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ON EXACT NUMBER OF SOLUTIONS AT INFINITY FOR
AMBROSETT I-PROD1 CLASS OF PROBLEMS
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INTRODUCTION

The following nonlinear Dirichlet problem

(*) Au + Au + fu) =g in @

ul_ =0
r

wh%re 2 is a bounded domain in Rn, with smooth boundary I', A, is the
2
first eigenvalue of the Laplacian in @ and f a real valued C - strictly

convex function satisfying:

N

limf(t)___ & >0
t+ 4+ t + +

lim f(t s -a ,a>0
t+ - t -

with

0 <Ar,-a <)‘:<)‘1+°‘+<>‘

2

has been considered by many authors beginning with Ambrosetti and Prodi
in[ 1] . See[3]) for further references. Theseauthors have characterized
the range completely in the above case.

However the following problem:

(%) Au+>‘ku+f(u)=g in @
ulr =0

with k # 1 and

A < A - < A < A < A
k-1 "k T %2 Mk k% Yk

th
where Ao is the k= eigenvalue, has not been tackled in such a great

detail as (*) and the best result known is in a paper by Gallouet and

Kavian [ 4] .

(*) TATA Institute of Fundamental Research, Borbay, India

. (**)TATA Institute of Fundamental Research, 11SC Campus, Bangalore (India)
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Earlier to this in [ 6], E. Podolak obtained some partial results. The

main aim of this note is to prove a theorem which gives the exact
number of solutions at infinity and to the best of our knowledge this

is the first result of its kind for this class of problems. Also in the
case of (*) we improve the result of Ambrosetti and Prodi, in the sense
we prove a theorem giving exact number of solutions at infinity without

convexity condition.

In this sectionwe set up the problem (**) in operator language and also
put down all the assunptions we make on the nonlinearity.
1 £
We work in the Hilbert space Ho(ﬂ), the closure of Co(ﬂ) functions in
2 2
the nom |[ull” = Q.I’Ivul .

As in Podolak [6] , we assume

(1) Qflc»kl@k £ 0

where ¢k is the normalized eigenfunction corresponding tokk, which we
assume is simple.

As regards the nonlinear map we make the following hypothesis:

f:]R‘*RisCl.

(H1) lim f(t) _
t+4® -
+ t e >0
lim f(t)
= —a
t> @t
with
< A —a< by <A
I R T
(H2) [£'(t)| < aVt
lim f'(t) = f'(») = «
(H3) t >4
« as in (H1)
lim £'(t) =f'(~*) = - @

t + —=
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we shall assume o is small enough and tflis smallness of a will be
made more precise as we proceeed.

We denote by < .,.> the inner product in the space H‘l)(ﬁ), which
we shall hereafter denote by V.

We define mappings L:V > V and N:V + V by

< = - .
(a) Lu, v> nIVu . W Akn.fu v
(2)
and
(b) <Nu, v> = nff(u)v

we set ge V by requiring

<g,v?> =~ Jfg .V

N

In the above framework solving (**) is equivalent to solving

(3) Lu-Nu = g

Let{)\i : 1 >11}) denote the eigenvalues of the Laplacian in @ .
We denote by V1 the subspace of V generated by all eigenfunctions

except ¢. . We use P1 to denote the projection of V onto Vl. We denote

k
by Vo the one dimensional space generated by o and we use Po to denote
the projection of V onto Vo'

We now specify the smallness of o in (H1) by requiring that:

(H&) o < |3 Min< IPnte ) lPon(-¢k)|) ol gl
lte_tI e il 1 )
o o

and o < % IIL—IPIH‘1

wheren : V > V is defined by

(H5) <n(), v> = aﬂf|¢|v W eV
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Remark 1: Except (H3) all the hypotheses we have are the same as in
Podolak [6 ]. However one can relax some of these to prove the results

as in Podolak [6 ] .

Remark 2: We shall assume throughout what follows that the nonlinear
map N defined above is F-differentiable. Note that if @ R (n < 4)
then we need no further assumptions on f for N to be F-differentiable.

Otherwise one can assume hypothesis as in[2].

In this Section we prove the main theorem of this paper.
Theorem 1. Under the above hypothesis, given ée V1 there exists a
t =t (g) such that

o o

(4) : Lu—Nu=t¢k+§
has exactly two solutions for t > to(t < to) depending on the sign of

ﬂf|¢k|¢k

Before we prove this, we state the following result proved in [6 ].

Theorem 2. (Podolak [ 6 1): If f is as above, there exists a real number
t, =t (g~) such that for t < t,(t >t ), (4) has no solution and if

t >t (t< t, ), (L) has at least two solutions depending on the sign of
n!|¢k|¢k

We now briefly recall the:sketch of the proof of the above theorem.

It is now more or less classical that to solve (4) one solves

Lv - P N(v + pok) =g (a)

(5)
- PON(v + p¢k) =ty (b)

It is easy to show (5a) is uniquely solvable for each fixed p, for

a given g. Once this is done, defining
(6) H(p) = PON(¢(p) + p¢k)

one analyzes the behaviour of H(p) to prove Theorem like 2 (see [2],[4],

[6]). 1t is easy to see under the hypothesis we have,that, given §eV1




and any sequence (p )+ +« then (¢ (Pn) ) has a convergent subsequence
Py S n‘r'

The same is true if (Pn) + — . Moreover every convergent subsequence of
(4(.€)/Ipl) as |pl+ = converges to §(+) independent of § and §(2) is

the unique solution of (uniqueness due to hypothesis (H4)),
(7) Lé(t) ~ P.n(%e + $(+)) =0

Once we have this information, one can show that H(p) +» as |p|+=. In

fact under our hypothesis it can be shown that

l’[%’]l > P (e, +§(2)) > 0.

We now proceed to prove the Theorem 1. Before proving the Theorem
we state and prove the following:
Proposition 1: Let ¢>eH'<1)($2) satisfy

Lé-Pnl(é+¢)=0
1 k
(8)
-Pnl(e+e)=Co ,C+0

Let E = [xeq: (¢+¢k)(x) = 0} . Then measure of E = |E| = 0,

Proof: (8) is the same as
~A =
(9) (040, ) = x Covo ) +al oo, [ +Coo,

with C1 #£ 0. Clearly we have adequate regularity. Now we use the fol-
1
lowing result proved in [5, page 53 ] which states: Let ueH S(a).
Then du/ =0a.e. in  ={xef:u=0},1<1i <N,
3% . o = -

A repeated use of the above result in our case shows that a{ ¢ +ok)
vanishes a.e. on E. Hence E€{ xe¢ @ :¢k(x) =01} follows from (9).
But it is classical that { xeq : ¢k(x) =0}is a set of measure zero.

Hence the proposition.

Proof of Theorem 1: we will show that

H'(p) = PON'(¢(p) +p¢k) (¢'(p) + ¢k)

tends to iPon($(i)t¢k) as p+to ., It is clear that the theorem follows

from this. Here §(*) is the same as in (7).
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We first claim
lim 1;—})-) = w. lim¢'{p)
p+ @ P-> 3
To show this consider

N(s(p) + p¢k) =g

Lé(p) - P1

Taking derivative wrt.p, we have

Le¢' (p) - PlN'(¢(p) + p¢k) (¢'(p) + ¢k) =0

(11) L¢' (p) —PlN'(o(p) +p¢k) o' (p) = PlN'(¢(p) +po k)‘°k

Using the hypotheses (H2) and (H4)it follows that (¢'(p)) is bounded
independentt of p. Let a subsequence ¢'(pn)-> w , weakly as P+ . Notice

(1.1) is the same as

(12) <L ¢'(pn), v > = nff’(¢»(prz) + P, ¢k) (¢'(pn) + ¢k)v,

py) -
for all ve V., Since we already have $Pn ¢(+), it is easy to see,

1

taking limit as n + = , that n
(13) < Lo, v> = af Sgn(¢k +6(+)) (w+ ¢k)v
where
1 if(¢k+$(+))>0
Sgn( o, + §(+) =
-1 if(¢k+$(+))<0

Notice that by proposition 1 the set E = { xeQ : (§(+)+ ¢k)(x) = O} has
measure zero. Also notice that in claiming (12) ® (13) as n + « , we
have used the hypothesis (H3), the dominates convergence theorem and
the fact that if (xn) is a sequence of rela numbers such that every
subsequence has a convergent subsequence converging the same limit,
then (xn) itself converges to the same limit. Also we have used that if
vorv strongly in LZ(Q) then there exists a subsequence vnk, such that

v (x) +v{x) a.e. notice that (13) inplies
k




(14) Lo - aPmn (6 +8() (w +9,) =0,

vhere n.l(¢ x +6(+)) is defined through

< n, (¢k +§ (v, v, > = n,;'Sgn(¢k +3 () v,
Our hypothesis (H4)®=(14) has a unique solution. But then
(15) L&(+) - aPyn, & (+) + ¢k) ¢ (+) + Ok) =0
by (7) because (15) is the same as

LB, v > —afsgn (8 + B()) (§(4) + 0 v -

= <L (+),v > anf|$(+) +¢k|v VveV
=0 by (7).
Hence w = §(+) i.e.
s. 1im 2B F - w. lim ¢' (p)
p-)m P p-ym
Now consider
(16) H'(p) = Q.rf'(p¢k+4,(p))(¢»k+ ¢'(p))¢>k

For similar reasons as (12) = (13),we have

(17} lim H' (p) - unf|¢k+$(+)|¢k
P+

But RHS in (17) we know is positive if QJ’I«ka ¢, is positive. Similarly
one can show,

lim H'(p) = - Pon(—-¢k +6(=)) <0

P+ =
hence we have shown that H(p) is strictly increasing for p>po(pO > 0)
and that H(p) is strictly decreasing for p <- P This then proves

the Theorem.

Remark 3: To obtain a result like Theorem (2) quoted above one does
not need to assume as strong an hypothesis as in[ 6] It is sufficient
to assume f' is such that,

k

A
—(X -1) h? ¢« < f'(t)h, h>< k,h®> Vh £ 0,
k-1
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where k, is such that 8 = (1 - -k,) > O. However the proof in

A k-1
this case needs to be modified.

In the light of Theorem 1 proved above it is natural to ask if one

can improve the theorem in the special case when* =1X,. In this case

k
we prove Theorem J below. Before we state and prove the theorem we make

the following assumptions.

f: R + isC?

(H'1) lim f'(t) = a ,a> O
t +
lim f'(t) = -8B, 8 >0,
t + e

(H'2). PEr(ed] <a, - A, ¥t

(H'3) O <, =B < <X+ 0 <2,

Theorem 3: Under the assumptions (H'1) - (H'3), there exists a real
number t, = to(g) such that, letting Pog be the L2 projection of g an

Ker(s + i, /), the equation (*) has exactly two solutions if Pog >t .

Proof : Notice that if we proceed along the same lines and with similar
notations as in the proof of Theorem 1, then we have only to prove (i)
(3'(p)) exists and is bounded (compare with equation (11)), (ii) Equation
corrsponding to (7) has a unique solution and (iii) Equation corresponding
to (14) has a unique solution.

It is easy to see that (¢'(p)) exists and is bounded and hence we
shall not give details. Also notice that the boundedness of (¢'(p) inplies

the boundedness of _j(_P_) . it is essentially in proving this step that

one uses (H'2). Il

The equation corresponding to (7) in this case is:

(18) QI vé(£)ve —xlﬂf$(t)e - anf(a(t)t¢l)+e —BQJ’(5(1)¢¢‘)—O=O

Voe(o,)"
Observe that (18) is the same as

(19) aF(2) =P [, +a) (3@)xe )T - G, -8) (G(Hte )]
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But then it is an easy consequence of contraction principle to see that
# () is unique. Hence we have now got over two of the three difficulties
we had.

We now consider the equation corresponding to (14) and prove it has
a unique solution. Observe that the equation corresponding to (14) in
this case is:

S(w+é, )0

2

(20) < Lw,6>=a9{(w +¢,)@ —BQ

vhere £, ={xef: (§(+) +¢,) (x) >Oland @, ={xe@: (§(+) +¢,)(x)< 0}

Suppose there exists two solutions w,and w,for the equation (20},

then

(21) < Lw, w,-w,> = anf(w,w,) (w,-0,) -‘sgi(m,wl) (w,~6,)
and

(22) < Lw, w, - w,> =a9{ (w, +¢,) (w-uw,) - Bnﬁ(w2:_+¢l) (w,-w,)
hold.

Subtracting (22) from (21), we have

Q

(23) < L{w, —w, )0, - w, > = aﬂf(wl_mz 2 8 S(w,-m,)?
1 2

0= n.)’|V(ml—-u)2)|2 —an(ml—mz)z —mnf (,-w,) +an(wl_mz)2.
1 2

affw, ~w,|P

|v

)‘z ”“’1 - w, ||2Lz (Q) _)‘_1 le—wz “Iiz (Q)‘

|v

(A= O+ a)) o, ~—w,lf?

Sincex,> (A, + a), the above inequality implies w,= w,. Hence we have
proved the uniqueness of solution for (20). Hence the theorem is now

proved.
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