whose
proof is found in Moser [10] and P.L. Lions [9] respectively.

THEOREM 2.1 (Moser). 1) Let u € Wy™(Q), and p < oo, then
exp (Ju|”/™V) € LP(Q).

n—1
D ()" | 4 g fep )

THEOREM 2.2 (PL. Lions). Let {ux; |lukl| = 1} be a sequence in

WOI’"(Q) converging weakly to a non-zero function u. Then, for every p <
a- “u”n)—l/(n—l)’

sup/ exp (pan|uk|"/("‘1)) dr < oo.
*a

3. - Proof of the Theorem

We need a few lemmas to prove the theorem. The proof of the following
lemma is given in the appendix.

LEMMA 3.1. Let f € A(Q2). Then we have
1) If u € Wy™(Q), then f(z,u) € LP(Q) for all p> 0.

2) (%ﬂ)n—l = sup {c"; sup [ f(z,cw)w" dz < oo} .

lwli<1Q

3) Let {ux} and {v;} be bounded sequences in W,™(Q) converging weakly and
for almost every z in Q to u and v respectively. Further assume that

R Q. n—1

i n (—") .

Jim e < (=
Then, for every integer £> 0,

lim / ACAC uk)vﬁ dz = / PACA) u)vl dz.
Uk u
Q Q

k—oo
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4) Let {ux} be a sequence in Wol’"(Q) converging weakly and for almost every
z in Q to u, such that

Sup/ f(z,uk)u;:_ldx < oo.
k
Q

Then, for any 0 <1< 1,

klim /f(a:, lukl) |uk|""2”dz=/f(m, lul]) |u|"‘2+7dz
Q Q

klim F(z,ux)dz = / F(z,u)dx.
Q Q

5) I(u) > 0 for all uw and I(u) =0 iff u = 0. Further, there exists a constant
M, > 0 such that, for all u € W,™(Q),

/ f(z, wyudz < M (1 + I(w)).
Q

LEMMA 3.2. Let f = hexp (bJt|/"D) € A(Q) and define

ho(t) = inf h(z,t), My = suphot)t""!, Ry=sup d(z,doRQ),

z€Q t>0 z€Q

and

nftn=1) e )
k { (Rlo) My if My < oo
0=
0 if My = oo.
Let a > 0 be such that

sup | f(z,ew)w™ 'dz < a.
lwli<t

If %Q < 1, then a™ < (g#)n_l.

n—1
PROOF. From 2) of lemma 3.1, we have a" < (Qbﬂ) . Suppose
n—1

a" = (9‘,;&) . Let zo € Q such that d(zo, Q) = Ry and 0 < £ < Ry. Let

my(x) = my (2, o).
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be the Moser functions and

(n—1)/n
t = aw; '/ <10g %) ,

then from (3.1) we have

aE/f(z,amg)m?_ldm
Q

> / ho(amgym; ™" exp (ba"/("_l)m?/("_l)) dz

B(z0,f)
_ ho@®t"'wa Ry
B nan1 ’

This implies that

an\"! . ho@®)t" lw, Ry
—_ = > .
( b ) @ = n

That is, for all t € (0, 00),

b < (—n_)n/(n—l) (ho(t)tn_l)—l/(n—l)
“ \Ro

and hence Jont)
n . o1y —1/(n—1)
b< (E) inf (ho(t)t"™") < ko

399

which contradicts the hypothesis b > ko. Hence a" < ( $2 """ and this proves
P b P

the lemma.

LEMMA 3.3. (Compactness Lemma). Let f be in A(Q) and {ux} be a
sequence in Wol’"(Q) converging weakly and for almost every z in Q to a

non-zero function w. Further, assume that
. . 1 [ n—1 . .
(i) There exists C € {0, ( 7 ) such that klgg Jug) =C;
Q) |lul* > [ flz,wu"""dz;
Q
(iii) sup [ f(z, up)u} ' dz < oo,
kE Q

then
klim/f(z,uk)uz_ldx=/f(z,u)u"_ldz.
Q Q
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PROOF. From 5) of lemma 3.1, I(u) > 0. Therefore, from (ii) we have
J(@w) > I(u) > 0 and J(u) < lim J(ux) = C. Hence we can choose an ¢ > 0

k—o0
such that
n—1 1 Qn n-l
(3.2) €= J@) A+ <~ (7) .

Let 8= [ F(z,u)dz. Then, from (iii) and 4) of lemma 3.1, we have
Q

Jim || =n lim {J(uk)+/F(w, u/c)dx}

(3.3) J

=n(C + f).

From (3.2) and (3.3) we can choose a kg > 0 such that, for all k& > ko,

(B4  (+e <a> el <c—J(u>_<1 nC+p) -

Now choose p such that

C+p

n—1 i ! n n—1 B
3.5) (+6 (a) el <5 < 5o

Applying theorem 2.2 to the sequence ok and using (3.3) and (3.5), we
have e

ug n/(n—1)
(3.6) sup/exp pay, (———) dz < oo.
) o]

From (3.5) and (3.6), we have

3.7 sup/ exp ((1 + e)"“1b|uk|"/("_”) dz
k
Q

up n/(n—1)
< sup/exp pay, <———> dz < oo.
) e

b
Mi= sup |h(z,t)"'|exp (—e—|t|"/("*1)>
(z,t)eﬁxR 2

Let
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and N > 0. Then from (3.7) we have

(3.8) / fl@,up)ul " dx = / h(z, uk)uy ' exp (b]ukln/("“l)) dz

luk|2N lukIZN

=M, / exp (—e%lukl"/("‘”) exp [(1+e)b|uk|"/("’1)] dz

IuklzN
b /-1y
=0 | exp _GEN .
Hence

/f(av;,uk)u;c‘_1 dz = / f(z, uk)u’,:‘1 dz+0 <exp (—e%N"/("_I))> .
Q

|1l.k|§N

Now letting £k — oo, and N — oo in the above equation, wé obtain

klim/f(x,uk)u;:‘lda:=/f(a:,u)u"_ldz.
Q Q

This proves the lemma.
LEMMA 34. Let f € A(Q) and assume that
® E{lo ho(t)t"~! = oo,
where ho(t) = inf h(z,t);
z€Q

(i) sup f'(z,0) < A1(Q);
z€Q
then

0<a@ f)" < (%)"‘1.

PROOF. The lemma is proved in several steps.

STEP 1. a(Q, f) > 0.
Suppose a(Q, f) = 0. Then there exists a sequence {ux} in dB(Q, f) such
that J(ug) — 0 as k — oo. Since J(ux) = I(ux), hence from 5) of lemma 3.1

(3.9 sup/ _1"(:1:,uk)u}c“1 dz < oo
k
Q

(3.10) sup [Jug||* < oo.
k
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Then, by extracting a subsequence, we can assume that {ux} converges
weakly and for almost every z in Q to a function ». Now by Fatou’s lemma,

0 < I(w) < lim I(uy) = lim J(uy) = 0.

k—o0 k—o0

Hence u = 0. From (3.9) and 4) of lemma 3.1, we have

(3.12) klim [Jwiel™ =nklim {J(uk)+/F(z, uk)dz} =0.
Q

Let v, = “—Z-:-” and converging weakly to v. Using ui € dB(Q, f), (3.12),

3) of lemma 3.1 and (ii), we have

1=tim [ 1&¥) g,
k—oo Uk
Q

=/f'(z,0)v"dm < Al(Q)/v"dz <1,
Q

Q

which is a contradiction. This prove step 1.

STEP 2. For every u € W,™(Q)\{0}, there exists a constant 4 > 0 such
that yu € dB(Q, f). Moreover, if

(3.13) ||u||"§/f(z,u)u""ldz,
Q

then y<1 and y=1 iff u € dB(Q, f).
For 4 > 0, define

P(v) = %/f(z, yu)u™ 1 dz.
Q

Then, from 3) of lemma 3.1 and (ii), we have

lim () = f f'(z, O dz < [Jul”,
Q

»,lil?o P(y) = oo.

Hence there exists v > 0 such that ¥(y) = |u|*; this implies that

~yu € AB(Q, f). From (H;) and (H;), it follows that &i—t—u)u"“ is an
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increasing function for ¢ > 0. Hence, if u satisfies (3.13), it follows that v < 1
and v =1 iff w € dB(Q, f). This proves step 2.

n—1
STEP 3. a(Q, /)" < (9‘#) .
Let w € W, ™(Q) such that ||w|| = 1. From step 2, we can choose a v > 0
such that yw € dB(Q, f). Hence

a(Q, f) n n n
I jeywy < Dl = L
n n n

this implies that a(Q, f) < ~. Using again the fact that &tt?l)w"‘1 is an
increasing function of ¢ in (0, 00) and yw € dB(L, f), we have

f(a:,a(Q,f)'w) n—ld /f(!l?,'V'LU) n—1 =1
—a(Q,f) w zSQ ———-——’7 w"  dr=1.

This implies that

(3.14) sup / f(,a@, P dz < a@, f).
Q

i<t

n—1
Now from (i), (3.14) and lemma 3.2 we have a(Q, f)" < (an) . This
proves the lemma.

LEMMA 3.5. Let f € A(Q) and ug € B, ) such that J'(ug) #0 (J'(u)
denote the derivative of J at u). Then

J(ug) > inf{J(u); u€ B, f)}.

PROOF. Choose hg € WOI’"(Q) such that (J'(up), ho) =1 and, for a,t € R,
define o;(a) = aug — tho. Then

. d /
113(‘)1 a—EJ(at(a)) = —(J'(up), ho) = —1

a—1

and hence we can choose € > 0, § > 0 such that, for all o € [1 —¢, 1+¢] and
0<t<é,

(3.15) J(oi(a) < J(oo(@)) = J(aug).

Let
pr() = Jlow(e" — / f(z,0(@)) 0y(@)"" da.
Q
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Since &ﬁwu{,“l is an increasing function of « and using uy €
dB(L, f), by shrinking ¢ and § if necessary, we have, for0 <t < §, p;(1—¢€) >0
and p;(1 +€) < 0. Hence there exists a; such that p;(oy) = 0. Thefore o;(a;) is
in 0B(L, f). Hence from (3.15) we have

inf{J(u); u€ B, f)} < J(o(aw))

< J(oug) < sup J(tug) = J(uo).
teR

This proves the lemma.
PROOF OF THE THEOREM.
n—1
1) Palais-Smale Condition. Let C € <—oo, % (an) ) and {u;} be a
sequence such that
klim Jug)=C
(3.16)
klim J'(ug) = 0.

Let he Wol’"(Q), then we have

(3.18) (J'(ug), h) =/ |Vug|""2Vuy - Vhdz — / f(z, up)ul 2hdz.
Q Q

Hence we have

1
(3.19) J(ug) — ;(J'(uk), ug) = I(uyg).
CLAM 1.
(3.20) sup ||u| + sup f f@,upul "t dz < oo.
. k k
Q

Since {J(uk)} and {J'(ukx)} are bounded and hence from (3.19), I(ux) =
O(||u|)). Now from 5) of lemma 3.1, we have [ f(z,up)u? ™" dz = O(||u|)).
Q

Now from (H3) it follows that

/ F(z, u) dz = O(jus])
Q

and, by using the boundedness of J(ug), we obtain |luk||® = O(||u|]). This
implies (3.20) and hence the claim.
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By extracting a subsequence, we can assume that
(3.21) ur, — uo weakly and for almost all z in Q.

Case (). C 0.
From Fatou’s lemma and 5) of lemma 3.1, we have

0 < I(ug) < lim I(ug)

k—o0

. 1
= lim {J(uk) — =(J'(ug), uk)}
k—o00 n

=C.

Hence up = 0. If C < 0, no Palais-Smale sequence exists. If C =0, then
from (3.20) and 4) of lemma 3.1 we have

klim || =nklim {J(uk)+/F(m, uk)da:} =0.
Q

This proves that u; — O strongly.

Case (II). C e (0,% (Q[bn_)n—ﬂ).

CLAM 2. up Z 0 and ug € dB(L, f).
Suppose ug = 0. Then, from (3.20) and 4) of lemma 3.1, we have

klim ||uk]|™ = n lim {J(uk) + / F(z,ur) da:}
(3.22) koo a

=nC < (%ﬁ)n_l .

Hence, from 3) of lemma 3.1 and (3.22), we have

klim f(=z, uk)u;c‘_1 dz = / f(z, uo)ug'l dz =0.
Q Q

This implies that klim I(ux) =0 and hence from (3.19)

0 <C = lim J(uy) = lim {I(uk) + %(J’(Uk), uk)} =0
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which is a contradiction. Hence uy # 0. From (3.20) and 4) of lemma 3.1,
taking h € C§°(Q) and letting £ — oo in (3.19), we obtain

/ |Vuo|" 2Vug - Vhdz = / f(z, uo)us*hdz.
Q Q

By density, the above equation holds for all h € WOI’"(Q). Hence, by taking
h = ug, we obtain

(3.23) lluol” = / 1@, uoyu ™ da.
Q

Hence up € 0B(L, f) and this proves the claim.
Now from (3.20) and claim 2, {ug,uo} satisfy all the hypotheses of the
compactness lemma 3.3. Hence we have

lluol[* < Lim [Jas||”
k—o0

=n}ig1_{J(uk)+/F(x,uk)dz}
k—o0

Q

k—o0

= n_h_r.n_ {I(Uk)+ %(']I(uk)y 'U:k) + / F((E,’U,k) dz}
Q

= lim {/ f(=z, uk)'u,’,:_l dz + (J'(ug), uk)}

k—o0
Q
=/f(z,u0)u3"1dz = ||uo||™.
Q

This implies that u, converges to ug strongly. This proves the Palais-Smale
condition.

2) Existence of Positive Solution. Since the critical points of J are the solutions
of the equation (1.7) and J(u) = J(|u|) for all » in B(, f) and hence in view
of lemma 3.5, it is enough to prove that there exists uy Z O such that

(3.24) LTS ()
Let u; € dB(L, f) such that

lim Juy) = X0
k—o0 n
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Since J(ug) = I(u), and hence by 5) of lemma 3.1

(3.25) sup/ f(:::,uk)u;c‘_l dz < oo,
k
Q

(3.26) sup ||uk|| < oo.
k

Hence we can extract a subsequence such that
ux — ug weakly and for almost all z in Q.

CLAIM 3. ug £ 0 and

(3.28) ||u0||"§/f(m,uo)u3"ldz.
Q

Suppose ug = 0, then from (3.25) and 4) of lemma 3.1

Jim [jug||* = n lim {J(uk)+ / F(z, 'u,k)dz}
Q

= a(Qa f)n

(3.29)

n—1
From lemma 3.4, we have 0 < a(Q, )" < (%ﬂ) . Hence, from (3.29)
and 3) of lemma 3.1, we have

lim / f(@,upul ' dz = 0.
Q

This implies that
Q n
0< @, N" _ im J(ug) = lim I(ug) =0,

which is a contradiction. This proves uo # 0. Suppose (3.28) is false, then

(3.30) ||uo||">/f(m,u0)u3’1da:.
Q

n—1
Now from (3.25), (3.30) and 0 < a(@, /)" < (%), {us,uo} satisfy
all the hypotheses of lemma 3.3. Hence

klim f(a:,uk)u;c'_lda:=/f(z,uo)u{)‘”dz.
Q Q
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This implies that

l[woll® < Him [lug[|” = lim | f(z,ur)up~ ' dz
k—o0 —00

Q

=/f(z, uo)ug_ldm

Q.

contradicting (3.30). This proves the claim.
Now from (3.28) and step 2 of lemma 3.4, there exists 0 < v < 1 such
that yug € dB(L, f). Hence

LI < 1) = Iy

< I(up) < lim I(ug)

k—o0

- im S = 22D

k—o0

This implies that v =1 and up € B(L, f). Hence J(up) = Q(%?L—m and
this proves the Theorem.

4. Concluding Remarks

REMARK 4.1. (Regularity). From Di-Benedetto [6], Tolksdorf [12] and
Gilbaig—Trudinger [8], any solution of (1.7) is in CY*(Q) if n > 3 and in
C**[Q) if n=2.

REMARK 4.2. Let f € A(Q) and f'(z,0) < A\;(Q) for all z € Q. We prove
the existence of a solution for (1.7) under the assumption that

4.1 lim inf Az, t)t" ! = co.

t—o0 zeQ

n—1
The only place where it is used is to show that a(Q, f)* < ( %ﬂ) . But,
from lemma 3.2, this inequality holds if

4.2) % <1

Hence the theorem is true under the less restrictive condition (4.2).
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Now the question is what happens if ko > 1 or the condition (4.1) is not
satisfied. In this regard, we have (jointly with Srikanth - Yadava) obtained a
partial result, which states that there are functions f € A(QQ) such that

lim inf h(z, t)t" ' =0
1200 1)

for which no solution to problem (1.7) exists if Q is a ball of sufficiently small
radius. In this context, we raise the following question:

Open Problem. Let Q be a ball and f € A(Q) such that sup fl(z,0) < A ().

zeQ
Is (4.2) also a necessary condition to obtain a solution to the problem (1.7).
In the case n = 2, this question is related to the question of Brézis [3]:
“where is the border line between the existence and non-existence of a solution
of (1.7)?".

REMARK 4.3. Let 8 > 0, then by using the norm

1/n
(/|Vu]"dm+ﬂ /|u|"dz)
Q Q

in WOI’"(Q), the Theorem still holds if we replace —A,u by —A,u+ Blu|*2u in
the equations (1.7).

Due to this and using a result of Cherrier [5], it is possible to extend the
Theorem to compact Riemann surfaces.

ACKNOWLEDGEMENT. I would like to thank Dr. Srikanth and Dr. Borkar
for having many helpful discussions during the preparation of this paper.

5. - Appendix

PROOF OF THE LEMMA 3.1.

1) Let f(z,t) = h(z, t) exp (b|t|"/™V) € A(Q). From (Hy), for every € > 0, there
exists a C(e) > 0 such that

|f(z,t)] < C(e)exp ((b + e)|t|"/("—1))

and hence, from theorem 2.1, f(z,u) € LP(Q) for every p < oco.

2) From (H,), for every € > 0, there exist positive constants C;(e) and Cs(e)
such that

5.1 |/ (z, )t""!| < Ci(e) exp (b(l + 6)|t|n/(n-—1))



410 ADIMURTHI
(5.2) |f(@, 1| > Cae)exp (b(l - e)ltl"/("_l)) for [t > 1.

Hence, if ¢ > 0 such that

sup /f(m,cw)w""dz < 00,
Q

lwll<?
it implies that, for every ¢ > 0,

sup /exp (b(l - e)c“/("‘1)|w|"/("‘1)) dz < co.

lwlist 2
Therefore, from Theorem 2.1, we have
n—1
—_ e lan < ﬂ
(1—emlen < ( . ) .
This implies that

n—1
sup | ¢"; sup /f(a:,cw)w"_ldz<oo < (ﬁ) .
fulis1 b

n—1
On the other hand, if ¢" < (%ﬂ) , then by choosing € > 0 such that

n—1
(1+e) e < (Qb’l> , from Theorem 2.1 and from (5.1), we have

sup | flz,(1+ e)ew)w" ! dz
loll<12

< Ci(e) sup | exp [b (a1 +e)c|w|)"/("_1)] dz < 00

wl|<1
i<t

this proves

n—1
sup {c"; sup | f(z,cw)w™ 'dz < oo} = (—CZ—") .

w||<1
i<t

—_ n—1
3) Since klim [luil™ < (9‘6&) , from 2) we can choose a p > 1 such that

= sup/ | f(z, ue)|P dz < oo.
k
Q
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Let 1,

1_
D q—land

= sup/ |vk|% dz.
k
Q

Then, for any N > 0 and by Holder’s inequality,

/ f(z, ug) Uk) of dz| < N/|f(a: ug)| lvk|dz<—N—

|uk]>N
Hence
/f(z U8 ¢ iy = / 1z u) “’°) vf dz + O(1/N).
luk|<N

By dominated convergence theorem, letting k — oo and then N — oo in
the above equation, it implies that

/f(zuk)gd _/f(xu) tds.

k—»oo
4) Let N > 0, then

f (@, |ug))|ux|* " dz <

|‘ukl>N

s |uk|)|uk|"'1 dz

1 o 1
= Ni-—r /f(:z:, Uk)uk ld.’l' =0 (N—l_?) .
Q

Hence

/ bl de= [ e Dl ds +0 (=)

[usl<N

By dominated convergence theorem, letting k — oo and N — oo in the
above equation, we obtain

e "122/].(1’ Iuk')lukln_hdz:/f(% |up|u|*" dz.
@ Q

Now from (H3),

|F(z,t)| < M(1+|f(z,t)| |t|"2*)
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for some ¢ € [0, 1). Hence, from (5.3) and the dominated convergence theorem,

klim F(z,uk)da;=/F(z, u)dz.
Q Q

5) From (H;) we have, for ¢t > 0,

—————f(a;’ t)] "> 0.

G4 2 [for e, = [f’(m, f) -

Therefore from (H;) and (5.4), f(z,t)t""! — nF(z,t) is an even positive
function and increasing for ¢ > 0. This implies that I(x) > 0 and I(u) =0 iff
u = 0. From (H3) we have

nl(u) =/ [f(:):,'l,t)u,"“l —nF(z, u)] dz
Q

> / [f@,wu™! —nMA+|f(z,w)| |[u"*)] dz

Q

>C+ % / f(z,uwpu"dz

[u|=C»

for some constants C; and C, > 0. This implies that there exists a constant
M; > 0 such that

/ f@,wu™ dz < M1+ I(w)).
Q
This proves the lemma 3.1.
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