arxXiv:1103.1109v2 [cs.DS] 15 Apr 2012

Fully dynamic maximal matching i®(log n) update time

Surender Baswana Manoj Gupta

Department of CSE, Department of CSE,

[.I.T. Kanpur, India I.I.T. Delhi, India
shaswana@se.iitk.ac.in gmanoj @se.iitd.ernet.in

Sandeep Sen Department of CSE,
l.I.T. Delhi, India
ssen@se.iitd.ernet.in

April 17, 2012

Abstract

We present an algorithm for maintaining maximal matching igraph under addition and deletion
of edges. Our data structure is randomized that ték@sg n) expected amortized time for each edge
update where is the number of vertices in the graph. While there is a tri@lén) algorithm for edge
update, the previous best known result for this problem weestd Ivkovi¢ and Llyod[4]. For a graph
with n vertices andn edges, they give a®((n + m)0'7072) update time algorithm which is sublinear
only for a sparse graph.

For the related problem of maximum matching, Onak and Rehinf5] designed a randomized
data structure that achievé)s(log2 n) expected amortized time for each update for maintaining a
approximate maximum matching for some large constanh contrast, we can maintain a factor two
approximate maximum matching @ (logn) expected amortized time per update as a direct corollary
of the maximal matching scheme. This in turn also implies@dyproximate vertex cover maintenance
scheme that takg3(log n) expected amortized time per update.

1 Introduction

In the last decade, there has been considerable resealnamicGraph Algorithms where we want to
maintain a data structure associated with some propekiy ¢lbnnectivity, transitive closure or matching)
under insertion and deletion of edges. Even for a simple gotgdike connectivity it took researchers
considerable effort to design a polyleg(update time algorithm]Z,13]. In this work, we address fully
dynamic maintenance of maximal matching in a graph.

Let G = (V, E) be a graph om vertices andn edges. A matching id- is a set of edgest C E
such that no two edges iV share any vertex. A maximum matching is a matching that aomtde
largest possible number of edges. A matching is said to bexanmbmatching if it cannot be strictly
contained in any other matching. It is well known that a madimatching guarantees a 2-approximation
of the maximum matching. Ivkovi¢ and Llyod|[4] designed fivst fully dynamic algorithm for maximal
matching withO((n + m)%7972) update time. In contrast, there exists a much larger bodyowk vior
maximum matching.

Sankowski[[6] gave an algorithm for the maintaining maximmatching which processes each update
in O(n'49%) time. Alberts and Henzinger|[1] gave an expeat&d) update time algorithm for maintaining
maximum matching with respect ta@stricted random modelTherefore the goal of polylog(n) update

http://arxiv.org/abs/1103.1109v2

time dynamic maximum matching algorithm appears to be tobi@wns. In particular, even achieving a
o(+/n) bound on the update time would imply an improvement of thg$tendingO (m+/n) bound of the
best static algorithm for maximum matching due to Micali aairani [?]. So approximation appears to
be inevitable if we wish to achieve really fast update timerfmintaining matching. Recently, Onak and
Rubinfeld [5] presented a randomized algorithm for mairitaj ac-approximate (for some large constajt
matching in a dynamic graph that takeglog? n) amortized time for each edge update. This matching is not
necessarily maximal, as a maximal matching would imply ofatevo approximate maximum matching. In
particular, they pose the following question -

“Our approximation factors are large constants. How smatfl they be made with polylogarithmic
update time ? Can they be made 2 ? Can the approximation nbbstenade smaller than two for maximum
matching ?.."

We resolve one of their central questions by presentinghadyhamic algorithm for maximal matching
which achieve®)(log n) expected amortized time per edge insertion or deletion.Ound also implies a
similar result for maintaining a two approximate vertex €ov

2 An overview

Let M denote the matching of the given graph at any moment. Eveagg eflM is called amatchededge
and an edge i\ M is called arunmatchecdge. For an edge:, v) € M, we defineu to be themateof v
andv to be themateof u. For a vertexe if there is an edge incident to it froov, thena a matchedvertex;
otherwise it isfree or unmatched

In order to maintain a maximal matching, it suffices to ensbes there is no edgé:, v) in the graph
such that both: andwv are free with respect to the matching. From this observaaonobvious approach
will be to maintain the information for each vertex whethésimatched or free at any stage. When an edge
(u,v) isinserted, addu, v) to the matching ift: andv are free. For a case when an unmatched édge) is
deleted, no action is required. Otherwise, for bottndv we search their neighborhood for any free vertex
and update the matching accordingly. It follows that eadtetgptake$) (1) computation time except when
it involves deletion of a matched edge; in this case the cdatiom time is of the order of the sum of the
degrees of the two vertices. So this trivial algorithm iste@fficient forsmalldegree vertices, but could be
expensive fotarge degree vertices. An alternate approach to handling deleti@ matched edge is to use
a simple randomized technique - a verieis matched with a randomly chosen neighborollowing the
standard adversarial model, it can be observed that antexpig(«)/2 edges incident to will be deleted
before deleting the matched ed@e v). So the expected amortized cost per edge deletion feroughly

0(%) If deg(v) > deg(u), then this update time can be as bad as the one obtained by the
trivial algorithm mentioned above; butdfeg(w) is high, the update time is better. We combine the idea of
choosing a random mate and the trivial algorithm suitablfobews. We introduce the notion awnership

of edges wherein we assign an edge to that endpoint whichiplasrdegree. We maintain a partition of the
set of vertices into two levels : 0 and 1. Level 0 consists ofiees which owrfewedges and we handle the
updates in level 0 using the trivial algorithm. The level hsists of vertices (and their mates) which own
large number of edges and we use the idea of random mate to handlephates. In particular, a vertex
chooses a random mate from its set of owned edges which ernbatdat selects a neighbor having a lower
degree. This is the basis of our first fully dynamic algorittwhich achieves expected amortizéd/n)

time per update.

A careful analysis of th&(,/n) update time algorithm suggests thdfirger partition of vertices may
help in achieving a better update time. This leads to our rlgiorithm which achieves expected amortized
O(log n) time per update. More specifically, our algorithm maintansinvariant that can be informally
summarized as follows.

Each vertex tries to rise to a level higher than its currenteleif upon reaching that level, there are
sufficiently large number of edges incident on it from lowesels. Once a vertex reaches a new level, it
selects a random edge from this set and makes it matched.

2.1 Related Work

Onak and Rubinfeld [5] also pursue an approach based on waaddmization to achieve efficient updates
and maintain a partitioning of vertices into a hierarchy(diog n) level that is along the lines of Parnas
and Ron[[8]. The algorithm of Onak and Rubinfeld [5] takes @bgl approach in building levelof this
hierarchy as follows. For levé| they consider the subgraph consisting of vertigeand their neighbors
and argue that a random subset of these edges form a matdhémpdV;|/a with high probability for
some constant > 1. If the matching at level falls below a predefined threshold, then a new matching is
computed for the vertices at levelThe matching algorithm always tries to ensure that the hestedges at
leveli is always greater thalV;|/a. As a consequence, a free vertex at levelay not get processed if the
matching size at levelis above the threshold. This is the reason that the matcHitagred is not maximal.
The approximation factat is an outcome of some probabilistic calculations using Gbiébounds that is
chosen to be aufficientlylarge. Therefore, it is unlikely that any simple variatidntluis global approach
can lead to a maximal matching.

We also maintain a hierarchical partitioning of vertices ibus distinctly different from the scheme
of Onak and Rubinfeld[5]. As described earlier, the updégeriéhm in [5] may not process a vertex at
level i if the matching at levef is above a certain threshold. This iggbbbal approach of maintaining
large matching at level On the other hand, we process a free vertex at leaslsoon as it becomége
Irrespective of the matching size at levelve try to find a matched edge for tlireevertex. This is avertex
centric approach for maintaining matching which ensures that thiemray is maximal. Our algorithm
achieves significantly better results thah [5], i.e., a gnteed factor 2 matching. The use of randomization
is limited to choice of a random matching vertex and éh@ogn) expected update time can be derived
usingO(log n) purely random bits.

2.2 Organization of the paper

For a gentle exposition of the ideas and techniques, we &rstribe a fully dynamic algorithm for maximal
matching that has 2 levels and achieves expected amotizeth) time per update. This is followed by
our final fully dynamic algorithm which hdsg n levels and achieves expected amortizgdog n) time per
update (Theorem 4.1). All logarithms in this paper are w2 unless mentioned otherwise.

3 Fully dynamic algorithm with expected amortizedO(/n) time per update

The algorithm maintains a partition of the set of verticds imvo levels. We shall useevEL (u) to denote
the level of a vertex.. We defineLEVEL (u, v) for an edggu, v) asmax(LEVEL (u), LEVEL (v)).

We now introduce the concept ofvnershipof the edges. Each edge present in the graph will be owned
by one or both of its end points as follows. If both the endfof an edge are at lev8| then it is owned
by both of them. Otherwise it will be owned by exactly that poict which lies at higher level. If both
the endpoints are at level 1, the tie will be broken suitalylyttie algorithm. As the algorithm proceeds,
the vertices will make transition from one level to anothed @ahe ownership of edges will also change
accordingly. LetO,, denote the set of edges owneddbyt any moment of time. Each vertexe V will
keep the set),, in a dynamic hash table][7] so that each search or deletiaf,oran be performed in worst
caseO(1) time and each insertion operation can be performed in eggéetl) time. This hash table is

also suitably augmented with a linked list stori@g so that we can retrieve all edges of §gtin O(|0,|)
time.
The algorithm maintains the following three invariantsdrefthe next update is processed.

1. Every vertex at level 1 is matched. Every free vertex all@whas all its neighbors matched.
2. Every vertex at level 0 owns less thafm edges at any moment of time.
3. Both the endpoints of matched edges are at the same level.

The first invariant implies that the matchiogl maintained is maximal at each stage. A verigis said to
be adirty vertex at a moment if at least one of its invariants does nlok Ho order to restore the invariants,
each dirty vertex might make transition to some new level @mdome processing. This processing in-
volves owning or disowning some edges depending upon whtitbdevel of the vertex has risen or fallen.
Thereafter, the vertex will execCURANDOM-SETTLE Or NAIVE-SETTLE to settle dowrat its new level. The
pseudocode for insert and delete operation is given in Eifwand Figurel2.

Handling insertion of an edge

Let (u, v) be the edge being inserted. If eitheor v are at level 1, there is no violation of any invariant. So
the only processing that needs to be done is to agsign) to O, if LEVEL(u) = 1, and toO,, otherwise.
This takesO(1) time. However, if bothu andv are at level 0, then we eXxeCUHANDLING -INSERTION
procedure which does the following (see Figure 1).

If wandv are free, then insertion ¢f:, v) has violated the first invariant faras well as. We restore it
by adding(u, v) to M. Note that the insertion dfu, v) also leads to increase {#,,| and|O,| by one. We
process that vertex out afandv which owns larger number of edges; lebe that vertex. IfO,| = /n,
then invariant 2 has got violated. We execRteNDOM-SETTLE(u); as a resulty, moves to level 1 and gets
matched to some vertex, sayselected randomly uniformly fro®,,. Vertexy moves to level 1 to satisfy
Invariant 3. Ifw andz were respectively the earlier matescdndy at level 0, then the matching afwith y
has rendered andz free. So to restore invariant 1, we execNE@VE-SETTLE(w) andNAIVE-SETTLE(z).
This finishes the processing of insertionaf v). Note that when rises to level 1|0, | remains unchanged.
Since all the invariants far were satisfied before the current edge update, it followttigesecond invariant
for v still remains valid.

Handling deletion of an edge

Let (u,v) be an edge that is deleted. (i, v) ¢ M, all the invariants are still valid. So let us consider the
nontrivial case wherfu,v) € M. In this case, the deletion @¢f;,v) has made: andv free. Therefore,
potentially the first invariant might have got violated foeandv, making them dirty. We do the following
processing in this case.

If edge(u, v) was at level 0, then following the deletion @f, v), vertexu executesNAIVE -SETTLE(u),
and then vertexv) executesNAIVE -SETTLE(v). This restores the first invariant and the vertioeandv are
cleanagain. If edg€u, v) was at level 1, them is processed using the procedure shown in Figlre 2 which
does the following 1 is processed similarly).

First, u disowns all its edges whose other endpoint is at level 10/f is still greater than or equal to
\/n, thenu stays at level 1 and execute8NDOM-SETTLE(w). If |O,] is less than,/n, v moves to level 0
and executeslAIVE-SETTLE(u). Note that the transition af from level 1 to O leads to an increase in the
number of edges owned by each of its neighbors at level 0. &twnsl invariant for each such neighbor, say
w, may get violated ifO,,| = v/n, makingw dirty. So we scan each neighborw§equentially and for each

Procedure HANDL | NG- | NSERT! ON(u, v)

1 if w andv are FREEthen M < M U {(u,v)};
2 if |0y > |0, then swagu, v);

3 if |Oy] = /n then

4 foreach (u, w) € O, do

5 | delete(u, w) from O,;

6 x <— RANDOM-SETTLE(u);
7 if x 2 NULL then NAIVE-SETTLE(z);
8 if w was previous mate af then NAIVE-SETTLE(w);

Procedure RANDOM- SETTLE(u) : Finds a random edg@:, v) from the owned edges of and re-
turns the previous mate of

=

Let (u, v) be a uniformly randomly selected edge frdpy;
foreach (v,w) € O, do
| delete(v, w) from Oy;

if v is matchedhen

T < MATE (v);

M = M\{(v,2)}
else
7 | @ NuL;

M — MUA{(u,v)};
LEVEL (u) < 1; LEVEL(v) < 1;
10 returnz;

w N

o 0 b

© o

ProcedureNAI VE- SETTLE(u) : Finds a free vertex adjacent#odeterministically

1 for each(u,z) € O, do

2 if z is freethen

3 M~ MU{(u,x)};
4 L Break;

Figure 1: Procedure for handling insertion of an eflger) whereLEVEL (u) = LEVEL (v) = 0.

Procedure HANDL | NG- DELETI ON(u,v)

foreach (u,w) € O, and LEVEL(w) =1do
| move(u, w) from O, to O;

if |Oy| > +/n then
x <— RANDOM-SETTLE(u);
if x 2 NULL then NAIVE-SETTLE(z);
else
LEVEL (u) < 0;
NAIVE -SETTLE(uw);
foreach (u,w) € O, do
if |Ow| > /nthen
10 x <~ RANDOM-SETTLE(w);
11 L if x # NULL then NAIVE-SETTLE(z);

N

A~ W

(&)]

© 0O N O

Figure 2: Procedure for processingvhen(u, v) € M is deleted andeVEL (u)=LEVEL (v)=1.

dirty neighborw (that is,|O,,| > \/n), we exeCute(RANDOM-SETTLE(w) to restore the second invariant.
This finishes the processing of deletion(af v).

It can be observed that, unlike insertion of an edge, thetidalef an edge may lead to creation of a
large number of dirty vertices. This may happen if the deletdge is a matched edge at level 1 and at least
one of its endpoints move to level 0.

3.1 Analysis of the algorithm

We analyze the algorithm using the concepepbchswhich we explain as follows. While processing the
sequence of insertions and deletions of edges, some madhed become unmatched and some unmatched
edges become matched.

Definition 3.1 Consider any edgéu, v), and let it be a matched edge at timeThen theepochof (u, v) is
the maximal continuous time period containinpr which it remains inM.

The entire life span of an edde, v) consists of a sequence of epochgwfv) separated by the contin-
uous periods whefwu, v) is not matched.

The third invariant implies that epochs can be partitiom iapochs at level 0 and level 1. In order to
bound the computation time per update, we calculate the atatipn involved in an epoch at level 0 and 1.
We will see that the major computations are done either & tifrthe start of an epoch (when the edge is
included in the matching) or at the end of an epoch(when tge eeinoved from the matching). An update
steps may involve starting and ending of many epoch. Letdts time taken by our algorithm at update
stept is C;. For the analysis we will redistribute this computationalé among the various epochs at step
t. Precisely, if an epoch dfu, v) starts at time, let the computational cost associated with the start of thi
epoch beS‘t(“’”). Similarly, let the computational cost associated withehd of epoch ofw, y) be ng’y).
We redistributeC’; in such a way that the sum of all thg’s andQ;’s is C; at update step. Now, we look
at all the procedures of our algorithm and try to distribingit computation cost among various epochs.

1. NAIVE-SETTLE(u)
In the procedurelAIVE-SETTLE(u), eitheru finds a mate or it becomes free. In both the cases the

time required i8D(y/n) asu searches atmostn owned edges at level 0. Let us deal with these cases
separately.

(a) © manages to find a new mate
In this case, an epoch ¢f;, v) starts. The)(,/n) time is associated with the start of the epoch
of (u,v).

(b) u becomes free
Even in this case the time required@¥./n). We have to associate this cost to some epoch.
Let us now look at the proceduréalvVE-SETTLE(u) closely. NAIVE-SETTLE(u) can be called
from two places:HANDLING-INSERTION (line 7 and line 8) andiANDLING -DELETION(line 5
and line 11). In these cas&\IVE-SETTLE(u) is executed because of the following reason: the
previous mate ofi(sayw) has moved to level lw moves to level 1 either to execuk& NDOM-
SETTLE or due to the fact that some vertex at level 1 exece®eNDOM-SETTLE and chosev
as its random mate. So the computation cosD6{/n) is associated with the end of epoch of
(u, w).

2. RANDOM-SETTLE(u)
In RANDOM-SETTLE(u), u finds a random mate from level 0. It then pulls to level 1 to satisfy the
third invariant. In this process, becomes the sole owner of all the edges that have other erigioi
level O(line 2,3). Since was the owner of atmosfn edges, the total computation time involved in
performing this step i€)(y/n). Other steps IRANDOM-SETTLE can be executed i@ (1) time. So
the total computation time i©(y/n). This computation time is associated with the start of trechp

(u,v).

3. HANDLING-INSERTION(u, v)
We have already taken care of line 6,7 and 8NEERTION-HANDLE as it calls eithelRANDOM-
SETTLE Or NAIVE-SETTLE on those lines. The only non-trivial step in this procedefeit line 4 and
5. Here, vertex: is about to executBANDOM-SETTLE(u). In a preparation for this, it becomes the
sole owner of its edges at level 0. Sincavas the owner of atmosfn edges, the total computation
time involved in performing this step @(y/n). This computation time is associated with the start of
the epoch(u, v).

4. HANDLING-DELETION(u,v) Again note that we have already accounted for the major gétti®
procedure. Only line 1 and line 2 are the non-trivial sectbthis procedure that are not accounted.
Here a matched edge ofwas deleted and starts this procedure by disowning all its owned edges
whose other endpoint is at level 1. The number of such edgelseza(n). Therefore, the computation
time isO(n) and it is associated to the end of the previous epoeh of

Excluding the updates that cause the start and end of an efdehv), every other edge update on
u andv during the epoch is handled in jusk(1) time. Therefore, we shall focus only on the amount of
computation associated with the start and end of an epoch.ud.eow analyze the actual computation
associated with the epoch at level 0 and level 1.

e Epoch at level 0
The only non-trivial computation associated with the stathe epoch is iNAIVE-SETTLE. We have
already seen that the computational costiefveE-SETTLE is O(y/n) and can be associated with the
start or end of some epoch.

e Epoch atlevel 1
Consider the epoch @t:, v) at level 1. There are two ways in which epoch at level 1 starts:

1 epoch of(u, v)
i epoch of(u, v) I‘:l

epoch of(u, w)

epovhvf(v,—x)f
Time > oooon. EDD ,,,,,, LEVEL O
epoch of
P (e poch of(v,)

Figure 3: Epochs at level 0 and 1; the creation of an epoclvelt lecan destroy at most two epochs at level
0.

— In HANDLING-INSERTION
The computation cost associated with the start of the epb¢h, @) is atmost the computation
cost required in executing the procedwANDLING-INSERTION. We have already calculated
that line 4,5 ofHANDLING -INSERTION takesO(4/n) time. All this computation cost is associ-
ated to epoch ofu, v).

— In HANDLING -DELETION
In HANDLING -DELETION, a epoch of u,v) may start due to callingANDOM-SETTLE at line
4 or at line 10. In both the cases the cost associated is emjtfa tost of executingANDOM-
SETTLE which isO(y/n).

Now let us calculate the computation cost associated witiclepf (v, v) when it ends. The only
place where computation cost is associated with the endeogploch is at line 1-2 oiANDLING -
DELETION. This cost is atmosD(n).

From our analysis, it follows that the amount of computatémsociated with an epoch at level 0 is
O(y/n) and to level 1iD(n + /n) which isO(n).

An epoch corresponding to some edge, Gay), ends because of exactly one of the following causes.
(@) if (u,v) is deleted from the graph.
(47) u (or v) get matched to some other vertex leaving its current mate fr

An epoch will be called aatural epoch if it ends due to causé;(otherwise it will be called ainduced
epoch. Inducedepoch can end prematurely since, unlike natural epoch, #tehed edge is not actually
deleted from the graph when amducedepoch ends.

It follows from the algorithm described above that everyapat level 1 is a natural epoch whereas
an epoch at level 0 can be natural or induced depending onatiiecof its termination. Furthermore,
each induced epoch at level 0 can be associated with a napwmah at level 1 whose creation led to the
termination of the former. In fact, there can be at most tvamoed epochs at level 0 which can be associated
with an epoch at level 1. It can be explained as follows (sgarei3).

Consider an epoch at level 1 associated with an edggsay. Suppose it was created by vertexIf
u was already matched at level 0, let£ v be its mate. Similarly, iy was also matched already, et~ «
be its current mate at level 0. So matchintp v terminates the epoch ¢fi, w) as well as the epoch of edge
(v, x) at level 0. Wechargethe overall cost of these two epochs to the epoctuof). We have seen that
the computational cost associated with an epoch at leveD+&:). So the overall computatiochargedto
an epoch ofu, v) at level 1 isO(n + 2y/n) which isO(n).

Lemma 3.1 The computation charged to a natural epoch at level ®{&) and the computation charged
to a natural epoch at level 0 ©(y/n).

In order to analyze our algorithm, we just need to get a bounthe computatiorchargedto all natural
epochs at level 0 and level 1 during a sequence of updatesutioydar, we need to bound the computation
chargedto all the natural epochs which either end during the updatesmainalive at the end of all the
updates. Byalive, we mean that matched edges corresponding to these epoamrianthe matching after
all the update ends.

3.1.1 Bounding the computation charged to the natural epochdestroyed

Let ¢ be the total number of updates. Each natural epoch at levéiiéhwis destroyed can be assigned
uniquely to the deletion of its matched edge. Hence it faflénom Lemma& 311 that the computatioharged
to all natural epochs destroyed at level O duringpdates i) (t1/n).

Now we shall analyze the number of epochs destroyed at lev@bisider an epoch at levelditiated
by some vertexy by selecting a random edge, v) from O, From the invariantO"* has at least/n
edges. Consider the sequence of edge deletions followagreation of the epoch initiated hy Lett,
denote the subsequence of edges fd}f?, and observe that the this epoch is completely determineg by
and the epoch ends whém, v) is deleted. Since the vertexselected a matched edge out@jf*** uniformly
at random, the matched edgewmay appear anywhere in this subsequence with equal prﬁpﬂ)iﬂ'he
durationof the epoch initiated by is the number of edges i deleted during the epoch (befoe, v))
and is a random variable uniformly distributed in the rafigéO|]. See Figurél4.

Hencefortht,, will denote the truncated subsequence and we denotéutfaion of this epoch byit,,|.
Since an edge can be deleted and inserted multiple times in an update seguéete’ denote thei-th
occurrence of the edge- ¢*! can appear only after is deleted. Letr, denote thdabelled version of
t,, where the edges carry the additional information of theguoence index. Since an edge can be owned
exactly by onenitiator at any time, it implies the following observation.

Lemma 3.2 7, andt, are disjoint forw # w.

In our subsequent discussion, we will not distinguish betwe andr, and assume thaj,’s are disjoint.
sequence of deletion of edges incidention

BABINRRIRAANNY)

< 1ITH

sequenc(e_)of deletion of edgex™
i

(i)
Figure 4: (i) Edges incident omand the se©!"" at any moment of time; (i) The matched edge can appear
any where in the subsequence of deletion&®gf".

For a vertexu, let ¢!, denote the concatenation of successiyéor all the epochs initiated by. For a
deletion sequencg,, we will find the expected number of epochs which createddéistion sequence. We

*assuming that all the edges appear and only the first deletiany edge is relevant

will prove that on expectation, the number of epochs for atitet sequencg, is O(|t},|//n). Since the/,
are disjoint (Lemm&3]2), the expected total number of epae®(¢//n), wheret is the total number of
edges deleted at level 1. From Lemimd 3.1, the expected tttharged to these epochsisi/n).

Let X; be the random variable denoting the number of epochs atledestroyed during a sequence of
t updates. As described abodg =} X,/ |, wheret;, is the deletion sequence faras described above.
Consider theirst epoch ofu to be the first epoch to terminate during a sequence, efpdates such that
t!| = k. Atthe moment of its creation; owned O™ edges and the duration of this epoch is a random
variable Z distributed uniformly in the rangf...0"]. Using the law of conditional expectation, that is,
E[X; = E[E[X}]Z]], and setting), = E[X}] andM = |O"|, we obtain the following recurrence.

M Zﬁﬂykﬂ‘ +1) fork>M
Yk = (1)
LS g+ 1) for2<k< M

wherey; = Pr[Z = 1] = 1/M. Fork < M, by subtracting the recurrence gf _; from y;, we obtain
Yk — Yk—1 = ﬁ (yk—1 + 1). Solving the recurrence, we obtain
1

Y = 1+

SN Y (A WL S (A
T M U 4M? T« i M T 4M? 3M = \3M

(sincek/M < 1)

AN
|CB
RA
o
B
O =
‘NII
(]2
|
N——

M 4AM 3 —\3
ek ek ek . o feni

< wtort s (sinced 2, (5) < 9)
bek

< =

- M

We will prove that for for allk, y, < 5ek/M. We prove this by using induction dn The base cases
is true :V0 < i < M, y; < 5ei/M . By induction hypothesisyi < k — 1, y; < 5ei/M . To show that the
claim holds fory;, we substitute the values 9f 1, yx_2,- .., yr_as in Equation 1. We obtain

pe < 4 (TG)

= 1+5ek/M — (35 X, 1)

= 14 5ek/M — %%)
< 1+5ek/M —1=5ek/M

Thus we conclude the following lemma:

Lemma 3.3 For anyt > 0, E[X;] = O (t/y/n).

Notice that this proof does not rely on the independence efdhdom numbers since it is obtained by
summing up expectation of random variables representimgoeu of epochs destroyed over subsequences
of updates. For the base case of a sequence of length 1, wearsgoan number in the randge. M|, where
M = |0t < n. To choose a random numbRBi, in the rangd1..M], we first generate a random number
Rintherangdl..njand if R < n — (n mod M) then setR); = (R mod M) + 1 else generate a new

R and repeat the procedure. The reason for choaoBingthis way is to ensure uniform distribution in the
range[l..M]. Forn > 2M, the expected number of repetitions is less than 2.

If we allow total independence, then we can obtain this bowitld high probability as well. Since the
matched edge of an epoch is selected independent of othelng@bfollows that duration of each natural
epoch at level 1 is independent of other natural epochs. ¢teracan state the following lemma.

Lemma 3.4 The probability that a given epoch at level 1 has duration astwis bounded b%

Lemma 3.5 For any giverng > 1,

Proof: If there areg epochs destroyed duringupdates, at least half of them have duratiort/q. Hence,
Pr[X; = ¢| is bounded by the probability that there are at leggd8tepochs of duration at mo%i. So, using
Lemmd 3.4 and exploiting the independence among the epochs,

= (1) @)+ (8)

For the last inequality we use(ql(;z) < (q%) = (2e)". O
We use Lemm@a3]5 to analy#{ X;] and deviation ofX;.

Lemma 3.6 For anyt > 0 X; is O(t/\/n + logn) with very high probability.

Proof:

We chooseyy = 4 (logn + 4et/+/n). It follows from Lemmd3.b that for any > ¢, Pr[X; = ¢] is of
the formb? where basé < 1/2. HencePr[X; > q] is bounded by a geometric series with the first term
< 27% and the common ratio less thap2. Furthermorey, > 4logn, hencePr[X; > qo] is bounded by
2/n*. HenceX, is bounded byD(t/\/n + log n) with high probability. O
Notice that the proofs df 3.6 rely heavily on the total indegence of random numbers used for selecting
random mates. Using standard techniques based on geadr@lirebyshev’s inequality, we can obtain the
same bound usin@(log n) way independence 7).

Now, recall from Lemm&3]1 that each natural epoch destray&el 1 hag)(n) computatiorcharged
to it. So Lemmak 313 arid 3.6, when combined together, imglydhowing result.

Lemma 3.7 The computation costhargedto all the natural epochs which get destroyed during any se-
quence of updates isD(ty/n) in expectation and(¢\/n + nlogn) with high probability.

Let us now analyze the coshargedto all those epochs which are alive at the end apdates. Consider
an epoch (say epoch 6f, v)) such thatu, v) is still in the matching aftet updates. Note that(as well
asv) is involved in at most one live epoch. Since epockwofv) doesn't end, the coshargedto this epoch is

1. The computation cost of starting the epoch is equal todgeg®owned by andv at the start of epoch

(u,v). Since each vertex is involved in at most one live epoch abss$ is at most Z ot

v:epoch ofv is
live aftert updates

where|O"| is the number of edges owned byvhen the live epoch aof started. Note that the num-
ber of edges owned hyis less than the number of edges added tluringt updates. I, is the the
total number of edges added#pthen) O, < > t,. This implies that the cost associated to all
live epochs< > t, = 2t

2. The computation cost associated with thducedepoch which may have ended due to epoch of
(u,v). The cost associated with theiselucedepoch is charged toatural epoch of(u, v). We know
that can be atmost two such epoch(say epoctuofv) and (v,y)). By Lemmal31L, this cost is
O(4/n). Since the total number of updates athe total live epoch at aftérupdates can atmost be
So this computation charged to live epochs due to thmehecedepoch is at mosD(¢4/n).

It thus follows that the computation casgttargedto all the live epochs at afteérupdates i$)(¢/n). During

any sequence afupdates, the total number of epochs created is equal to théeruof epochs destroyed
and the number of epochs that are alive at the endupidates. Hence using Lemifal3.7 we can state the
following theorem.

Theorem 3.1 Starting with a graph om vertices and no edges, we can maintain maximal matchingifpr a
sequence of updates inD(t+/n) time in expectation an@(¢/n + nlogn) with high probability.

3.2 Onimproving the update time beyondO(+/n)

In order to extend our 2EVEL algorithm for getting a better update time, it is worth expig the reason
underlyingO(+/n) update time guaranteed by ouLBvEL algorithm. For this purpose, let us examine the
second invariant more carefully. Lae{n) be the threshold for the maximum number of edges that a vertex
at level 0 can own. Consider an epoch at level 1 associatédseine edge, sayu, v). The computation
associated with this epoch is of the order of the number oégdgandv own which can be(n) in the
worst case. However, the expected duration of the epochtieadrder of the minimum number of edges
can own at the time of its creation, i.€(a(n)). Therefore, the expected amortized computation per edge
deletion for an epoch at level 1 {3(n/a(n)). Balancing this with thex(n) update time at level O, yields
a(n) = /n.

In order to improve the running time of our algorithm, we néadecrease the ratio between the max-
imum and the minimum number of edges a vertex can own duringpach at any level. It is this ratio
that actually bounds the expected amortized time of an epbbls insight motivates us for having a finer
partition of vertices : the number of levels should be inseebtoO (log n) instead of just 2. When a vertex
creates an epoch at levelit will own at least2’ edges, and during the epoch it will be allowed to own at
most2t! — 1 edges. As soon as it starts owni2ig! edges, it should migrate to higher level. Notice that
the ratio of maximum to minimum edges owned by a vertex duangpoch gets reduced frogin to a
constant.

We pursue the approach sketched above combined with sonit@addtechniques in the following
section. This leads to a fully dynamic algorithm for maximedtching which achieves expected amortized
O(logn) update time per edge insertion or deletion.

4 Fully dynamic algorithm with expected amortized O(logn) time per up-
date

Like the 2LEVEL algorithm, we maintain a partition of vertices among vasitevels. We iterate the differ-
ence in the partition vis-a-vis PZEVEL algorithm.

1. The fully dynamic algorithm maintains a partition of vees amonglogn| + 2 levels. The levels
are numbered from-1toLy = |logn]. We will see that the algorithm moves a vertex to leviéthe
vertex is the owner of atlea8t edges at that moment. So a vantage point is needed for a vhRaiex
does not own any edge. As a result, we introduce a level -Ictir@gins all the vertices that do not
own any edge.

2. We use the notion of ownership of edges which is slightffedint from the one used in 2ZEVEL
algorithm. In the 2-EVEL algorithm, at level 0, both the endpoints of the edge are wneeo of the
edge. Here, at every level, each edge is owned by exactly bite endpoints. In particular, the
endpoint at the higher level always owns the edge. If the twetpeints are at the same level, then the
tie is broken appropriately by the algorithm.

Like the 2+ EVEL algorithm, each vertex. will maintain a dynamic hash table storing the eddgs
owned by it. In addition, the generalized fully dynamic algom will maintain the following data structure
for each vertexu. For eachi > LEVEL (u), let £} be the set of all those edges incidentofrom vertices
at level; and are not owned by. For each vertex, and leveli > LEVEL (u), the seﬁg will be maintained
in a dynamic hash table. However the onus of maintaigipgyill not be onu. For any edgéu, v) € &£, v
will be responsible for the maintenance(af v) in £ since(u, v) € O,.

4.1 Invariants and a basic subroutine used by the algorithm

As can be seen from the 2-level algorithm, it is more costeatiife for each vertex to get settled at a higher
level once it owns #arge number of edges. Pushing this idea still further, our fuyamic algorithm will
allow a vertex to rise to a higher level if it can owafficiently largenumber of edges after moving there. In
order to formally define this approach, we introduce an irtgsdmotation here.
For a vertexv with LEVEL (v) = i,

N |Ov|+2i§k<]’|g§| ifj >
9u(d) = { 0 otherwise

In other words, for any vertex at leveli and any;j > i, ¢,,(j) denote the number of edges whiclcan
own if v rises to levelj. Our algorithm will be based on the following strategy. Ifextexv hase, (j) > 27,
thenv would rise to the levef. In case, there are multiple levels to whichan risep will rise to the highest
such level. With this key idea, we now describe the threeriamés which our algorithm will maintain.

1. Every vertex at level 0 is matched and every vertex at level -1 is free.
2. For each vertex and for allj > LEVEL (v), ¢,,(j) < 27 holds true.

3. Both the endpoints of the matched edge are at the same level

By definition, vertices at level -1 cannot be owner of any edgé will see that our algorithm moves a
vertex from level -1 to a higher level as soon as it becomeoth®er of some edges. In fact, the second
invariant bounds us to act in such a manner. If a vertstll remains at level -1 after owning some edges
thene,(0) > 1 > 29, violating the second invariant. This, together with thet that an edge is owned by
one of its endpoints, implies that a vertex at level -1 cari®t neighbor of another vertex at that level.
This fact together with the first invariant imply that the fdihg maintained by the algorithm will indeed
be a maximal matching. Figukré 5 depicts a snapshot of theitidgo The second invariant captures the key
idea described above - after processing every update the@ vertex which fulfills the criteria of rising.
An edge update may lead to violation of the invariants maetibabove and the algorithm basically restores
these invariants. This may involve rise or fall of verticegvibeen levels. Notice that the second invariant
of a vertex is influenced by the rise and fall of its neighbdfge now state and prove two lemmas which
quantify this influence more precisely.

Lemma 4.1 Consider a vertex; for which both invariants hold. The rise of any neighbor, saxannot
violate the second invariant far.

Lo

matched edge

—— unmatched edge

SN

Figure 5: A snapshot of the algorithm @f: all vertices are matched(thick edges) except vertexlevel
-1. Vertexw is the owner of just the edge,). ¢,(2) = 2 < 22 and¢,(3) = 4 < 23, sov cannot rise to a
higher level.

Proof: Let LEVEL (u) = k. Since the invariants hold true farbefore rise ofy, so¢, (i) < 2¢ for all i > k.
It suffices if we can show that, (i) does not increase for arylue to the rise of. We show this as follows.
Let vertexw rises from levelj to ¢. If ¢ < k, the edggu, v) continues to remain id,,, and so there is
no change i, (i) for anyi. Let us consider the case whén- k. The rise ofv from j to ¢ causes removal
of (u,v) from O, (or & if 5 > k) and insertion t€’. As a resulty, (i) decreases by one for eatln
[max(j, k) + 1, ¢], and remains unchanged for all other values. of O

Lemma 4.2 Consider a vertex; for which both invariants hold. Then any fall of one of itsgidors, say
v, from levelj to j — 1 increasesp,, (j) by at most one.

Proof: Let LEVEL(u) = k. In casek > j, there is no change in, (i) for any: due to fall ofv. So let us
consider the casg > k. In this case, the fall of from level j to j — 1 leads to the insertion dfu, v) in
&1 and deletion frongy. Consequentlyp,, (i) increases by one only far= j and remains unchanged for
all other values of. O

In order to detect any violation of the second invariant feegexv due to rise or fall of its neighbors,
we shall maintain{¢,(i)| < Lo} in an arraygp,[] of sizeLy + 2. The updates on this data structure during
the algorithm will involve the following two types of opeiais.

e DECREMENT¢(v, I): As per Lemm&4ll, when a neighbor.ofises from levejj tol, ¢, (i) decreases
by one for alli in interval [max(j, LEVEL (v)) + 1, ¢]. This operation decrements (i) by one for all
iininterval I = [max(j,LEVEL(v)) + 1, ¢].

e INCREMENT-¢(v,7): this operation increases,(i) by one. This operation will be executed when
some neighbor of falls fromitoi — 1.

It can be seen that a singleECREMENT¢(v,) operation take®)(|I|) time which isO(logn) in the worst
case. On the other hand any singl€eREMENT-¢(v, i) operation take®) (1) time. However, sinceé, (i) is
0 initially and is non-negative always, we can conclude tieing.

Lemma 4.3 The computation cost of alECREMENT¢() operations over all vertices is upper-bounded by
the computation cost of alNCREMENT-¢() operations over all vertices during the algorithm.

Observation 4.1 It follows from Lemm&~4]3 that we just need to analyze the atatipn involving all
INCREMENT-¢() operations since the computation involvedBCREMENT-¢() operations is subsumed by
the former.

Procedure GENERI C- RANDOM- SETTLE(u, 1)

1 if LEVEL(u) < i then /'l w owns edges till it reaches level i
2 for eachj = LEVEL (u) toi — 1 do

3 for each(u, w) € &) do

4 transfer(u, w) from & to £ ;

5 transfer(u, w) from O,, to O,;

6 DECREMENT¢(w, [j + 1,1]);

~

Let (u,v) be a uniformly randomly selected edge frdm;
if v is matchedhen
x < MATE(v);
10 M — M\{(v,z)}
else
11 |z NULL

©

12 for eachj = LEVEL (v) toi — 1 do I/v rises to level i and thus owns edges incident
fromvertices at levels LEVEL(v) to 7 —1

13 | for each(v,w) € & do

14 transfer(v, w) from & to £ ;
15 transfer(v, w) from O,, to O,;
16 DECREMENT@(w, [j + 1,1]);

17 M+~ MU{(u,v)};
18 LEVEL(u) <—4; LEVEL(v) < g;
19 returnz;

Figure 6: Procedure used by a free vertieho settleat leveli.

If any invariant of a vertex, say, gets violated, it might rise or fall, though in some casemay still
remain at the same level. However, in all these cases, algntbe vertexu will execute the procedure,
GENERIG-RANDOM-SETTLE, shown in Figurd16. This procedure is essentially a germahliversion of
RANDOM-SETTLE(u) which we used in the 2-level algorithl3ENERICG-RANDOM-SETTLE(u, 4) starts with
moving u from its current level (EVEL (u)) to leveli. If level i is higher than the previous level of u
acquires the ownership of all the edges whose endpointd tigedlevel€ [LEVEL (u),7 — 1]. For each
such edgdwu, v) that is now owned by:, we performDECREMENT¢(v, [LEVEL (v) + 1,1]) to reflect that
the edge is now owned by vertexwhich has moved to level Henceforth, the procedure then resembles
RANDOM-SETTLE. It finds a random edgge:, v) from O, and moves to leveli. The procedure returns the
previous mate of, if v was matched.

Lemma 4.4 Consider a vertex: that execute&ENERIGRANDOM-SETTLE(u,) and ends up selecting a
matewv. Excluding the time spent MECREMENT—¢ operations, the computation time of this procedure is

of the order of O,| + |O,| whereO,, and O, is the set of edges owned hyand v just at the end of the
procedure.

4.2 Handling edge updates by the fully dynamic algorithm

Our fully dynamic algorithm will employ a generic procedwalled PROCESSFREE-VERTICEY). The
input to this procedure is a sequengeconsisting of ordered pairs of the for(m, k) wherez is a free
vertex at levelk > 0. Observe that the presence of free vertices at levél implies that matching\

is not necessarily maximal. In order to preserve maximalftynatching, the procedureROCESSFREE
VERTICES restores the invariants of each such free vertexstils emptied. We now describe our fully
dynamic algorithm.

Handling deletion of an edge

Consider deletion of an edge, séy, v). For eachj > max(LEVEL (u), LEVEL (v)), we decremend,,(j)
and¢,(j) by one. If (u,v) is an unmatched edge, no invariant gets violated. So we aigtelthe edge
(u,v) from the data structures ef andv. Otherwise, letc = LEVEL(u) = LEVEL(v). We execute the
ProcedurePROCESSFREE-VERTICES(((u, k), (v, k))).

Handling insertion of an edge

Consider the insertion of an edge, sayv). We check if the second invariant has got violated for eitier
orv. The invariant may get violated far(likewise forv) if there is any integet > max(LEVEL (u), LEVEL (v)),
such thatp, (i) was2’ — 1 just before the insertion of edde, v). In case there are multiple such integers,
let i,ax be the largest such integer. We incremept/) and ¢, (¢) by one for eacl{ > i.,.x. TO restore
the invariant,u leaves its current mate, say, and rises to level,,... We exeCuteSENERIG-RANDOM-
SETTLE(w, imax), and letz be the vertex returned. Lgtandk be respectively the levels af andx. Note
thatz andw are two free vertices now. We exeClROCESSFREE-VERTICES((z, k), (w, 7))).

Suppose that the insertion of edge v) violates the second invariant for bothandv. Wlog assume

thatw is at a higher level than. We add(u, v) to O, and E55*-™). The highest level to whicl can

rise after this insertion ig. This impliesOy + >\ cve (u)<k<; |EF| = 27 just after this edge is inserted.

Similarly, v may rise atmost to levéland O, + 3= cye, <k [EF] = 2'. If 5 > I, we select: which can
rise to the higher level and restore its second invarianterAhovingu to level j, edge(u, v) becomes an
element of€). SOY" ey)<k |E5| decreases by 1. S, + 3°, cye (v)<i<: |€L| decreases by one and

is now strictly less thaf!, thus the second invariant foris also restored. If > j, then we first process
and move it to a higher level and the invariantuof restored automatically. So we only process the vertex
which can move to a higher level in this case.

4.2.1 Description of ProcedurePROCESSFREE-VERTICES

The procedure receives a sequefaaf ordered pairgzx, i) such thatr is a free vertex at level It processes
the free vertices in the decreasing order of their leveldistafrom Ly. We give an overview of this
processing at level For a free vertex at levé] if it owns sufficientlylarge number of edges, then it settles
at level: and gets matched by selecting a random edge from the edgesidwrit. Otherwise the vertex
falls down by one level. Notice that the fall of a vertex froevéli to i — 1 may lead to rise of some of
its neighbors lying at levek i. However, as follows from Lemnia34.2, for each such verteanly ¢, (%)
increases by one angl, () value for all other level remains same. So the second invaniay get violated
only for ¢,(i). This implies that will rise only to leveli. After these rising vertices move to levgby

Procedure PROCESS- FREE- VERTI CES(S)

1 for each(z,i) € S do ENQUEUHQIi], x);
2 fori=Lpto0do
3 while Q[i] # 0 do
4 v < DEQUEUHQ7]);
5 if FALLING (v) then [lvfalls toi—1
6 LEVEL(v) <1 — 1;
7 ENQUEUHQ([i — 1],v);
9 for eachu € O, do
10 transfer(u, v) from &2 to £i-1;
1 INCREMENT-¢(u, 7);
12 INCREMENT-¢)(v, 7);
13 if ¢, (i) > 2% then Ilurises to i
14 T < GENERIG-RANDOM-SETTLE(u, 7);
15 if x # NULL then
16 ¢ < LEVEL(x);
17 L ENQUEUHQ[!],);
18
else [lv settles at level i
19 T < GENERIGRANDOM-SETTLE(v, 1);
20 if z # NULL then
21 ¢ + LEVEL(z);
22 L ENQUEUHQI/], x);

Function FALLI NG(v)

i < LEVEL (v);

for each(u,v) € O, such thatLEVEL(u) = i do I/ v disowns all edges at |evel i
transfer(u, v) from O, to O,;

L transfer(u, v) from . to &F;

w N e

N

if |O,] < 2! thenreturnTRUE else returnFALSE;

(&)]

Figure 7: Procedure for processing free vertices given asjaesiceS of ordered pairgz,:) wherex is a
free vertex aLEVEL;.

executingGENERICG-RANDOM-SETTLE), we move onto level — 1 and proceed similarly. Overall, the entire
process can be seen as a wave of free vertices falling levieisy, Eventually this wave of free vertices
reaches level -1 and fades away ensuring maximal matchingh s overview, we now describe the
procedure in more details and its complete pseudocodeés givFigurd Y.

The procedure uses an arrgyof sizeLy + 2, whereQ[i] is a pointer to a queue (initially empty)
corresponding to level. For each ordered pair;, k) € S, it insertsz into queueQ[k]. The procedure
executes a for loop fromy down to O where théth iteration extracts and processes the vertices of queue
Q[¢] one by one as follows. Letbe a vertex extracted fro[:]. First we execute the functictALLING (v)
which does the followingw disowns all its edges whose other endpoint lies at leviélv owns less thag’
edges then it is decided thahas to fall, otherwise will continue to stay at level.

1. v has to stay at level
v EXeCUteSGENERIG-RANDOM-SETTLE and selects a random mate, sayfrom levelj < i (if w is
present inQ[j] then it is removed from it and is raised to levgl If 2 was the previous mate af,
thenz is a falling vertex. Vertex: gets added t6)[j]. This finishes the processing of

2. v owns less thad’ edges and has to falll
In this casey falls to leveli — 1 and is inserted t6)[i — 1]. This fall leads to increase, (i) by one
for each neighbot: of v lying at level lower than (see Lemm&412). In casg, (i) has becomé’, u
has to rise to level and is processed as follows.executeSSENERIG-RANDOM-SETTLE and selects
a random mate, say from level j < i. If w was inQ[j] then it is removed from it. Ifc was the
previous mate ofv, thenz is a falling vertex, and so it gets added to quélig|.

In case 1p remains at the same level andmoves to the level of. This renders: free andr is added
to the@[j]. We want to see if the invariant of any other vertex is viafate processing andw. Sincex is
free, the first invariant of is violated. Sar is added to the queue at its level. The processingddes not
changep,, for any neighbor, of v. Furthermore, the rise @b does not lead to the violation of any invariant
due to Lemm&4]1. In case 2falls to leveli — 1 and due to this some vertex rise to leveRll such rising
vertex exeCUut&sENERIC-RANDOM-SETTLE. The second invariant is not violated for other verticesepkc
these vertices. As in case 1, we see that processing theggpvestices may create some free vertices which
are duly added to the queue at their level. However, thekcgssing does not break second invariant to any
other vertex.
Thus we conclude the following lemma.

Lemma 4.5 After ith iteration of the for loop ofPROCESSFREEVERTICES, the free vertices are present
only in the queues at level 4, and for all vertices not belonging to these queues the timegriants holds.

Lemmd4.b establishes that after termination of proceda@CESSFREEVERTICES, there are no free
vertices at level> 0 and all the invariants get restored globally. We want to moanthis specially for the
second invariant. The second invariant ensures that if @xean rise to a higher level, it should rise.
We have seen that many vertex may rise from one level to a highel. The algorithm processes these
vertices in any arbitrary order. Since every vertex acts liocal way, when it is processed, it restores its
second invariant if it is indeed violated at that moment. beafd.5 ensures that there is a stable state for
our algorithm, when all the vertices have their invariarstoesd.

4.3 Analysis of the algorithm

Processing the deletion or insertion of an e@igev) begins with decrementing or incrementing(i) and
¢, (1) for all levels: > max(LEVEL (u), LEVEL (v)). The computation associated with this task over a

sequence of updates will beD(tlogn). This task may be followed by executing the proceckR®OCESS
FREEVERTICES. We would like to mention an important point here. Along witther processing, the
execution of this procedure involvéSCREMENT-¢() and DECREMENT-¢() operations. However, as im-
plied by Observatiofl 411, the computation involvibDgCREMENT-¢() is subsumed byNCREMENT-¢()
operations.

Our analysis of the entire computation performed while pssing a sequence ofupdates is along
similar lines to the 2-EVEL algorithm. We visualize the entire algorithm as a sequeriageation and
termination of various matched epochs. All we need to do analyze the number of epochs created and
terminated during the algorithm and computation assatieteach epoch.

Let us analyze an epoch of a matched efige’). Suppose this epoch got created by verieat level
j. Sov would have executedENERIC-RANDOM-SETTLE and selected as a random mate from level ;.
Note thatv must be owning less tha?i*! edges and: would be owning at most’ edges at that moment.
This observation and Lemnia #.4 imply that the computatieolied in creation of the epoch ©(27).
Once the epoch is created, any update pertaining @¢o v will be performed in justO(1) time until the
epoch gets terminated. Let us analyze the computationmpegfbwhen the epoch gets terminated. At this
moment either one or botlhh andv become free vertices. if becomes freey executes the following task
(see procedur@ROCESSFREE-VERTICES in Figure[T)v scans all edges owned by it, which is less than
2711 and disowns those edges incident from vertices of lgv@hereatfter, ifv still owns at leasp’ edges,
it settles at levelj and becomes part of a new epoch at lexeOtherwise,v keeps falling one level at a
time. For a single fall ofy from level: to i — 1, the computation performed involves the following tasks:
scanning the edges owned bydisowning those incident from vertices at leveincrementingy,, values
for each neighbotv of v lying at level less tham, and incrementing, () by one. All this computation is
of the order of the number of edgesowns at level which is less thar2’*!. Eventually eithew settles at
some levek > 0 and becomes part of a new epoch or it reaches level -1. THecttgputation performed
by v is, therefore, of the order OF7_, 2! = O(27). This entire computation involving (andw) in this
process is associated with the the epoctuob). Hence we can state the following Lemma.

Lemma 4.6 For anyi > 0, the computation associated with an epoch at lévelO(2¢).

Let us now analyze the number of epochs terminated duringsaguence of updates. An epoch
corresponding to edge, v) at leveli could be terminated if the matched edgev) gets deleted. However,
it could be terminated by any of the following reasons also.

e 1y Orv get selected as a random mate by one of their neighbors presse&veL > i.
e w Or its mate starts owningf*! or more edges.

Each of the above factors render the epoch to be an inducegsh.epde shall assign the cost of each
induced epoch to the epoch which led to the destruction ofatimer. To this objective, we now introduce
the notion of computatioohargedto an epoch at any level Note that no epoch is created at level -1 as the
vertices at level -1 are always free.ili= 0, the computatiorthargedto the epoch is the actual computation
performed during the epoch which@¥1). For any level > 0, the creation of an epoch causes destruction
of at most two epochs at levelsi. It can be explained as follows: Consider an epoch at leaskociated
with an edge, sayu,v). Suppose it was created by vertexIf « was already matched at levglj < i),
let w # v be its mate. Similarly, ifv was also matched already, let% « be its current mate at levél
So matchingu to v terminates the epoch ¢fi, w) and (v, x) at levelj andk respectively. Wehargethe
overall cost of these two epochs to the epoclrob).

The computation charged to an epoch at lével0 is defined recursively as the actual computation cost
of the epoch and the computatichargedto at most two epochs destroyed by it at level. Let C; be the
computation charged to an epoch at leielrhe epoch terminated by this epoch can be at Ievel in the

worst case. Also the computational cost associated witlpaateat level is c.2* wherec is a constant. So
we get the following recurrence’; < 2C;_1 + c.2'. This impliesC; = O(i2).

Lemma 4.7 The computation charged to a natural epoch at levslO(i2).

Henceforth we just proceed along the lines of the analysmioR4 EVEL algorithm analogous to the proof
of Lemm&3.8. LefX;(i) be the random variable denoting the numbenatiral epochs at levelterminated
during a sequence of updates. Recall that;, = >, X,), Wheret, (i) is the deletion sequence far
By substitutingM = 2¢, in the the earlier analysis for two levels, using identaa@uments, it follows that

BIX ()] = 3, EX 0] = 22, O(tu(i)/27) = O(t:/2").

2
Note that Lemm&_3]5 shows th&r[X; = ¢] < (;i]\j)q/ , whereM = ,/n. Similarly by using

M = 2¢, we can show that if; is the deletion sequence at leveind X, is the random variable denoting

. /2
the total number of epoch ending at levelthen P[X;, = ¢] < (‘g;)q . Similar to Lemmd_3J6, we

choosegy = 4 (logn + 4et;/2%). For anyq > qo, Pr[X;, = q| is of the formb? where basé < 1/2.
HencePr[X;, > qo] is bounded by a geometric series with the first tetrra—% and the common ratio less
than1/2. Furthermorey, > 4logn, hencePr[X;, > qo] is bounded by/n*. HenceX;, is bounded by
O(t/2" + log n) with high probability.

Lemma 4.8 The expected number of natural epochs terminated at ieseD(t;/2°) and O(t; /2° + logn)
with high probability.

It thus follows from Lemmé#& 417 and Lemria 1.8 that the compartathargedto all natural epochs ter-
minated at level is O(it;) in expectation. Summing up for all levels, the expected tataber of nat-

logn
ural epoch =Z it; < 1ognz;°:g1" t; = O(tlogn). Similarly the total number of epochs at leviels
=1
O(it; + i2%logn) with high probability. Summing up for all the levels, andngithe union bound, the
logn

total number of epochs over all thegn levels = " (it; + i2'logn) < tlogn + log?n 325" 2" <
=1

O(tlogn + nlog®n) with high probability. We can summarize as follows.

Lemma 4.9 For any sequence dafupdates, the computaticchargedto all the natural epochs which get
terminated isO(t log n) in expectation and (¢ log n 4+ n log? n) with high probability.

Let us now analyze the coslhhargedto all those epochs which are alive at the end @bdates. Consider
an epoch (say epoch 6, v) at leveli) such thatfu, v) is still in the matching aftet updates.

By Lemmal4.y, computation charged to epoci{wafv) is O(i2%). If 0" was the edges owned hy
at the start of the epoch, then sin&| > 2! at the start of the epoch. We can say that the computation
charged i€ (i|0t|) < O((logn)t,) wheret, is the total updates om Since a vertex can be part of only
one live epoch, the total computation cost charged to alliteeepochs isy |, O(t, logn) = O(tlogn).

Hence we can conclude the following result.

Theorem 4.1 Starting from an empty graph omvertices, a maximal matching in the graph can be main-
tained over any sequencetahsertion and deletion of edges@(t log) time in expectation an@ (¢ log n+
nlog? n) time with high probability.

5 Conclusion

We presented a fully dynamic algorithm for maximal matchiigch achieves expected amortiz@dog n)
time per edge insertion or deletion. Maximal matching i® &sapproximation of maximum matching.

Our experiments show that for most of the inputs, the matchinintained is very close to the maximum
matching. But it is not hard to come up with update sequench that at the end of the sequence, the
matching obtained is strictly half the size of maximum matgh We present one such example. Let
G(VUU, E) be a graph such th&t = {vy,vs,...,v,} andU = {uy,us,...,u,}. Consider the following
update sequence. In the first phase, add edges between s (paiv;) if there is no edge between them.
Eventually this process ends when there is a complete graptenices ofl/. In the second phase, add
edge(v;, u;) for all i. Note that the degree of eaahis one at the end of the updates. Let us now find the
matching which our algorithm maintains. After the first pha$ update ends, we have a complete graph on
V. At that moment, we claim that the size of matching obtaingadur algorithm isn. Indeed, size of any
maximal matching on a complete graph of sizis n. Let (v;, v;) be an edge in the matching after phase 1.
Note that both these endpoints are at a level greater thah vértex inU is at level -1 as it does not have
any adjacent edges after phase 1. When an édge;) is added, since; is at a higher level than;, v;
becomes the owner of this edge. In the worst case, the seoeaaaint ofv; is not violated after this edge
deletion and nothing happens at this update stepuastlll remains at level -1. Using same reasoning, we
can show that:; also remains at level -1 after the addition of edgg u;). Since bothu; andu; are free
after these edge updates, there is a 3-augmenting patmgakssbugh edgé¢v;, v;). In general, there will
be a vertex disjoint 3-augmenting passing through all thicheal vertices. This implies that the maximum
matching is2n after phase 2. But size of matching of our algorithm iat that point.

It would be a challenging problem to seecipproximate maximum matching fer< 2 can also be
maintained inO(log n) update time. In particular, for maintaining a 3/2-approaienmatching, we have to
take care of all the 3-augmenting path. It is not clear howxtered our algorithm to handle 3-augmenting
paths.

6 Acknowledgment

We thank Pankaj K. Agarwal for his valuable feedback on tles@ntation of the paper.

References

[1] David Alberts and Monika Rauch Henzinger. Average casayeis of dynamic graph algorithms. In
SODA pages 312-321, 1995.

[2] Monika Rauch Henzinger and Valerie King. Randomizedyfdlynamic graph algorithms with polylog-
arithmic time per operation]. ACM, 46(4):502-516, 1999.

[3] Jacob Holm, Kristian de Lichtenberg, and Mikkel Thor@mly-logarithmic deterministic fully-dynamic
algorithms for connectivity, minimum spanning tree, 2-edand biconnectivity. I$TOGC pages 79-89,
1998.

[4] Zoran Ivkovic and Errol L. Lloyd. Fully dynamic maintenee of vertex cover. IWG '93: Proceedings
of the 19th International Workshop on Graph-Theoretic Gapts in Computer Sciencpages 99-111,
London, UK, 1994. Springer-Verlag.

[5] Krzysztof Onak and Ronitt Rubinfeld. Maintaining a largnatching and a small vertex cover.3mOG
pages 457-464, 2010.

[6] Piotr Sankowski. Faster dynamic matchings and vertemeativity. INnSODA pages 118-126, 2007.
[7] R. Pagh and F. F. Rodler. Cuckoo hashidgurnal of Algorithms51:122—-144, 2004.

[8] Michal Parnas and Dana Ron. Approximating the minimumesecover in sublinear time and a con-

nection to distributed algorithms Imheor. Comput. Sgivolume 381, number 1-3, pages 183-196,
2007.

	1 Introduction
	2 An overview
	2.1 Related Work
	2.2 Organization of the paper

	3 Fully dynamic algorithm with expected amortized O(n) time per update
	3.1 Analysis of the algorithm
	3.1.1 Bounding the computation charged to the natural epochs destroyed

	3.2 On improving the update time beyond O(n)

	4 Fully dynamic algorithm with expected amortized O(logn) time per update
	4.1 Invariants and a basic subroutine used by the algorithm
	4.2 Handling edge updates by the fully dynamic algorithm
	4.2.1 Description of Procedure process-free-vertices

	4.3 Analysis of the algorithm

	5 Conclusion
	6 Acknowledgment

