ADIMURTHI

Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the n-laplacian

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4e série, tome 17, n° 3 (1990), p. 393-413.

<http://www.numdam.org/item?id=ASNSP_1990_4_17_3_393_0>
Existence of Positive Solutions of the Semilinear Dirichlet Problem with Critical Growth for the n-Laplacian

ADIMURTHI

1. - Introduction

Let Ω be a bounded open set in \mathbb{R}^n with smooth boundary. We are looking for a solution of the following problem:

Let $1 < p \leq n$, find $u \in W_0^{1,p}(\Omega) \setminus \{0\}$ such that

$$
\Delta_p u = f(x, u)|u|^{p-2} \quad \text{in } \Omega
$$

$$
u \geq 0,
$$

(1.1)

where $\Delta_p u = \text{div}(|\nabla u|^{p-2} \nabla u)$ is the p-Laplacian and $f : \bar{\Omega} \times \mathbb{R} \to \mathbb{R}$ is a C^1-function with $f(x, 0) = 0$, $f(x, t) \geq 0$ for $t \geq 0$ and of critical growth.

For $p = 2$ and $n > 3$, Brezis-Nirenberg [4] have studied the existence and non-existence of solution of (1.1) when f has critical growth of the form $u^{(n+2)/(n-2)} + \lambda u$. A generalization of this result, on the same lines, for the p-Laplacian with $p \leq n$ and $p^2 \leq n$, has been studied by Garcia Azorero-Peral Alonso [7]. When $p = n$, in view of the Trudinger [13] imbedding, a critical growth function $f(x, u)$ behaves like $\exp \left(b|u|^{n/(n-1)} \right)$ for some $b > 0$. In this context, when $p = n = 2$ and Ω is a ball in \mathbb{R}^2, existence of a solution of (1.1) has been studied by Adimurthi [1], Atkinson-Peletier [2]. The method used by Atkinson-Peletier is a shooting method and hence cannot be generalized to solve (1.1) in an arbitrary domain. Whereas in Adimurthi [1], (1.1) is solved via variational method which is in the spirit of Brezis-Nirenberg [4] and, based on this method, we prove the following main result in this paper.

Let $f(x, t) = h(x, t) \exp \left(b|t|^{n/(n-1)} \right)$ be a function of critical growth and $F(x, t)$ be its primitive (see definition (2.1)). For $u \in W_0^{1,n}(\Omega)$, let

$$
J(u) = \frac{1}{n} \int_{\Omega} |\nabla u|^n \, dx - \int_{\Omega} F(x, u) \, dx
$$

(1.2)

Theorem Let \(f(x, t) = h(x, t) \exp(b|t|^{n/(n-1)}) \) be a function of critical growth on \(\Omega \). Then

1) \(J : W_0^{1,n}(\Omega) \rightarrow \mathbb{R} \) satisfies the Palais-Smale Condition on the interval \((-\infty, \frac{1}{n} \left(\frac{\alpha_n}{b} \right)^{n-1}) \);

2) Let \(f'(x, t) = \frac{\partial}{\partial t} f(x, t) \) and further assume that

\[
\lim_{t \to \infty} \inf_{x \in \Omega} h(x, t)t^{n-1} = \infty,
\]

then there exists some \(u_0 \in W_0^{1,n}(\Omega) \setminus \{0\} \) such that

\[
\Delta_n u_0 = f(x, u_0)u_0^{n-2} \quad \text{in } \Omega
\]

\[
u_0 \geq 0
\]

\[
u_0 = 0 \quad \text{on } \partial \Omega.
\]

The method adopted to solve (1.7) in Brézis-Nirenberg [4] does not work because of the critical growth is of exponential type. Here we adapt the method of artificial constraint due to Nehari [11]. The main idea of the proof is as follows:

Define

\[
a(\Omega, f)^n = \inf \left\{ J(u); \quad \int_{\Omega} |\nabla u|^n \, dz = \int_{\Omega} f(x, u)u^{n-1} \, dx, \quad u \neq 0 \right\},
\]

then the minimizer of (1.8) is a solution of (1.7).

It has to be noted that \(\alpha_n \) is the best constant appearing in Moser’s [10] result about the Trudinger’s imbedding of \(W_0^{1,n}(\Omega) \). In view of this, one expects that \(J \) should satisfy the Palais-Smale Condition on \(\left(-\infty, \frac{1}{n} \left(\frac{\alpha_n}{b} \right)^{n-1}\right) \).

Therefore, in order to get a minimizer of (1.8), the question remains to show that

\[
a(\Omega, f)^n < \left(\frac{\alpha_n}{b} \right)^{n-1}
\]
and this has been achieved by showing the following relation

\begin{equation}
\sup_{a} \int_{|\nabla w|^{n} dx \leq 1} f(x, a(\Omega, f)w^{n-1} dx \leq a(\Omega, f).
\end{equation}

In the forthcoming paper (jointly with Yadava), we discuss the bifurcation and multiplicity results for (1.7) when \(n = 2 \).

\section{Preliminaries}

Let \(\Omega \) be a bounded domain with smooth boundary. In view of the Trudinger-Moser [13,10] imbedding, we have the following definition of functions of critical growth.

Definition 2.1. Let \(h : \overline{\Omega} \times \mathbb{R} \rightarrow \mathbb{R} \) be a \(C^{1} \)-function and \(b > 0 \). Let \(f(x, t) = h(x, t) \exp \left(b|t|^{n/(n-1)} \right) \). We say that \(f \) is a function of critical growth on \(\Omega \) if the following holds:

There exist constants \(M > 0, \sigma \in [0, 1) \) such that, for every \(\epsilon > 0 \), and for every \((x, t) \in \overline{\Omega} \times (0, \infty) \),

- (H1) \(f(x, 0) = 0 \), \(f(x, t) > 0 \), \(f(x, t)t^{n-1} = f(x, -t)(-t)^{n-1} \);
- (H2) \(f'(x, t) > \frac{f(x, t)}{t} \), where \(f'(x, t) = \frac{\partial f}{\partial t}(x, t) \);
- (H3) \(F(x, t) \leq M(1 + f(x, t)t^{n-2\sigma}) \), where

\[F(x, t) = \int_{0}^{t} f(x, s)s^{n-2} ds \]

is the primitive of \(f \);

- (H4) \(\limsup_{t \rightarrow \infty} \sup_{x \in \overline{\Omega}} h(x, t) \exp \left(-\epsilon t^{n/(n-1)} \right) = 0 \),

\[\liminf_{t \rightarrow \infty} h(x, t) \exp \left(\epsilon t^{n/(n-1)} \right) = \infty. \]

Let \(A(\Omega) \) denote the set of all functions of critical growth on \(\Omega \).

Examples. In view of (H1), it is enough to define \(f \) on \(\overline{\Omega} \times (0, \infty) \).

1) For \(m \geq 1, \ b > 0, \ \beta \geq 0 \) and \(0 \leq \alpha < \frac{n}{n-1} \), \(f(x, t) = t^{m} \exp(b\alpha t^{n/(n-1)}) \) is in \(A(\Omega) \).
2) \(f(x, t) = t^{2}e^{-t} \exp \left(t^{n/(n-1)} \right) \) is in \(A(\Omega) \).
3) Let \(f(x, t) = h(x, t) \exp(b\alpha t^{n/(n-1)}) \), satisfying (H1) and (H4).
Further assume that \(h'(x, t) \geq \frac{h(x,t)}{t} \) for \((x, t) \in \overline{\Omega} \times (0, \infty)\). Then \(f \) is in \(A(\Omega) \).

For
\[
\frac{f'(x,t)}{f(x,t)} = \frac{h'(x,t)}{h(x,t)} + \frac{nb}{n-1} t^{1/(n-1)} > \frac{1}{t}
\]
and hence \(f \) satisfy \((H_2)\).

Let \(\epsilon > 0 \), and \(\sigma = \frac{1}{n-1} \)

\[
F(x,t) - F(x,\epsilon) = \frac{n-1}{nb} \int_{\epsilon}^{t} h(x,s)s^{n-1-\sigma} \frac{d}{ds} \exp \left(bs^{n/(n-1)} \right) ds
\]

\[
\leq \frac{n-1}{nb} \left[f(x,t)t^{n-2-\sigma} - f(x,\epsilon)t^{n-2-\sigma} \right].
\]

This implies that there exists a constant \(M > 0 \) such that \(F(x, t) \leq M[1 + f(x,t)t^{n-2-\sigma}] \) for \((x, t) \in \overline{\Omega} \times (0, \infty)\). This shows that \(f \) satisfy \((H_3)\) and hence \(f \in A(\Omega) \).

Let \(W_0^{1,n}(\Omega) \) be the usual Sobolev space and \(f(x,t) = h(x,t) \exp(\epsilon t^{n/(n-1)}) \) be in \(A(\Omega) \). For \(u \in W_0^{1,n}(\Omega) \), define

(2.1) \[\|u\|^n = \int_{\Omega} |\nabla u|^n \, dx\]

(2.2) \[J(u) = \frac{1}{n} \|u\|^n - \int_{\Omega} F(x,u) \, dx\]

(2.3) \[I(u) = \frac{1}{n} \int_{\Omega} f(x,u)u^{n-1} \, dx - \int_{\Omega} F(x,u) \, dx\]

(2.4) \[\partial B(\Omega, f) = \left\{ u \in W_0^{1,n}(\Omega) \setminus \{0\} ; \|u\|^n = \int_{\Omega} f(x,u)u^{n-1} \, dx \right\}\]

(2.5) \[\frac{a(\Omega, f)^n}{n} = \inf \{ J(u) ; u \in \partial B(\Omega, f) \}\]

(2.6) \[\lambda_1(\Omega) = \inf \left\{ \|u\|^n ; \int_{\Omega} |u|^n \, dx = 1 \right\}\]

\[\alpha_n = n\omega_n^{1/(n-1)} \text{, where } \omega_n = \text{Volume of } S^{n-1} \]
DEFINITION OF MOSER FUNCTIONS. Let $x_0 \in \Omega$ and $R \leq d(x_0, \partial \Omega)$, where d denotes the distance from x_0 to $\partial \Omega$. For $0 < \ell < R$, define

$$m_{\ell,R}(x,x_0) = \begin{cases} (\log \frac{R}{\ell})^{1-\frac{1}{n}} & \text{if } 0 \leq |x - x_0| \leq \ell \\ \frac{\log \frac{R}{\ell}}{(\log \frac{R}{\ell})^{\frac{1}{n}}} & \text{if } \ell \leq r = |x - x_0| \leq R \\ 0 & \text{if } |x - x_0| \geq R. \end{cases}$$

Then it is easy to see that $m_{\ell,R} \in W^{1,n}_0(\Omega)$ and $\|m_{\ell,R}\| = 1$.

For the proof of our theorem, we need the following two results whose proof is found in Moser [10] and P.L. Lions [9] respectively.

THEOREM 2.1 (Moser). 1) Let $u \in W^{1,n}_0(\Omega)$, and $p < \infty$, then $\exp \left(|u|^{n/(n-1)} \right) \in L^p(\Omega)$.

2) $\left(\frac{\alpha_n}{\beta} \right)^{n-1} = \max \left\{ e^n; \sup_{\|w\| \leq 1} \int \exp \left(b \frac{\|w\|}{n} \right) \right\}$.

THEOREM 2.2 (P.L. Lions). Let $\{u_k; \|u_k\| = 1 \}$ be a sequence in $W^{1,n}_0(\Omega)$ converging weakly to a non-zero function u. Then, for every $p < (1 - \|u\|^{n-1})^{1/(n-1)}$,

$$\sup_k \int_{\Omega} \exp \left(\frac{p\alpha_n}{\beta} |u_k|^{n/(n-1)} \right) \, dx < \infty.$$

3. Proof of the Theorem

We need a few lemmas to prove the theorem. The proof of the following lemma is given in the appendix.

LEMMA 3.1. Let $f \in A(\Omega)$. Then we have

1) If $u \in W^{1,n}_0(\Omega)$, then $f(x,u) \in L^p(\Omega)$ for all $p \geq 0$.

2) $\left(\frac{\alpha_n}{\beta} \right)^{n-1} = \sup \left\{ e^n; \sup_{\|w\| \leq 1} \int f(x, cw) w^{n-1} \, dx < \infty \right\}$.

3) Let $\{u_k\}$ and $\{v_k\}$ be bounded sequences in $W^{1,n}_0(\Omega)$ converging weakly and for almost every x in Ω to u and v respectively. Further assume that

$$\bar{\lim}_{k \to \infty} \|u_k\|^n < \left(\frac{\alpha_n}{\beta} \right)^{n-1}.$$

Then, for every integer $\ell \geq 0$,

$$\lim_{k \to \infty} \int_{\Omega} \frac{f(x,u_k)}{u_k} v_k' \, dx = \int_{\Omega} \frac{f(x,u)}{u} v' \, dx.$$
4) Let \(\{u_k\} \) be a sequence in \(W^{1,n}_0(\Omega) \) converging weakly and for almost every \(x \) in \(\Omega \) to \(u \), such that

\[
\sup_k \int_{\Omega} f(x, u_k) u_k^{n-1} \, dx < \infty.
\]

Then, for any \(0 \leq \tau < 1 \),

\[
\lim_{k \to \infty} \int_{\Omega} f(x, |u_k|) |u_k|^{n-2+\tau} \, dx = \int_{\Omega} f(x, |u|) |u|^{n-2+\tau} \, dx
\]

and

\[
\lim_{k \to \infty} \int_{\Omega} F(x, u_k) \, dx = \int_{\Omega} F(x, u) \, dx.
\]

5) \(I(u) \geq 0 \) for all \(u \) and \(I(u) = 0 \) iff \(u \equiv 0 \). Further, there exists a constant \(M_1 > 0 \) such that, for all \(u \in W^{1,n}_0(\Omega) \),

\[
\int_{\Omega} f(x, u) u^{n-1} \, dx \leq M_1(1 + I(u)).
\]

Lemma 3.2. Let \(f = h\exp(\beta|t|^{n/(n-1)}) \in A(\Omega) \) and define

\[
h_0(t) = \inf_{x \in \Omega} h(x, t), \quad M_0 = \sup_{t \geq 0} h_0(t) t^{n-1}, \quad R_0 = \sup_{x \in \partial \Omega} d(x, \partial \Omega),
\]

and

\[
k_0 = \begin{cases}
\left(\frac{\alpha a}{\beta} \right)^{n/(n-1)} M_0^{-1/(n-1)} & \text{if } M_0 < \infty \\
0 & \text{if } M_0 = \infty.
\end{cases}
\]

Let \(a \geq 0 \) be such that

\[
\sup_{||w|| \leq 1} \int_{\Omega} f(x, aw) w^{n-1} \, dx \leq a.
\]

If \(k_0 \beta \leq 1 \), then \(a^n < \left(\frac{\alpha a}{\beta} \right)^{n-1} \).

Proof. From 2) of lemma 3.1, we have \(a^n \leq \left(\frac{\alpha a}{\beta} \right)^{n-1} \). Suppose \(a^n = \left(\frac{\alpha a}{\beta} \right)^{n-1} \). Let \(x_0 \in \Omega \) such that \(d(x_0, \partial \Omega) = R_0 \) and \(0 \leq t < R_0 \). Let

\[
m_t(x) = m_{t, R_0}(x, x_0).
\]
be the Moser functions and
\[t = a \omega_{n-1/n} \left(\log \frac{R_0}{\ell} \right)^{(n-1)/n}, \]
then from (3.1) we have
\[a \geq \int_{\Omega} f(x, am_\ell) m_\ell^{n-1} \, dx \]
\[\geq \int_{B(x_0, \ell)} h_0(am_\ell)m_\ell^{n-1} \exp \left(ba^{n/(n-1)}m_\ell^{n/(n-1)} \right) \, dx \]
\[= \frac{h_0(t)t^{n-1}\omega_n R_0^n}{na^{n-1}}. \]
This implies that
\[\left(\frac{\alpha_n}{b} \right)^{n-1} = a^n \geq \frac{h_0(t)t^{n-1}\omega_n R_0^n}{n}. \]
That is, for all \(t \in (0, \infty) \),
\[b \leq \left(\frac{n}{R_0} \right)^{n/(n-1)} \left(h_0(t)t^{n-1} \right)^{-1/(n-1)} \]
and hence
\[b \leq \left(\frac{n}{R_0} \right)^{n/(n-1)} \inf_{t \geq 0} \left(h_0(t)t^{n-1} \right)^{-1/(n-1)} \leq k_0 \]
which contradicts the hypothesis \(b > k_0 \). Hence \(a^n < \left(\frac{\alpha_n}{b} \right)^{n-1} \) and this proves the lemma.

LEMMA 3.3. (Compactness Lemma). Let \(f \) be in \(A(\Omega) \) and \(\{u_k\} \) be a sequence in \(W_0^{1,n}(\Omega) \) converging weakly and for almost every \(x \in \Omega \) to a non-zero function \(u \). Further, assume that

(i) There exists \(C \in \left(0, \frac{1}{n} \left(\frac{\alpha_n}{b} \right)^{n-1} \right) \) such that \(\lim_{k \to \infty} J(u_k) = C; \)

(ii) \(\|u\|^n \geq \int \Omega f(x, u)u^{n-1} \, dx; \)

(iii) \(\sup_k \int \Omega f(x, u_k)u_k^{n-1} \, dx < \infty; \)

then
\[\lim_{k \to \infty} \int \Omega f(x, u_k)u_k^{n-1} \, dx = \int \Omega f(x, u)u^{n-1} \, dx. \]
PROOF. From 5) of lemma 3.1, \(I(u) > 0 \). Therefore, from (ii) we have
\[
J(u) \geq I(u) > 0 \quad \text{and} \quad J(u) \leq \lim_{k \to \infty} J(u_k) = C.
\]
Hence we can choose an \(\epsilon > 0 \) such that
\[
(C - J(u)) (1 + \epsilon)^{n-1} < \frac{1}{n} \left(\frac{\alpha_n}{b} \right)^{n-1}.
\]

Let \(\beta = \int_{\Omega} F(x, u) \, dx \). Then, from (iii) and 4) of lemma 3.1, we have
\[
\lim_{k \to \infty} \|u_k\|^n = n \lim_{k \to \infty} \left\{ J(u_k) + \int_{\Omega} F(x, u_k) \, dx \right\}
= n(C + \beta).
\]

From (3.2) and (3.3) we can choose a \(k_0 > 0 \) such that, for all \(k \geq k_0 \),
\[
(1 + \epsilon)^{n-1} \left(\frac{b}{\alpha_n} \right)^{n-1} \|u_k\|^n < \frac{C + \beta}{C - J(u)} = \left(1 - \frac{\|u\|^n}{n(C + \beta)} \right)^{-1}.
\]

Now choose \(p \) such that
\[
(1 + \epsilon)^{n-1} \left(\frac{b}{\alpha_n} \right)^{n-1} \|u_k\|^n \leq p^{n-1} < \frac{C + \beta}{C - J(u)}.
\]

Applying theorem 2.2 to the sequence \(\frac{u_k}{\|u_k\|} \) and using (3.3) and (3.5), we have
\[
\sup_k \int_{\Omega} \exp \left[p\alpha_n \left(\frac{u_k}{\|u_k\|} \right)^{n/(n-1)} \right] \, dx < \infty.
\]

From (3.5) and (3.6), we have
\[
\sup_k \int_{\Omega} \exp \left[(1 + \epsilon)^{n-1} b|u_k|^{n/(n-1)} \right] \, dx
\leq \sup_k \int_{\Omega} \exp \left[p\alpha_n \left(\frac{u_k}{\|u_k\|} \right)^{n/(n-1)} \right] \, dx < \infty.
\]

Let
\[
M_1 = \sup_{(x,t) \in \overline{\Omega} \times \mathbb{R}} |h(x,t)t^{n-1}| \exp \left(-\epsilon^2 |t|^{n/(n-1)} \right).
\]
and $N > 0$. Then from (3.7) we have

\[
\int \frac{f(x, u_k)u_k^{n-1}}{|u_k| \geq N} \, dx = \int \frac{h(x, u_k)u_k^{n-1}}{|u_k| \geq N} \exp \left(b|u_k|^n/(n-1) \right) \, dx
\]

\[
\leq M_1 \int \exp \left(-\frac{b}{2}|u_k|^n/(n-1) \right) \exp \left[(1 + \epsilon)b|u_k|^n/(n-1) \right] \, dx
\]

\[
= O \left(\exp \left(-\frac{b}{2}N^n/(n-1) \right) \right).
\]

Hence

\[
\int \frac{f(x, u_k)u_k^{n-1}}{|u_k| \leq N} \, dx = \int f(x, u_k)u_k^{n-1} \, dx + O \left(\exp \left(-\frac{b}{2}N^n/(n-1) \right) \right).
\]

Now letting $k \to \infty$, and $N \to \infty$ in the above equation, we obtain

\[
\lim_{k \to \infty} \int \frac{f(x, u_k)u_k^{n-1}}{|u_k| \leq N} \, dx = \int f(x, u)u^{n-1} \, dx.
\]

This proves the lemma.

LEMMA 3.4. Let $f \in A(\Omega)$ and assume that

(i) $\lim_{t \to \infty} h_0(t)t^{n-1} = \infty$,

where $h_0(t) = \inf \{ h(x, t) : x \in \Omega \}$;

(ii) $\sup_{x \in \partial \Omega} f'(x, 0) < \lambda_1(\Omega)$;

then

\[
0 < a(\Omega, f) = \left(\frac{\alpha_n}{b} \right)^{n-1}.
\]

PROOF. The lemma is proved in several steps.

STEP 1. $a(\Omega, f) > 0$.

Suppose $a(\Omega, f) = 0$. Then there exists a sequence $\{u_k\}$ in $\partial B(\Omega, f)$ such that $J(u_k) \to 0$ as $k \to \infty$. Since $J(u_k) = I(u_k)$, hence from (5) of lemma 3.1

\[
\sup_k \int_{\Omega} f(x, u_k)u_k^{n-1} \, dx < \infty
\]

(3.9)

\[
\sup_k \|u_k\|^n < \infty.
\]

(3.10)
Then, by extracting a subsequence, we can assume that \(\{u_k\} \) converges weakly and for almost every \(x \) in \(\Omega \) to a function \(u \). Now by Fatou's lemma,

\[
0 \leq I(u) \leq \lim_{k \to \infty} I(u_k) = \lim_{k \to \infty} J(u_k) = 0.
\]

Hence \(u \equiv 0 \). From (3.9) and 4) of lemma 3.1, we have

\[
\lim_{k \to \infty} \|u_k\|^n = n \lim_{k \to \infty} \left\{ J(u_k) + \int_{\Omega} F(x, u_k) \, dx \right\} = 0.
\]

Let \(v_k = \frac{u_k}{\|u_k\|} \) and converging weakly to \(v \). Using \(u_k \in \partial B(\Omega, f) \), (3.12), 3) of lemma 3.1 and (ii), we have

\[
1 = \lim_{k \to \infty} \int_{\Omega} f(x, u_k) \frac{\psi_k}{u_k} \, dx = \int_{\Omega} f'(x, 0) u^n \, dx < \lambda_1(\Omega) \int_{\Omega} v^n \, dx \leq 1,
\]

which is a contradiction. This prove step 1.

STEP 2. For every \(u \in W^{1,n}_0(\Omega) \setminus \{0\} \), there exists a constant \(\gamma > 0 \) such that \(\gamma u \in \partial B(\Omega, f) \). Moreover, if

\[
\|u\|^n \leq \int_{\Omega} f(x, u) u^{n-1} \, dx,
\]

then \(\gamma \leq 1 \) and \(\gamma = 1 \) iff \(u \in \partial B(\Omega, f) \).

For \(\gamma > 0 \), define

\[
\psi(\gamma) = \frac{1}{\gamma} \int_{\Omega} f(x, \gamma u) u^{n-1} \, dx.
\]

Then, from 3) of lemma 3.1 and (ii), we have

\[
\lim_{\gamma \to 0} \psi(\gamma) = \int_{\Omega} f'(x, 0) u^n \, dx < \|u\|^n,
\]

\[
\lim_{\gamma \to \infty} \psi(\gamma) = \infty.
\]

Hence there exists \(\gamma > 0 \) such that \(\psi(\gamma) = \|u\|^n \); this implies that \(\gamma u \in \partial B(\Omega, f) \). From \((H_1) \) and \((H_2) \), it follows that \(f(\frac{x}{t}, u) u^{n-1} \) is an
increasing function for \(t > 0 \). Hence, if \(u \) satisfies (3.13), it follows that \(\gamma \leq 1 \) and \(\gamma = 1 \) iff \(u \in \partial B(\Omega, f) \). This proves step 2.

STEP 3. \(a(\Omega, f)^n < \left(\frac{\alpha_n}{b} \right)^{n-1} \).

Let \(w \in W_0^{1,n}(\Omega) \) such that \(\|w\| = 1 \). From step 2, we can choose a \(\gamma > 0 \) such that \(\gamma w \in \partial B(\Omega, f) \). Hence

\[
\frac{a(\Omega, f)^n}{n} \leq J(\gamma w) \leq \frac{\gamma^n}{n} \|w\|^n = \frac{\gamma^n}{n};
\]

this implies that \(a(\Omega, f) \leq \gamma \). Using again the fact that \(f(x, tw) w^{n-1} \) is an increasing function of \(t \) in \((0, \infty)\) and \(\gamma w \in \partial B(\Omega, f) \), we have

\[
\int_{\Omega} \frac{f(x, a(\Omega, f)w)}{a(\Omega, f)} w^{n-1} \, dx \leq \int_{\Omega} \frac{f(x, \gamma w)}{\gamma} w^{n-1} \, dx = 1.
\]

This implies that

\[
(3.14) \quad \sup_{\|w\| \leq 1} \int_{\Omega} f(x, a(\Omega, f)w) w^{n-1} \, dx \leq a(\Omega, f).
\]

Now from (i), (3.14) and lemma 3.2 we have \(a(\Omega, f)^n < \left(\frac{\alpha_n}{b} \right)^{n-1} \). This proves the lemma.

LEMMA 3.5. Let \(f \in A(\Omega) \) and \(u_0 \in \partial B(\Omega, f) \) such that \(J'(u_0) \neq 0 \) (\(J'(u) \) denote the derivative of \(J \) at \(u \)). Then

\[
J(u_0) > \inf \{J(u); u \in \partial B(\Omega, f)\}.
\]

PROOF. Choose \(h_0 \in W_0^{1,n}(\Omega) \) such that \((J'(u_0), h_0) = 1 \) and, for \(\alpha, t \in \mathbb{R} \), define \(\sigma_t(\alpha) = \alpha u_0 - t h_0 \). Then

\[
\lim_{\alpha \to 1} \lim_{t \to 0} \frac{d}{dt} J(\sigma_t(\alpha)) = -(J'(u_0), h_0) = -1
\]

and hence we can choose \(\epsilon > 0, \delta > 0 \) such that, for all \(\alpha \in [1 - \epsilon, 1 + \epsilon] \) and \(0 < t \leq \delta \),

\[
(3.15) \quad J(\sigma_t(\alpha)) < J(\sigma_0(\alpha)) = J(\alpha u_0).
\]

Let

\[
\rho_t(\alpha) = ||\sigma_t(\alpha)||^n - \int_{\Omega} f(x, \sigma_t(\alpha)) \sigma_t(\alpha)^{n-1} \, dx.
\]
Since \(f(x, \alpha u_0) u_0^{n-1} \) is an increasing function of \(\alpha \) and using \(u_0 \in \partial B(\Omega, f) \), by shrinking \(\epsilon \) and \(\delta \) if necessary, we have, for \(0 < t \leq \delta \), \(\rho(t(1-\epsilon)) > 0 \) and \(\rho(t(1+\epsilon)) < 0 \). Hence there exists \(\alpha_t \) such that \(\rho_t(\alpha_t) = 0 \). Therefore \(\sigma_t(\alpha_t) \) is in \(\partial B(\Omega, f) \). Hence from (3.15) we have

\[
\inf\{J(u); \ u \in \partial B(\Omega, f)\} \leq J(\sigma_t(\alpha_t)) \\
< J(\alpha_t u_0) \leq \sup_{t \in \mathbb{R}} J(tu_0) = J(u_0).
\]

This proves the lemma.

Proof of the Theorem.

1) **Palais-Smale Condition.** Let \(C \in \left(-\infty, \frac{1}{n} \left(\frac{\alpha_n}{\beta} \right)^{n-1} \right) \) and \(\{u_k\} \) be a sequence such that

\[
\lim_{k \to \infty} J(u_k) = C \\
\lim_{k \to \infty} J'(u_k) = 0.
\]
(3.16)

Let \(h \in W_0^{1,n}(\Omega) \), then we have

\[
(J'(u_k), h) = \int_{\Omega} |\nabla u_k|^{n-2} \nabla u_k \cdot \nabla h \, dx - \int_{\Omega} f(x, u_k) u_k^{n-2} h \, dx.
\]
(3.18)

Hence we have

\[
J(u_k) - \frac{1}{n} (J'(u_k), u_k) = I(u_k).
\]
(3.19)

Claim 1.

\[
\sup_k \|u_k\| + \sup_k \int_{\Omega} f(x, u_k) u_k^{n-1} \, dx < \infty.
\]
(3.20)

Since \(\{J(u_k)\} \) and \(\{J'(u_k)\} \) are bounded and hence from (3.19), \(I(u_k) = O(\|u_k\|) \). Now from 5) of lemma 3.1, we have \(\int_{\Omega} f(x, u_k) u_k^{n-1} \, dx = O(\|u_k\|) \).

Now from \((H_2)\) it follows that

\[
\int_{\Omega} F(x, u_k) \, dx = O(\|u_k\|)
\]

and, by using the boundedness of \(J(u_k) \), we obtain \(\|u_k\|^n = O(\|u_k\|) \). This implies (3.20) and hence the claim.
By extracting a subsequence, we can assume that

\[u_k \rightharpoonup u_0 \text{ weakly and for almost all } x \text{ in } \Omega. \]

CASE (I). \(C \leq 0 \).

From Fatou's lemma and 5) of lemma 3.1, we have

\[
0 \leq I(u_0) \leq \lim_{k \to \infty} I(u_k) = \lim_{k \to \infty} \left\{ J(u_k) - \frac{1}{n} \langle J'(u_k), u_k \rangle \right\} = C.
\]

Hence \(u_0 \equiv 0 \). If \(C < 0 \), no Palais-Smale sequence exists. If \(C = 0 \), then from (3.20) and 4) of lemma 3.1 we have

\[
\lim_{k \to \infty} \|u_k\|^n = n \lim_{k \to \infty} \left\{ J(u_k) + \int_{\Omega} F(x, u_k) \, dx \right\} = 0.
\]

This proves that \(u_k \to 0 \) strongly.

CASE (II). \(C \in \left(0, \frac{1}{n} \left(\frac{\alpha_n}{b} \right)^{n-1} \right) \).

CLAIM 2. \(u_0 \neq 0 \) and \(u_0 \in \partial B(\Omega, f) \).

Suppose \(u_0 \equiv 0 \). Then, from (3.20) and 4) of lemma 3.1, we have

\[
\lim_{k \to \infty} \|u_k\|^n = n \lim_{k \to \infty} \left\{ J(u_k) + \int_{\Omega} F(x, u_k) \, dx \right\} = nC < \left(\frac{\alpha_n}{b} \right)^{n-1}.
\]

Hence, from 3) of lemma 3.1 and (3.22), we have

\[
\lim_{k \to \infty} \int_{\Omega} f(x, u_k)u_k^{n-1} \, dx = \int_{\Omega} f(x, u_0)u_0^{n-1} \, dx = 0.
\]

This implies that \(\lim_{k \to \infty} I(u_k) = 0 \) and hence from (3.19)

\[
0 < C = \lim_{k \to \infty} J(u_k) = \lim_{k \to \infty} \left\{ I(u_k) + \frac{1}{n} \langle J'(u_k), u_k \rangle \right\} = 0.
\]
which is a contradiction. Hence \(u_0 \neq 0 \). From (3.20) and 4) of lemma 3.1, taking \(h \in C_0^\infty(\Omega) \) and letting \(k \to \infty \) in (3.19), we obtain

\[
\int_\Omega |\nabla u_0|^{n-2} \nabla u_0 \cdot \nabla h \, dx = \int_\Omega f(x, u_0)u_0^{n-2}h \, dx.
\]

By density, the above equation holds for all \(h \in W_0^{1,n}(\Omega) \). Hence, by taking \(h = u_0 \), we obtain

\[
\|u_0\|^n = \int_\Omega f(x, u_0)u_0^{n-1} \, dx.
\]

Hence \(u_0 \in \partial B(\Omega, f) \) and this proves the claim.

Now from (3.20) and claim 2, \(\{u_k, u_0\} \) satisfy all the hypotheses of the compactness lemma 3.3. Hence we have

\[
\|u_0\|^n \leq \lim_{k \to \infty} \|u_k\|^n
\]

\[
= n \lim_{k \to \infty} \left\{ J(u_k) + \int_\Omega F(x, u_k) \, dx \right\}
\]

\[
= n \lim_{k \to \infty} \left\{ J(u_k) + \frac{1}{n} \langle J'(u_k), u_k \rangle + \int_\Omega F(x, u_k) \, dx \right\}
\]

\[
= \lim_{k \to \infty} \left\{ \int_\Omega f(x, u_k)u_k^{n-1} \, dx + \langle J'(u_k), u_k \rangle \right\}
\]

\[
= \int_\Omega f(x, u_0)u_0^{n-1} \, dx = \|u_0\|^n.
\]

This implies that \(u_k \) converges to \(u_0 \) strongly. This proves the Palais-Smale condition.

2) Existence of Positive Solution. Since the critical points of \(J \) are the solutions of the equation (1.7) and \(J(u) = J(|u|) \) for all \(u \) in \(\partial B(\Omega, f) \) and hence in view of lemma 3.5, it is enough to prove that there exists \(u_0 \neq 0 \) such that

\[
\frac{a(\Omega, f)^n}{n} = J(u_0).
\]

Let \(u_k \in \partial B(\Omega, f) \) such that

\[
\lim_{k \to \infty} J(u_k) = \frac{a(\Omega, f)^n}{n}.
\]
Since $J(u_k) = I(u_k)$, and hence by 5) of lemma 3.1

\[(3.25) \quad \sup_k \int f(x, u_k)u_k^{n-1} \, dx < \infty, \]

\[(3.26) \quad \sup_k \|u_k\| < \infty. \]

Hence we can extract a subsequence such that

$u_k \rightharpoonup u_0$ weakly and for almost all x in Ω.

CLAIM 3. $u_0 \not= 0$ and

\[(3.28) \quad \|u_0\|^n \leq \int f(x, u_0)u_0^{n-1} \, dx. \]

Suppose $u_0 = 0$, then from (3.25) and 4) of lemma 3.1

\[(3.30) \quad \lim_{k \to \infty} \|u_k\|^n = n \lim_{k \to \infty} \left\{ J(u_k) + \int \frac{F(x, u_k)}{n} \, dx \right\} \]

\[= a(\Omega, f)^n. \]

From lemma 3.4, we have $0 < a(\Omega, f)^n < \left(\frac{\alpha_n}{b} \right)^{n-1}$. Hence, from (3.29) and 3) of lemma 3.1, we have

\[\lim_{k \to \infty} \int f(x, u_k)u_k^{n-1} \, dx = 0. \]

This implies that

\[0 < \frac{a(\Omega, f)^n}{n} = \lim_{k \to \infty} J(u_k) = \lim_{k \to \infty} I(u_k) = 0, \]

which is a contradiction. This proves $u_0 \not= 0$. Suppose (3.28) is false, then

\[(3.30) \quad \|u_0\|^n > \int f(x, u_0)u_0^{n-1} \, dx. \]

Now from (3.25), (3.30) and $0 < a(\Omega, f)^n < \left(\frac{\alpha_n}{b} \right)^{n-1}$, \{u_k, u_0\} satisfy all the hypotheses of lemma 3.3. Hence

\[\lim_{k \to \infty} \int f(x, u_k)u_k^{n-1} \, dx = \int f(x, u_0)u_0^{n-1} \, dx. \]
This implies that

$$||u_0||^n \leq \lim_{k \to \infty} ||u_k||^n = \lim_{k \to \infty} \int_{\Omega} f(x, u_k)u_k^{n-1} \, dx$$

$$= \int_{\Omega} f(x, u_0)u_0^{n-1} \, dx,$$

contradicting (3.30). This proves the claim.

Now from (3.28) and step 2 of lemma 3.4, there exists $0 < q \leq 1$ such that $\gamma u_0 \in \partial B(\Omega, f)$. Hence

$$\frac{a(\Omega, f)^n}{n} \leq J(\gamma u_0) = I(\gamma u_0)$$

$$\leq I(u_0) \leq \lim_{k \to \infty} I(u_k)$$

$$= \lim_{k \to \infty} J(u_k) = \frac{a(\Omega, f)^n}{n}.$$

This implies that $\gamma = 1$ and $u_0 \in \partial B(\Omega, f)$. Hence $J(u_0) = \frac{a(\Omega, f)^n}{n}$ and this proves the Theorem.

4. Concluding Remarks

REMARK 4.1. (Regularity). From Di-Benedetto [6], Tolksdorf [12] and Gilbarg-Trudinger [8], any solution of (1.7) is in $C^{1,\alpha}(\Omega)$ if $n > 3$ and in $C^{2,\alpha}(\Omega)$ if $n = 2$.

REMARK 4.2. Let $f \in A(\Omega)$ and $f'(x, 0) < \lambda_1(\Omega)$ for all $x \in \overline{\Omega}$. We prove the existence of a solution for (1.7) under the assumption that

$$\lim_{t \to \infty} \inf_{x \in \overline{\Omega}} h(x, t)t^{n-1} = \infty. \tag{4.1}$$

The only place where it is used is to show that $a(\Omega, f)^n < \left(\frac{a_n}{b} \right)^{n-1}$. But, from lemma 3.2, this inequality holds if

$$\frac{k_0}{b} < 1. \tag{4.2}$$

Hence the theorem is true under the less restrictive condition (4.2).
Now the question is what happens if \(\frac{k_0}{t} \geq 1 \) or the condition (4.1) is not satisfied. In this regard, we have (jointly with Srikanth - Yadava) obtained a partial result, which states that there are functions \(f \in A(\Omega) \) such that

\[
\liminf_{t \to \infty} h(x, t)t^{n-1} = 0
\]

for which no solution to problem (1.7) exists if \(\Omega \) is a ball of sufficiently small radius. In this context, we raise the following question:

Open Problem. Let \(\Omega \) be a ball and \(f \in A(\Omega) \) such that \(\sup_{x \in \Omega} f'(x, 0) < \lambda_1(\Omega) \). Is (4.2) also a necessary condition to obtain a solution to the problem (1.7).

In the case \(n = 2 \), this question is related to the question of Brézis [3]: “where is the border line between the existence and non-existence of a solution of (1.7)?”

REMARK 4.3. Let \(\beta > 0 \), then by using the norm

\[
\left(\int_{\Omega} |\nabla u|^n \, dx + \beta \int_{\Omega} |u|^n \, dx \right)^{1/n}
\]

in \(W^{1,n}_0(\Omega) \), the Theorem still holds if we replace \(-\Delta u \) by \(-\Delta u + \beta |u|^{n-2}u \) in the equations (1.7).

Due to this and using a result of Cherrier [5], it is possible to extend the Theorem to compact Riemann surfaces.

ACKNOWLEDGEMENT. I would like to thank Dr. Srikanth and Dr. Borkar for having many helpful discussions during the preparation of this paper.

5. - Appendix

PROOF OF THE LEMMA 3.1.

1) Let \(f(x, t) = h(x, t) \exp\left(b|t|^{n/(n-1)}\right) \in A(\Omega) \). From \((H_4)\), for every \(\epsilon > 0 \), there exists a \(C(\epsilon) > 0 \) such that

\[
|f(x, t)| \leq C(\epsilon) \exp\left((b + \epsilon)|t|^{n/(n-1)}\right)
\]

and hence, from theorem 2.1, \(f(x, u) \in L^p(\Omega) \) for every \(p < \infty \).

2) From \((H_4)\), for every \(\epsilon > 0 \), there exist positive constants \(C_1(\epsilon) \) and \(C_2(\epsilon) \) such that

\[
|f(x, t)t^{n-1}| \leq C_1(\epsilon) \exp\left((b(1 + \epsilon)|t|^{n/(n-1)}\right)
\]
Hence, if \(c > 0 \) such that
\[
\sup_{\|w\| \leq 1} \int_\Omega f(x, cw) w^{n-1} \, dx < \infty,
\]
it implies that, for every \(\epsilon > 0 \),
\[
\sup_{\|w\| \leq 1} \int_\Omega \exp \left(b(1 - \epsilon)c^n/(n-1) |w|^{n/(n-1)} \right) \, dx < \infty.
\]

Therefore, from Theorem 2.1, we have
\[
(1 - \epsilon)^{n-1} c^n \leq \left(\frac{a_n}{b} \right)^{n-1}.
\]

This implies that
\[
\sup \left\{ c^n, \sup_{\|w\| \leq 1} \int_\Omega f(x, cw) w^{n-1} \, dx < \infty \right\} \leq \left(\frac{a_n}{b} \right)^{n-1}.
\]

On the other hand, if \(c^n < \left(\frac{a_n}{b} \right)^{n-1} \), then by choosing \(\epsilon > 0 \) such that
\[
(1 + \epsilon)2^{n-1} c^n < \left(\frac{a_n}{b} \right)^{n-1},
\]
from Theorem 2.1 and from (5.1), we have
\[
\sup_{\|w\| \leq 1} \int_\Omega f(x, (1 + \epsilon)cw) w^{n-1} \, dx
\leq C_1(\epsilon) \sup_{\|w\| \leq 1} \int_\Omega \exp \left[b \left((1 + \epsilon)c |w| \right)^{n/(n-1)} \right] \, dx < \infty
\]
this proves
\[
\sup \left\{ c^n, \sup_{\|w\| \leq 1} \int_\Omega f(x, cw) w^{n-1} \, dx < \infty \right\} = \left(\frac{a_n}{b} \right)^{n-1}.
\]

3) Since \(\lim_{k \to \infty} \|u_k\|^n < \left(\frac{a_n}{b} \right)^{n-1} \), from 2) we can choose a \(p > 1 \) such that
\[
c_1^p = \sup_k \int_\Omega |f(x, u_k)|^p \, dx < \infty.
\]
Let \(\frac{1}{p} + \frac{1}{q} = 1 \) and
\[
c_2^q = \sup \int_{\Omega} |v_k|^q \, dx.
\]

Then, for any \(N > 0 \) and by Holder's inequality,
\[
\left| \int_{|u_k| > N} f(x, u_k) v_k^q \, dx \right| \leq \frac{1}{N} \int_{\Omega} |f(x, u_k)| v_k^q \, dx \leq \frac{c_1 c_2}{N}.
\]

Hence
\[
\int_{\Omega} f(x, u_k) v_k^q \, dx = \int_{|u_k| \leq N} f(x, u_k) v_k^q \, dx + O(1/N).
\]

By dominated convergence theorem, letting \(k \to \infty \) and then \(N \to \infty \) in the above equation, it implies that
\[
\lim_{k \to \infty} \int_{\Omega} f(x, u_k) v_k^q \, dx = \int_{\Omega} f(x, u) v^q \, dx.
\]

4) Let \(N > 0 \), then
\[
\int_{|u| > N} f(x, |u_k|) |u_k|^{n-2+r} \, dx \leq \frac{1}{N^{1-r}} \int_{\Omega} f(x, |u_k|) |u_k|^{n-1} \, dx
\]
\[
= \frac{1}{N^{1-r}} \int_{\Omega} f(x, u_k) u_k^{n-1} \, dx = O \left(\frac{1}{N^{1-r}} \right).
\]

Hence
\[
\int_{\Omega} f(x, |u_k|) |u_k|^{n-2+r} \, dx = \int_{|u_k| \leq N} f(x, |u_k|) |u_k|^{n-2+r} \, dx + O \left(\frac{1}{N^{1-r}} \right).
\]

By dominated convergence theorem, letting \(k \to \infty \) and \(N \to \infty \) in the above equation, we obtain
\[
(5.3) \quad \lim_{k \to \infty} \int_{\Omega} f(x, |u_k|) |u_k|^{n-2+r} \, dx = \int_{\Omega} f(x, |u|) |u|^{n-2+r} \, dx.
\]

Now from \((H_3)\),
\[
|F(x, t)| \leq M (1 + |f(x, t)| |t|^{n-2+r})
\]
for some \(u \in [0, 1) \). Hence, from (5.3) and the dominated convergence theorem,
\[
\lim_{k \to \infty} \int_{\Omega} F(x, u_k) \, dx = \int_{\Omega} F(x, u) \, dx.
\]

5) From (H2) we have, for \(t > 0 \),
\[
(5.4) \quad \frac{\partial}{\partial t} \left[f(x, t)t^{n-1} - nF(x, t) \right] = \left[f'(x, t) - \frac{f(x, t)}{t} \right] t^{n-1} > 0.
\]
Therefore from (H1) and (5.4), \(f(x, t)t^{n-1} - nF(x, t) \) is an even positive function and increasing for \(t > 0 \). This implies that \(I(u) \geq 0 \) and \(I(u) = 0 \) iff \(u \equiv 0 \). From (H3) we have
\[
nI(u) = \int_{\Omega} \left[f(x, u)u^{n-1} - nF(x, u) \right] \, dx
\]
\[
\geq \int_{\Omega} \left[f(x, u)u^{n-1} - nM(1 + |f(x, u)| |u|^{n-2+}) \right] \, dx
\]
\[
\geq C_1 + \frac{1}{2} \int_{|u| \geq C_2} f(x, u)u^{n-1} \, dx
\]
for some constants \(C_1 \) and \(C_2 > 0 \). This implies that there exists a constant \(M_1 > 0 \) such that
\[
\int_{\Omega} f(x, u)u^{n-1} \, dx \leq M(1 + I(u)).
\]
This proves the lemma 3.1.

REFERENCES

T.I.F.R. Centre
Post Box No. 1234
Bangalore 560 012
India