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Existence of Positive Solutions of the Semilinear Dirichlet

Problem with Critical Growth for the n-Laplacian

ADIMURTHI

1. - Introduction

Let Q be a bounded open set in with smooth boundary. We are looking
for a solution of the following problem:

Let 1  p  n, find u C such that

where Opu = is the p-Laplacian and 
C 1-function with = 0, &#x3E; 0 for t &#x3E; 0 and of critical growth.

For p = 2 and n &#x3E; 3, Brezis-Nirenberg [4] have studied the existence
and non-existence of solution of (1.1) when f has critical growth of the form
u(n+2)/(n-2) + Au. A generalization of this result, on the same lines, for the p-
Laplacian with p  n and p~  n, has been studied by Garcia Azorero-Peral
Alonso [7]. When p = n, in view of the Trudinger [13] imbedding, a critical
growth function f (x, u) behaves like for some b &#x3E; 0. In this

context, when p = n = 2 and Q is a ball in R~, existence of a solution of ( 1.1 )
has been studied by Adimurthi [ 1 ], Atkinson-Peletier [2]. The method used
by Atkinson-Peletier is a shooting method and hence cannot be generalized to
solve ( 1.1 ) in an arbitrary domain. Whereas in Adimurthi [ 1 ], ( 1.1 ) is solved
via variational method which is in the spirit of Brezis-Nirenberg [4] and, based
on this method, we prove the following main result in this paper.

Let f (x, t) - h(x, t) exp (bltln/(n-1) be a function of critical growth and
F(x, t) be its primitive (see definition (2.1)). For u E I let

Pervenuto alla Redazione il 22 Ottobre 1988 e in forma definitiva l’ 11 Agosto 1989.
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THEOREM Let f (x, t) - h(x, be a function of critical
growth on Q. Then

1) J : II~ satisfies the Palais-Smale Condition on the interval

2) Let f’(x, t) = it f (x, t) and further assume that

then there exists some uo E Wp’n(S2)~~0} such that

The method adopted to solve (1.7) in Brezis-Nirenberg [4] does not work
because of the critical growth is of exponential type. Here we adapt the method
of artificial constraint due to Nehari [11]. The main idea of the proof is as

follows:

Define

then the minimizer of (1.8) is a solution of (1.7).
It has to be noted that an is the best constant appearing in Moser’s [10]

result about the Trudinger’s imbedding of In view of this, one expects
n-1

that J should satisfy the Palais-Smale Condition on (-00, ’

Therefore, in order to get a minimizer of (1.8), the ques on ( remains to showTherefore, in order to get a minimizer of (1.8), the question remains to show
that
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and this has been achieved by showing the following relation

In the forthcoming paper (jointly with Yadava), we discuss the bifurcation
and multiplicity results for (1.7) when n = 2.

2. - Preliminaries

Let Q be a bounded domain with smooth boundary. In view of the

Trudinger-Moser [13,10] imbedding, we have the following definition of
functions of critical growth.

DEFINITION 2.1. Let h : Q x R -+ R be a C 1-function and b &#x3E; 0. Let
= h(x, t) exp We say that f is a function of critical growth

on Q if the following holds:
There exist constants M &#x3E; 0, a E [0, 1) such that, for every c &#x3E; 0, and for

every (x, t) x (0, oo),

is the primitive of f ;
(H4) lim sup t) exp = 0,

Let denote the set of all functions of critical growth on S2.

EXAMPLES. In view of (Hl ), it is enough to define f on SZ x (0, cxJ).
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Further assume that

For

and hence f satisfy (H2).
1

This implies that there exists a constant M &#x3E; 0 such that F(x, t) 
M [ 1 + f (x, ]for (x, t) E K2 x (0, cxJ). This shows that f satisfy (H3) and
hence f E 

Let Wo’n (s2) be the usual Sobolev space and = h(x, t) exp 
be in For u E define
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DEFINITION OF MOSER FUNCTIONS. Let xo C K2 and R  d(xo, where

d denotes the distance from xo to For 0  ~  R, define

Then it is easy to see that ml,R e = 1.

For the proof of our theorem, we need the following two results whose
proof is found in Moser [10] and P.L. Lions [9] respectively.

THEOREM 2.1 (Moser). 1) Let u e and p  00, then

I 
THEOREM 2.2 (P.L. Lions). Let IIUkll = 1} be a sequence in

converging weakly to a non-zero function u. Then, for every p 

3. - Proof of the Theorem

We need a few lemmas to prove the theorem. The proof of the following
lemma is given in the appendix.

LEMMA 3.1. Let f e A(Q). Then we have

1) If u e then u) e for all p &#x3E; 0.

3) Let {uk } and fvkl be bounded sequences in converging weakly and
for almost every x in S2 to u and v respectively. Further assume that

Then, for every integer
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4) Let be a sequence in converging weakly and for almost every
x in S2 to u, such that

Then, for any 0  T  1,

5) I (u) &#x3E; 0 for all u and I(u) = 0 iff u - 0. Further, there exists a constant
M1 &#x3E; 0 such that, for all u E 

LEMMA 3.2. Let f = hexp (bltln/(n-1») E A(Q) and define

and

Let a &#x3E; 0 be such that

PROOF. From 2) of lemma 3.1, we have
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be the Moser functions and

then from (3.1 ) we have

This implies that

That is, for all t E (0, oo),

and hence

which contradicts the hypothesis b &#x3E; ko. Hence an (a_)n-I and this provesYp o b p

the lemma.

LEMMA 3.3. (Compactness Lemma). Let f be in A(S2) and be a

sequence in converging weakly and for almost every x in Q to a

non-zero function u. Further, assume that
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PROOF. From 5) of lemma 3.1, I(u) &#x3E; 0. Therefore, from (ii) we have
J(u) &#x3E; I(u) &#x3E; 0 and J(u)  lim J(uk) = C. Hence we can choose an E &#x3E; 0

k-~oo
such that

Let 3 = Then, from (iii) and 4) of lemma 3.1, we have
Q

From (3.2) and (3.3) we can choose a l~o &#x3E; 0 such that, for all k &#x3E; ko,

Now choose p such that

Applying theorem 2.2 to the sequence and using (3.3) and (3.5), we
have 

||Uk||
have 

||uk||

From (3.5) and (3.6), we have

Let
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and N &#x3E; 0. Then from (3.7) we have

Hence

Now oo, and N --&#x3E; oo in the above equation, we obtain

This proves the lemma.

LEMMA 3.4. Let f E A(L2) and assume that

where

then

PROOF. The lemma is proved in several steps.

STEP 1. a(Q, f) &#x3E; 0.

Suppose = 0. Then there exists a sequence in 9B(92, f ) such
that 0 as k -~ oo. Since J(uk) = I(uk), hence from 5) of lemma 3.1
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Then, by extracting a subsequence, we can assume that converges
weakly and for almost every in Q to a function u. Now by Fatou’s lemma,

Hence u - 0. From (3.9) and 4) of lemma 3.1, we have

Let vk = and converging weakly to v. Using E aB(S2, f), (3.12),

3) of lemma 3.1 and (ii), we have

which is a contradiction. This prove step 1.

STEP 2. For every u E there exists a constant, &#x3E; 0 such
that ,U E 9B(Q, f). Moreover, if

1 and -1= 1 
For -1 &#x3E; 0, define

Then, from 3) of lemma 3.1 and (ii), we have

’ 

Hence there exists -1 &#x3E; 0 such this implies that

"fU E From (Hl ) and (H2), it follows that i is an



403

increasing function for t &#x3E; 0. Hence, if u satisfies (3.13), it follows that 1 ~ 1

and 1 = 1 iff u E aB(S2, f ). This proves step 2.

an 
n-1

STEP 3. a(L2, f )n ( ) n-1 °STEP 3. a(Q, f)n 
Let w E such that llwll = 1. From step 2, we can choose a 1 &#x3E; 0

such that ~yw E 8B(Q, f ). Hence

this implies that a(Q, f)  ~y. Using again the fact that an

increasing function of t in (0, oo) and qw E f ), we have

This implies that

a 
n-1

Now from (i), (3.14) and lemma 3.2 we have a(Q, f)n  b . . This
proves the lemma.

LEMMA 3.5. Let f E A(Q) and uo E aB(S2, f ) such that J’(uo) fl 0 (J’(u)
denote the derivative of J at u). Then

PROOF. Choose ho E such that (J’(uo), ho) = 1 and, for a, t E R,
define Qt(a) = auo - tho. Then

and hence we can choose E &#x3E; 0, 6 &#x3E; 0 such that, for all a E [ 1 - E, 1 + e] and

Let
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Since 1 is an increasing function of a and using uo c

f ), by shrinking E and 6 if necessary, we have, for 0  t  6, &#x3E; 0
and +,E)  0. Hence there exists at such that pt(at) = 0. is
in c~B(~, f ). Hence from (3.15) we have

This proves the lemma.

PROOF OF THE THEOREM.

1) Palais-Smale Condition. Let

sequence such that

Let h E Wo’’~ (SZ), then we have

Hence we have

CLAIM 1.

Since and {J’(uk)} are bounded and hence from (3.19), 
Now from 5) of lemma 3.1, we have 

Q
Now from (H3) it follows that

and, by using the boundedness of J(uk), we obtain = O(lIukID. This
implies (3.20) and hence the claim.
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By extracting a subsequence, we can assume that .

(3.21) Uo weakly and for almost all x in SZ.

CASE (I). C  0.
From Fatou’s lemma and 5) of lemma 3.1, we have

Hence uo - 0. If C  0, no Palais-Smale sequence exists. If C = 0, then
from (3.20) and 4) of lemma 3.1 we have

This proves that 0 strongly.

CLAIM 2. uo fi 0 and f). ·
Suppose 0. Then, from (3.20) and 4) of lemma ~.1, we have

Hence, from 3) of lemma 3,1 and (3.22), we have

This implies that lim I(uk) = 0 and hence from (3.19)
k-00
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which is a contradiction. Hence uo 0- 0. From (3.20) and 4) of lemma 3.1,
taking h E and letting 1~ -~ oo in (3.19), we obtain

By density, the above equation holds for all h E Hence, by taking
h = uo, we obtain

Hence uo E f ) and this proves the claim.
Now from (3.20) and claim 2, {uk, uo} satisfy all the hypotheses of the

compactness lemma 3.3. Hence we have

This implies that uk converges to uo strongly. This proves the Palais-Smale
condition.

2) Existence of Positive Solution. Since the critical points of J are the solutions
of the equation (1.7) and J(u) = J(Iul) for all u in 8B(Q, f) and hence in view
of lemma 3.5, it is enough to prove that there exists 0 such that

Let uk E f ) such that
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Since J(uk) = and hence by 5) of lemma 3.1

,-~-. f ,, ~

Hence we can extract a subsequence such that

Uo weakly and for almost all x in Q.

CLAIM 3. and

Suppose uo - 0, then from (3.25) and 4) of lemma 3.1

From lemma 3.4, we have 0  a(92, f )n . Hence, from (3.29)
and 3) of lemma 3.1, we have

This implies that

which is a contradiction. This proves uo 0- 0. Suppose (3.28) is false, then

Now from (3.25), (3.30) and 0   (~r-1, , satisfy
all the hypotheses of lemma 3.3. Hence
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This implies that

contradicting (3.30). This proves the claim.
Now from (3.28) and step 2 of lemma 3.4, there exists 0  q  1 such

that quo E f ). Hence

This implies that -1 = 1 and uo E f). Hence J(uo) = q andn

this proves the Theorem.

4. Concluding Remarks I

REMARK 4.1. (Regularity). From Di-Benedetto [6], Tolksdorf [12] and

Gilbarg-Trudinger [8], any solution of (1.7) is in if n &#x3E; 3 and in
if n = 2.

REMARK 4.2. Let f E and 1’(x,O)  a 1 (SZ) for all x E Q. We prove
the existence of a solution for (1.7) under the assumption that

an 
n-i

The only place where it is used is to show that a(Q, f )’ ( ( ) n-1 But,The only place where it is used is to show that a(Q, f)n But,
from lemma 3.2, this inequality holds if

Hence the theorem is true under the less restrictive condition (4.2).
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Now the question is what happens if ~° &#x3E; 1 or the condition (4.1 ) is not
satisfied. In this regard, we have (jointly with Srikanth - Yadava) obtained a
partial result, which states that there are functions f E such that

lim inf h(x, t)tn-1 = 0
2ESz

for which no solution to problem (1.7) exists if S2 is a ball of sufficiently small
radius. In this context, we raise the following question:

Open Problem. Let Q be a ball and f E A(SZ) such that sup f’(x, 0)  À1 (Q).
~ES2

Is (4.2) also a necessary condition to obtain a solution to the problem (1.7).
In the case n = 2, this question is related to the question of Brezis [3]:

"where is the border line between the existence and non-existence of a solution
of (1.7)?".

REMARK 4.3. Let # &#x3E; 0, then by using the norm

in the Theorem still holds if we replace -Anu by -~u + ,Bluln-2u in
the equations (1.7).

Due to this and using a result of Cherrier [5], it is possible to extend the
Theorem to compact Riemann surfaces.

ACKNOWLEDGEMENT. I would like to thank Dr. Srikanth and Dr. Borkar
for having many helpful discussions during the preparation of this paper.

5. - Appendix

PROOF OF THE LEMMA 3.1.

1) Let f (x, t) = h(x, t) E A(U). From (H4), for every E &#x3E; 0, there
exists a C(E) &#x3E; 0 such that

and hence, from theorem 2.1, E LP(Q) for every p  oo.

2) From (H4), for every E &#x3E; 0, there exist positive constants Ci(e) and C2(,E)
such that



410

Hence, if c &#x3E; 0 such that

it implies that, for every E &#x3E; 0,

Therefore, from Theorem 2.1, we have

This implies that

On the other hand, if Cn  ( 1:’- ) n-1 , then by choosing E &#x3E; 0 such that

1 + t)2n-1en n-1, from Theorem 2.1 and from (5.1), we have( ) b ( )

this proves

3) S ince ’
k

from 2) we can choose a p &#x3E; 1 such that



411

and

Then, for any N &#x3E; 0 and by Holder’s inequality,

Hence

By dominated convergence theorem, letting k --&#x3E; oo and then N --+ oo in
the above equation, it implies that

4) Let N &#x3E; 0, then

Hence

By dominated convergence theorem, letting k --+ oo and N --+ oo in the
above equation, we obtain

Now from (H3),
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for some u E [0, 1). Hence, from (5.3) and the dominated convergence theorem,

5) From (H2) we have, for t &#x3E; 0,

Therefore from (Hl ) and (5.4), is an even positive
function and increasing for t &#x3E; 0. This implies that I (u) ~ 0 and I(u) = 0 iff
u =- 0. From (H3) we have

for some constants C, and C2 &#x3E; 0. This implies that there exists a constant
M1 &#x3E; 0 such that 

-

This proves the lemma 3.1.
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