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The relationship between the atomic coherent-state representation of Arecchi et al, [Phys. Rev. A 6 2211 (1972)]
and the state multipoles is established. The state multipoles are used to develop a theory of generalized phase-space

distributions for angular momentum (collective atomic) systems. The general theory for angular momentum systems

is shown to have many features in common with the general theory for boson systems [Phys. Rev. D 2, 2161 (1970)].
These generalized phase-space distributions contain as a special case the coherent-state representation of Arecchi et

a/. The applications of the generalized phase-space distributions and state multipoles to the dynamical problems and

to the calculation of multitime correlations are given. State-multipole techniques are used to give a brief discussion

of the master equation describing cooperative resonance fluorescence.

I. INTRODUCTION

This paper unifies and establishes the equiva-
lence of two independent theoretical developments
(i). the atomic coherent-state representation' in
the field of quantum optics and (ii) the use of the
state multipoles' in the study of the propexties of
radiation emitted by atomic or nuclear systems.
The atomic coherent-state representation has
been used with great success in the study of the
cooperative phenomena' in atomic systems,
such as suyerradiance' and resonance fluores-
cence' from a collection of atoms. The atomic
coherent states are now beginning to be applied
in a variety of fields' such as in the nuclear many-
body problem and ferromagnetism. Qn the other
hand, state multipoles' have been used exten-
sively, earlier in the context of angular correla-
tions in the radiation emitted by nuclear systems,
and now in the study of the distribution of radia-
tion emitted by atomic systems. Such state multi-
poles characterize the properties of the excited
states belonging to a multiplet of states. In what

follows, we show the intimate relationship be-
tween the atomic coherent-state representation
and the idea of state multipoles. The organization
of this paper is as follows: After a brief summary
of the important properties of the atomic coherent
states and the state multipoles, we study, in Sec.
II, the connection between the two. In Sec. III,
we develop a theory of generalized phase-space
distributions. In Sec. IV, we study some algebraic
properties of the state-multipole operators. These
properties are then used to obtain, from the mas-
ter equation for the density matrix of the atomic
system, the equations for the state multipoles.
The multitime-correlation functions of a radiating
system are then computed in Sec. V. We begin by
summarizing the relevant properties of the coher-

ent states and state multipoles, that are needed
in subsequent sections.

A. Properties of atomic coherent states

The atomic coherent states for a system with
angular momentum j are defined by'

These states are not orthogonal but overcomplete,
l.e.)

i(g, pi g', &f&'} i'= I-,'+-,' cosg cosg'

+ sing sing'cos(P —P')] ',

sing dgdg ~g, P) (g
2j+1

47'

The diagonal representation for the density opera-
tor in terms of atomic coherent states is

Another useful function in the study of the proper-
ties of quantum systems using atomic coherent
states is provided by

(1.5)

The dynamics of a system' ' can be studied by

using the dynamical equations for P(g, @).
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by

B. .Properties of state multipoles

The state-multipole operators are defined2 '

!

( j K j)!
(-m q m'j

is the Wigner 3j symbol. Note that K is an inte-
ger taking values 0, 1,2, . . . , 2j and -K~ Q &+K.
The state multipoles have the following important
orthogonality property:

Tr(T» q T» q ) = f)»» 6q q, T»q=(-1) T»

(1 7)

and hence any function of angular momentum oper-
ators can be expanded in terms of TKQ. In partic-
ular, for the density matrix, we 'get the expansion

, , l j
VKQ= -1'- 2K+1 '/2 jm qm',

75'tS t, -m q mj
(1 6)

where

of the angular momentum operators:

3 1/2

[)(2'+ i)((+ i)

3 1/2("-(.». » (-
5 1/2

(2j+ 3}(j+1}(2j+1)j(2j —1}
T')=

x [3(Z',) —j(j+1)].
The tensor (T;q) is also known as the alignment
tensor. It may also be noticed that the properties
of the optical coherences will be reflected in the
properties of (T'»q) with q wO.

i

II. RELATION BETWEEN THE ATOMIC COHERENT-
STATE REPRESENTATION AND THE STATE

MULTIPOLES

In this section we will establish the relation be-
tween the diagonal representation (1.4) and the
state multipoles (T»q). From E(l. (1.4), it follows
that

p = T pTKQ TKQ ()"d) = jd(d d)(' «l)" dl' «&d'"ddddd

(2.1)

KQ KQ' (1.6}

Thus the density matrix is completely character-
ized by the state multipoles (T»q). These expec-
tation values are closely related to the moments

which on using (1.1) and (1.6) reduces to

(&" d) = J P(d, «)f~gd«)dilledd d«, ,

where

(2.2)

~) e iq« tan ~ t 2 ( ( 2f ( g~ 2gd2«) g dg 2«)-
(m+jj (m+j+q)

x(-1)' ~ /2K+1)'" l j
&m -m -q qi

(2.3)

and where we have also used the property that the
Wigner 3j symbol

!lfx ja js'l

&m, m, m, i

()"d&
= Z )', d, f)', q (( d, «)

K1 Q1

x f»jg, p)singdgdp.
(2.5)

P(8, P) = Q Y»q(8, P)P»q. (2.4)

vanishes if m, +m~+m, «&0. Next we expand P(8, P)
in spherical harmonics

(2.6)

We will now show that the function fKQ is propor-
tional to Y»«/8, (())}:

f,ge, 4) = Y«q(e, 0)(-1)»-q~4v

2jt
[(2j —K)!(2j +K+ 1)|]~ ~

Then (2.2) reduces to To prove (2.6) we first note the relation'
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f j & I) (j I2 I&&

( D...(a)D"„.„(x)= g~ ~ [D,', ,(~)]
(m' n' p'/ 2 m n pi

(2.7)

with

Df (&1) ='im-» g( I)a [(~ ' ~ ' ~ t ' j ' ] (cosg) J m n--2a( sing) 2q+»- I+- «rn+n& 2e«n I&&&
+m)!!&+n)l! '-n)!( ' —m)!!'"

( j+m —q)!(q+n —m)! q!(j—n —q)!

In the special case when 0 =j,n'- n'-, m =j,n =-j, the relation (2.7) on simplification leads to

(2.8)

2jf 2jt 1/2~, . . . -1 ' cosg '~ ' sing ""
m& ml Q Qj (j +m')!(j —m')!(j —m' —Q)!(j +m'+Q)!

, (I —Q —q)!(I —q)!q!(q + Q)!

2g 0

2l + 1 [(2j —I)!(2j+ I + 1) ' ]'

In deriving (2.10) we have used the following expression for spherical harmonics"

(2.10)

(2.11}

The reLation (2.6) now follows by using the identity
(2.10} in (2.3).

On using (2.6) and the orthogonality of the spher-
ical harmonics, we find that

2jt
[(2j —K)!(2j+K+ 1)!]'"

(2.12}

The relation (2.12} is the desired relation between
the atomic coherent-state representation and the
state multipoles. We can also relate the state
multipoles (TKQ} to the representation (1.5} by
using the well-known relation" between P(8, &t&)

and R(8, &&&&}:

KQ KQ& (3.1)

where

= Tr(T' g} . (3.2)

We now introduce the operators n'"&(8, &!&) defined
by

I

formulated for angular momentum operators. The
results we present here are analogous to the earl-
ier ones" for boson systems. We will show how

a whole class of generalized phase-space distrib-
utions could be generated using the completeness
of T~Q operators.

Any arbitrary operator 9 can be expanded as

R(8, y) = PR,QY„(8, y),

2j+ 1 (2j —K)!(2j+K+1)!
4. (»)!(»+ 1)!

and hence

(2.13)

(2.14)

a'"'(8, &P)
= Q T QY Q(8, &P)II Q,

KQ
(3.3)

where Q~Q is a function of the integers K, Q whose
properties will be shortly determined. Also intro-
duce the operator

K Q 1 [(2j —K)!(2j+K+ 1)!]'~2
KQ KQQ&fv (2j) I

(2.15)

III. GENERALIZED PHASE-SPACE DISTRIBUTIONS
ASSOCIATED WITH THE SPIN SYSTEM

In this section we demonstrate how a general-
ized theory of phase-space distributions could be

n'"'(8& V') = QTKQYKQ(8, p)AKQ, BKQ=Q
I&:Q (3.4)

It can now be easily shown from (3.3), (3.4), (1.7),
and the completeness of spherical harmonics that

Tr[n& "&(8„&!&,)n& "&(g„p,)] = 6(&p, —p2) 6(cosg, —cosg, ).
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g= F'") e, y z(") e, sln8dgdp, (3.6)

where F'o'(8, » is the generalized phase-space
distribution given by

F(o)(g» —Tr[g~(o)( g y) J (3.7)

From (3.6} it is clear that

Ts(2, 8)= fd,'"'(8, 8)d'@(8, 8)dsdds'ns,

(3.8}

and hence the expectation values in terms of gen-
eralized phase-space distributions are given as

(()) =Tdng) = f~.' '(88)djj"'(88,)s' sdsd,d.
(3.9)

One can easily prove the following properties of
a (D)( g y) .

1/2
n'"'(88)s' sdsdd=,

(2 1
(), , (2.10)

'""(88»= QTrqYrgr. -qs
KQ

(3.11)

and hence h'""s are Hermitian provided

Ql Q=Q~

Note also the property

2j+1Tr[g(o)(g»] j II

(3.12}

(3.13)

In view of (3.13), we find the following nor-
malization relation:

The relation (3.5) is the key relation in the de-
velopment of the generalized theory of phase-space

'distributions. It is now clear from (3.1) and the
property (3.5} that

lationship between two different phase-space
distributions corresponding to the different
choices of Q functions

FPq' =Fry' (Ilrqlflrq) (3.17)

The integral form of the relation between two
phase-space distributions corresponding to two
different choices of 0 functions also follows from
(3.15)

K„(8,(I},g, (!} ) = g Y q(8, (t)) Y*q(g (t ') nrq'/Ilrq .
EQ

(3.19)

Having formulated the general theory of phase-
space distributions, we now establish the con-
nection with the phase-space distributions in-
troduced by Arecchi

equal.

' For this purpose we
use relation (2.6), namely,

(8 AI7'r'qlg 4'&=Ye (8q4)(-I)

[(2j -K)!(2j+K+ 1)!]'+.
(3.20)

We will now find the 0 function such that 4'"
x (8, (t)) will reduce to the projector I 8, »(8, (t) ~,

l.e. ,

~(q}(g, e) = 2 Y«(g, e) 7«fl«= Ig, e&«, e I

EQ

(3.21)
From (3.21), (1.7), and (3.20) we see that

&«Y)(q (8, (j)) = » T rq I
8 (t)&'(8, (j)

I

= (8, (j) I
7'r'q

I 8, (t)&

= Y*.,(8, y)(- 1)"

F (A2 }(g

F'""O', Q' do'd 'sin8 Eel 8y p8 y t

(3.18)

where the kernel K» is given by

788=1= ' fd'"'(8, 8) i sdsdd (2sj8+1)'
4}l

(3.14)

2jt
[(2j -K)!(2j+K+1)!]

and hence the 0 function that reduces 4'"' to
Ig, (j)&(8, (j)

~

is given by

F(A}(g y) g y', (g y)y'(o} (3.15)

It is clear from the foregoing, that different
choices of the functions Q~Q lead to different
phase-space distributions. Using (3.7), each of
these can be expanded in terms of spherical
harmonics as

X Q
2j 1Q«=(-1) 44w

[(2j -K)!(2j+K+1)!],@. (3.22)

With the particular choice (3.22), relation (3.6)
reduces to the well-known diagonal coherent-state
representation for atomic systems

F«q'= fl r'q Tr(97"rq) . (3.16)
g= F'"' 8, p 8, $) 8, sin8d8dp, (3.23)

Equation (3.16) also yields immediately the re- with
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+("'(8,0) = Z I'ro(e, 4)(»6 &'ro)

9= E'"' 8, &'"' 8, d8d(I} sin8, (3.25)

with

Z("&(e,y) = Tr[6«o)(e, y)]=(e, y ~6 ~e, y)

= g I' e(e, y)Tr(sr'o)(-I)-

{—() (2j —)()!(2(+K ()))'~
X

2jt 2jf
(3.24)

In the special case 6- p, (3.23) goes over to (1.4).
Similarly if we were to use 4'"' for the expansion
in Eq. (3.6) with 0 given by (3.22), then we would

find

We have thus obtained the general relations of
(1.4) and (1.5) of Arecchi ef al. as a special case
of our theory. Note also that our general relation
(3.17) relating any two phase-space distributions
in the special case, also yields Gilmore's re-
lation (2.14). It is perhaps of interest to note
that all the general relations of this section are
the analogs of the general relations obtained by
Agarwal and Vfolf' in the context of boson sys-
tems. This has been possible because the
operator T&q is found to play the role analogous
to the operator D(n)=(e' ' ) for boson sys-
tems. In the next section we show how to formu-
late the product theorem and how the equations
of motion ean be transcribed into equations for
phase-space distributions.

2j 1 2jIx y4g ~

~ ~

(2j -K)!(2j+K+I)! (3 26)

IV. EXPANSION OF THE PRODUCT OF TWO MULTIPOLE OPERATORS IN TERMS OF MULTIPOLE OPERATORS

For dynamical problems which have to be mapped onto phase space, we have to know how the product
of two multipole operators behaves. It is clear that such a product can be expanded in terms of other T~q
operators, i.e. ,

Tg~qj Tg2q2= Tr T g q T+aqi TE2q Tg q
3 3

(4.1)

where (1.7) has been used. The coefficient appearing in (4.1) can be obtained by using the definition of

(1.6) and the following relationship between Wigner 3j and Wigner 6j symbols:

( ]')f~+l2+l~+)(g+)(2+((~(~l 2 3 ) t 1 j2 3) ~ 1 2 J3!—61 j2 j3) j 1 j2 j3 (4»

with the result that"

Ej+E2+E3 2$ q3 2g + j ~ +$ 2E' +] g/2 ) j,(K K

(4 3)

The range of K, values is ~K, -K, ~, . . . , (K, +K,). It is obvious from the symmetry property of Wigner
Sj symbols that

r T = g (-I)'r "r."». ~-& r(2K+I)(2K+1)(2K+I)t ~ (K K
rq TKsqs '

3 3 j
(4.4)

Using (4.4) and (4.3) one can prove the following important relations involving the product of angular mo-
mentum operators and T~q operators:
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f2j(j+1)(2j+1)~i'"
~ Trq +

II )I Tg, qg Try

1 (2j -E)(2j+K+2)(K%@+1)(Eve+2)~~

'~
2' (2K+1)(2K+3) ) E+lt ~1

1 (2j+K+1)(2j -K+1)(K+@)(KiQ—1) i'@'2 (2K+1)(2E 1)

= T«qcT++ [(K+Q)(E vQ + 1)] *
T«qadi (4 5)

Relation (4.3) enables us to express the phase-space distribution of the product of two operators in the
form (3.15), i.e. , if

F,'"'(8, y) = Z 1':(8,y)FP«,
EQ

FP~q ——Q«q Tr(G) T«q), i =1, 2

then

(4.6)

F,',"'(8, g) = Tr[G,G, &@'(8,Q)]= g Y«q(8, Q)F,',"«'q,
&0

(4.V)

Fj'~~~q= Q F~~q«'q F~~q«~q ( 1) &+ &+ ~ q[(2K|+1)(2K~+1)(2K~+1)] @ Q«qQ«q Q«~~

(K~ K~ K) K| K~ K
xi

(e, e, -e)Jj

(4.9)

8 ( T«q) (g+ T ) (4.10)

The dynamical equation for the density matrix
could be easily transcribed into an equation for
E~~'. We first note that the density matrix equa-
tion

—=SpSp

implies that

(4.8)

I

The expectation value(Z' T«q) can be expressed
as a linear superposition of (T«. q ). The equa-
tions for E&z' can be obtained from the equation
for (T«q) and from (3.16).

As an example, we consider the important mas-
ter equation' describing such processes as super-
radiance" and cooperative resonance fluores-
cence

where Z' is the adjoint of the operator S. By the
use of the product theorem (4.3) and the com-
mutation relations

I

—= -y(J,J p —2 J pJ, +p J,J )
Sp

—iQ(J++J', p). (4.12)

[J., T«q]= [(KvQ)(K+@+1)j'~ T«, q,|,
[J„T«q]=Q T«q

(4.11) From (4.12) and (4.11)we evidently have

(T«q) =iQ[(K —Q)(K+@+1)]' (T«q„)+i Q[(K+@)(K-@+1)j+(T«q 1)

+y [(K—Q)(K+@+1)] ~~(T«, q,|J ) —y [(K+/)(K —@+1)]'~'(J,T«, q, ),
which, on using product relations (4.5), simplifies to

(T«q) =i 0 [(K—Q)(K+@+1)]' (T«q„)+i Q[(K+Q)(K-@+1)] (T«q, )

—y [K(K+ 1) —Q~ j( T«q ) +y E{[(K+ 1)~ —Q~](2j —K)(2j+K+ 2)/(2 K+ 1)(2 K+ 3)}' @

(K~ -Q~)(2j+K+ 1)(2j -K+1)
(2 K+ 1)(2K —1)

(4.13)

(4.14)
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From (4.14) and (3.16), we obtain the equation for Fz'z'.

F»q = — ' ' i 0 [(K—Q)(K+Q+1)]'i Fz'"&i„-y [K(K+1)—Q ]F~J'—
QEQ

, 0+& 0 g

x tA[(K+Q)(K-Q+1)]' F»"'Q, +yK "'Q
l

[ ]
l

F»"„',Q
Q»q (2 K+ 1)(2K+ 3)

—y(K+1) "
l

(2j —K+1) F»qi Q .
A»q ( (2 K+1)(2K —1}

(4.15)

In the special case if we choose QE~ to be given
by (3.22), then (4.15) can be shown to be equiva-
lent" to Eq. (3.5) of Ref. 6. We also mention here,
that in Ref. 17, the steady-state solution of (4.12)
in the limit of intense fields was shown to have
the structure

I

pressed simply in terms of the state multipoles.
Such multitime correlations determine, for ex-
ample, the absorption and emission spectra of
the radiation from a cooperative system.

Using the equations of motion for ( T»q), one
can obviously write

(4.16)
+J

, Z ljm)&j2j+1
For the state (4.16), only ( T,', ) is nonvanishing.
The steady state is thus characterized by a uni-
form phase -space distribution.

(T»q(t))= g g'» q i(t1ti}(T»Qi(t )) |
g =6rE 6qg if t=t'.

(5.1)

V. EXPANSION OF TIME CORRELATION FUNCTIONS
IN TERMS OF STATE MULTIPOLES

We now show how the multitime correlation
functions of a cooperative system could be ex-

Using (5.1) and the quantum regression theorem"
for a Markovian system, one gets for the multi-
time correlations

( T» Q (t") T»Q(t) T» Q (t )) Q g» Q, (t& t')(T» q (t") T» Q (t') T» q (t')), t) t') t" . (5.2)
1 1

By successive use of the relations of the type (5.2) and the product relation (4.3) one can reduce the
n-time correlation function to the one-time expectation values which are determined from (5.1). The func-
tion g»qq, plays the role of Green's function for the difference differential Eq. (4.10). We now give some
examples of the calculation of multitime correlation functions. Let us consider the correlation which de-
termines the spectrum of the radiation scattered by a cooperative system

X(r) =(~ ()~r-(0)) (T' ( )J (0)).
2j(j+1}(2j+1)

(5.3)

On using (5.2), the correlation function }((r) becomes

(5.4)

which on using (4.5) reduces to

1 (2j -K)(2j +K+ 2)(K+Q +1)(K+Q + 2)
2 (2K+ 1)(2K+ 3)

1
l

(2j+K+1)(2j -K+1)(K-Q)(K-Q —1)
2 E (2K+1)(2K —1)»' Q+'

j(j +1)(2j+1) ' ' (, } (2j —1)(2j+3) '@(, ) 2j(2j+2)
Tm 0

l»0 15 2»0 3 Oi 0

(5.5)

(5.6)
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A simple exercise again shows that (5.5) is equivalent to relation" (3.14) obtained in Ref. 6 by a much
more elaborate procedure. The above example shows clearly how simply the state multipoles can be
used in the calculation of correlation functions. The correlation function y (r) can also be expressed in
terms of E Po' by using relation (3.16) in (5.5). The correlation function giving the absorption spectra has
a much simpler structure in terms of state multipoles

(5.7)

In conclusion we have shown the deep relation-
ship between the atomic coherent-state repre-
sentation of Arecchi et al. and the state multi-
poles as introduced by Fano. ' The use of state
niultipoles enables us to formulate a general
theory of phase-space distributions and to generate

I

a class of phase-space distributions for angular
momentum (collective atomic) systems. Such state
multipoles are shown to yield in a rather straight-
forward manner the dynamical equations and
multitime correlation functions.
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