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Abstract

We present an algorithm for maintaining maximal matching ina graph under addition and deletion
of edges. Our data structure is randomized that takesO(log n) expected amortized time for each edge
update wheren is the number of vertices in the graph. While there is a trivial O(n) algorithm for edge
update, the previous best known result for this problem was due to Ivković and Llyod[4]. For a graph
with n vertices andm edges, they give anO((n+m)

0.7072
) update time algorithm which is sublinear

only for a sparse graph.
For the related problem of maximum matching, Onak and Rubinfeld [5] designed a randomized

data structure that achievesO(log2 n) expected amortized time for each update for maintaining ac-
approximate maximum matching for some large constantc. In contrast, we can maintain a factor two
approximate maximum matching inO(log n) expected amortized time per update as a direct corollary
of the maximal matching scheme. This in turn also implies a two approximate vertex cover maintenance
scheme that takesO(log n) expected amortized time per update.

1 Introduction

In the last decade, there has been considerable research inDynamicGraph Algorithms where we want to
maintain a data structure associated with some property (like connectivity, transitive closure or matching)
under insertion and deletion of edges. Even for a simple property like connectivity, it took researchers
considerable effort to design a polylog(n) update time algorithm [2, 3]. In this work, we address fully
dynamic maintenance of maximal matching in a graph.

Let G = (V,E) be a graph onn vertices andm edges. A matching inG is a set of edgesM ⊆ E
such that no two edges inM share any vertex. A maximum matching is a matching that contains the
largest possible number of edges. A matching is said to be a maximal matching if it cannot be strictly
contained in any other matching. It is well known that a maximal matching guarantees a 2-approximation
of the maximum matching. Ivković and Llyod [4] designed thefirst fully dynamic algorithm for maximal
matching withO((n + m)0.7072) update time. In contrast, there exists a much larger body of work for
maximum matching.

Sankowski [6] gave an algorithm for the maintaining maximummatching which processes each update
in O(n1.495) time. Alberts and Henzinger [1] gave an expectedO(n) update time algorithm for maintaining
maximum matching with respect to arestricted random model. Therefore the goal of apolylog(n) update
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time dynamic maximum matching algorithm appears to be too ambitious. In particular, even achieving a
o(
√
n) bound on the update time would imply an improvement of the longstandingO(m

√
n) bound of the

best static algorithm for maximum matching due to Micali andVazirani [?]. So approximation appears to
be inevitable if we wish to achieve really fast update time for maintaining matching. Recently, Onak and
Rubinfeld [5] presented a randomized algorithm for maintaining ac-approximate (for some large constantc)
matching in a dynamic graph that takesO(log2 n) amortized time for each edge update. This matching is not
necessarily maximal, as a maximal matching would imply a factor two approximate maximum matching. In
particular, they pose the following question -

“Our approximation factors are large constants. How small can they be made with polylogarithmic
update time ? Can they be made 2 ? Can the approximation constant be made smaller than two for maximum
matching ?..”

We resolve one of their central questions by presenting a fully dynamic algorithm for maximal matching
which achievesO(log n) expected amortized time per edge insertion or deletion. Ourbound also implies a
similar result for maintaining a two approximate vertex cover.

2 An overview

LetM denote the matching of the given graph at any moment. Every edge ofM is called amatchededge
and an edge inE\M is called anunmatchededge. For an edge(u, v) ∈ M, we defineu to be themateof v
andv to be themateof u. For a vertexx if there is an edge incident to it fromM, thenx a matchedvertex;
otherwise it isfreeor unmatched.

In order to maintain a maximal matching, it suffices to ensurethat there is no edge(u, v) in the graph
such that bothu andv are free with respect to the matching. From this observation, an obvious approach
will be to maintain the information for each vertex whether it is matched or free at any stage. When an edge
(u, v) is inserted, add(u, v) to the matching ifu andv are free. For a case when an unmatched edge(u, v) is
deleted, no action is required. Otherwise, for bothu andv we search their neighborhood for any free vertex
and update the matching accordingly. It follows that each update takesO(1) computation time except when
it involves deletion of a matched edge; in this case the computation time is of the order of the sum of the
degrees of the two vertices. So this trivial algorithm is quite efficient forsmalldegree vertices, but could be
expensive forlarge degree vertices. An alternate approach to handling deletion of a matched edge is to use
a simple randomized technique - a vertexu is matched with a randomly chosen neighborv. Following the
standard adversarial model, it can be observed that an expecteddeg(u)/2 edges incident tou will be deleted
before deleting the matched edge(u, v). So the expected amortized cost per edge deletion foru is roughly

O
(

deg(u)+deg(v)
deg(u)/2

)

. If deg(v) ≫ deg(u), then this update time can be as bad as the one obtained by the

trivial algorithm mentioned above; but ifdeg(u) is high, the update time is better. We combine the idea of
choosing a random mate and the trivial algorithm suitably asfollows. We introduce the notion ofownership
of edges wherein we assign an edge to that endpoint which hashigherdegree. We maintain a partition of the
set of vertices into two levels : 0 and 1. Level 0 consists of vertices which ownfewedges and we handle the
updates in level 0 using the trivial algorithm. The level 1 consists of vertices (and their mates) which own
large number of edges and we use the idea of random mate to handle their updates. In particular, a vertex
chooses a random mate from its set of owned edges which ensures that it selects a neighbor having a lower
degree. This is the basis of our first fully dynamic algorithmwhich achieves expected amortizedO(

√
n)

time per update.
A careful analysis of theO(

√
n) update time algorithm suggests that afiner partition of vertices may

help in achieving a better update time. This leads to our mainalgorithm which achieves expected amortized
O(log n) time per update. More specifically, our algorithm maintainsan invariant that can be informally
summarized as follows.



Each vertex tries to rise to a level higher than its current level if upon reaching that level, there are
sufficiently large number of edges incident on it from lower levels. Once a vertex reaches a new level, it
selects a random edge from this set and makes it matched.

2.1 Related Work

Onak and Rubinfeld [5] also pursue an approach based on use ofrandomization to achieve efficient updates
and maintain a partitioning of vertices into a hierarchy ofO(log n) level that is along the lines of Parnas
and Ron [8]. The algorithm of Onak and Rubinfeld [5] takes a global approach in building leveli of this
hierarchy as follows. For leveli, they consider the subgraph consisting of verticesVi and their neighbors
and argue that a random subset of these edges form a matching of size |Vi|/a with high probability for
some constanta > 1. If the matching at leveli falls below a predefined threshold, then a new matching is
computed for the vertices at leveli. The matching algorithm always tries to ensure that the matched edges at
level i is always greater than|Vi|/a. As a consequence, a free vertex at leveli may not get processed if the
matching size at leveli is above the threshold. This is the reason that the matching obtained is not maximal.
The approximation factora is an outcome of some probabilistic calculations using Chernoff bounds that is
chosen to be asufficientlylarge. Therefore, it is unlikely that any simple variation of this global approach
can lead to a maximal matching.

We also maintain a hierarchical partitioning of vertices but it is distinctly different from the scheme
of Onak and Rubinfeld [5]. As described earlier, the update algorithm in [5] may not process a vertex at
level i if the matching at leveli is above a certain threshold. This is aglobal approach of maintaining
large matching at leveli. On the other hand, we process a free vertex at leveli as soon as it becomesfree.
Irrespective of the matching size at leveli, we try to find a matched edge for thisfreevertex. This is avertex
centric approach for maintaining matching which ensures that the matching is maximal. Our algorithm
achieves significantly better results than [5], i.e., a guaranteed factor 2 matching. The use of randomization
is limited to choice of a random matching vertex and theO(log n) expected update time can be derived
usingO(log n) purely random bits.

2.2 Organization of the paper

For a gentle exposition of the ideas and techniques, we first describe a fully dynamic algorithm for maximal
matching that has 2 levels and achieves expected amortizedO(

√
n) time per update. This is followed by

our final fully dynamic algorithm which haslog n levels and achieves expected amortizedO(log n) time per
update (Theorem 4.1). All logarithms in this paper are with base 2 unless mentioned otherwise.

3 Fully dynamic algorithm with expected amortizedO(
√
n) time per update

The algorithm maintains a partition of the set of vertices into two levels. We shall useLEVEL(u) to denote
the level of a vertexu. We defineLEVEL(u, v) for an edge(u, v) asmax(LEVEL(u), LEVEL(v)).

We now introduce the concept ofownershipof the edges. Each edge present in the graph will be owned
by one or both of its end points as follows. If both the endpoints of an edge are at level0, then it is owned
by both of them. Otherwise it will be owned by exactly that endpoint which lies at higher level. If both
the endpoints are at level 1, the tie will be broken suitably by the algorithm. As the algorithm proceeds,
the vertices will make transition from one level to another and the ownership of edges will also change
accordingly. LetOu denote the set of edges owned byu at any moment of time. Each vertexu ∈ V will
keep the setOu in a dynamic hash table [7] so that each search or deletion onOu can be performed in worst
caseO(1) time and each insertion operation can be performed in expectedO(1) time. This hash table is



also suitably augmented with a linked list storingOu so that we can retrieve all edges of setOu in O(|Ou|)
time.

The algorithm maintains the following three invariants before the next update is processed.

1. Every vertex at level 1 is matched. Every free vertex at level 0 has all its neighbors matched.

2. Every vertex at level 0 owns less than
√
n edges at any moment of time.

3. Both the endpoints of matched edges are at the same level.

The first invariant implies that the matchingM maintained is maximal at each stage. A vertexu is said to
be adirty vertex at a moment if at least one of its invariants does not hold. In order to restore the invariants,
each dirty vertex might make transition to some new level anddo some processing. This processing in-
volves owning or disowning some edges depending upon whether the level of the vertex has risen or fallen.
Thereafter, the vertex will executeRANDOM-SETTLE or NAIVE -SETTLE to settle downat its new level. The
pseudocode for insert and delete operation is given in Figure 1 and Figure 2.

Handling insertion of an edge

Let (u, v) be the edge being inserted. If eitheru or v are at level 1, there is no violation of any invariant. So
the only processing that needs to be done is to assign(u, v) toOu if LEVEL(u) = 1, and toOv otherwise.
This takesO(1) time. However, if bothu andv are at level 0, then we executeHANDLING -INSERTION

procedure which does the following (see Figure 1).
If u andv are free, then insertion of(u, v) has violated the first invariant foru as well asv. We restore it

by adding(u, v) toM. Note that the insertion of(u, v) also leads to increase of|Ou| and|Ov | by one. We
process that vertex out ofu andv which owns larger number of edges; letu be that vertex. If|Ou| =

√
n,

then invariant 2 has got violated. We executeRANDOM-SETTLE(u); as a result,u moves to level 1 and gets
matched to some vertex, sayy, selected randomly uniformly fromOu. Vertexy moves to level 1 to satisfy
Invariant 3. Ifw andx were respectively the earlier mates ofu andy at level 0, then the matching ofu with y
has renderedw andx free. So to restore invariant 1, we executeNAIVE -SETTLE(w) andNAIVE -SETTLE(x).
This finishes the processing of insertion of(u, v). Note that whenu rises to level 1,|Ov | remains unchanged.
Since all the invariants forv were satisfied before the current edge update, it follows that the second invariant
for v still remains valid.

Handling deletion of an edge

Let (u, v) be an edge that is deleted. If(u, v) /∈ M, all the invariants are still valid. So let us consider the
nontrivial case when(u, v) ∈ M. In this case, the deletion of(u, v) has madeu andv free. Therefore,
potentially the first invariant might have got violated foru andv, making them dirty. We do the following
processing in this case.

If edge(u, v) was at level 0, then following the deletion of(u, v), vertexu executesNAIVE -SETTLE(u),
and then vertex(v) executesNAIVE -SETTLE(v). This restores the first invariant and the verticesu andv are
cleanagain. If edge(u, v) was at level 1, thenu is processed using the procedure shown in Figure 2 which
does the following (v is processed similarly).

First,u disowns all its edges whose other endpoint is at level 1. If|Ou| is still greater than or equal to√
n, thenu stays at level 1 and executesRANDOM-SETTLE(u). If |Ou| is less than

√
n, u moves to level 0

and executesNAIVE -SETTLE(u). Note that the transition ofu from level 1 to 0 leads to an increase in the
number of edges owned by each of its neighbors at level 0. The second invariant for each such neighbor, say
w, may get violated if|Ow| =

√
n, makingw dirty. So we scan each neighbor ofu sequentially and for each



Procedure HANDLING-INSERTION(u, v)

if u andv are FREE then M←M∪ {(u, v)};1

if |Ov | > |Ou| then swap(u, v);2

if |Ou| =
√
n then3

foreach (u,w) ∈ Ou do4

delete(u,w) fromOw;5

x← RANDOM-SETTLE(u);6

if x 6= NULL then NAIVE -SETTLE(x);7

if w was previous mate ofu then NAIVE -SETTLE(w);8

Procedure RANDOM-SETTLE(u): Finds a random edge(u, v) from the owned edges ofu and re-
turns the previous mate ofv

Let (u, v) be a uniformly randomly selected edge fromOu;1

foreach (v,w) ∈ Ou do2

delete(v,w) fromOw;3

if v is matchedthen4

x← MATE(v);5

M←M\{(v, x)}6

else
x← NULL ;7

M←M∪ {(u, v)};8

LEVEL(u)← 1; LEVEL(v)← 1;9

returnx;10

Procedure NAIVE-SETTLE(u) : Finds a free vertex adjacent tou deterministically

for each(u, x) ∈ Ou do1

if x is freethen2

M←M∪ {(u, x)};3

Break;4

Figure 1: Procedure for handling insertion of an edge(u, v) whereLEVEL(u) = LEVEL(v) = 0.



Procedure HANDLING-DELETION(u,v)

foreach (u,w) ∈ Ou and LEVEL(w) = 1 do1

move(u,w) fromOu toOw;2

if |Ou| ≥
√
n then3

x← RANDOM-SETTLE(u);4

if x 6= NULL then NAIVE -SETTLE(x);5

else
LEVEL(u)← 0;6

NAIVE -SETTLE(u);7

foreach (u,w) ∈ Ou do8

if |Ow| ≥
√
n then9

x← RANDOM-SETTLE(w);10

if x 6= NULL then NAIVE -SETTLE(x);11

Figure 2: Procedure for processingu when(u, v) ∈ M is deleted andLEVEL(u)=LEVEL(v)=1.

dirty neighborw (that is, |Ow| ≥
√
n), we executeRANDOM-SETTLE(w) to restore the second invariant.

This finishes the processing of deletion of(u, v).
It can be observed that, unlike insertion of an edge, the deletion of an edge may lead to creation of a

large number of dirty vertices. This may happen if the deleted edge is a matched edge at level 1 and at least
one of its endpoints move to level 0.

3.1 Analysis of the algorithm

We analyze the algorithm using the concept ofepochs, which we explain as follows. While processing the
sequence of insertions and deletions of edges, some matchededges become unmatched and some unmatched
edges become matched.

Definition 3.1 Consider any edge(u, v), and let it be a matched edge at timet. Then theepochof (u, v) is
the maximal continuous time period containingt for which it remains inM.

The entire life span of an edge(u, v) consists of a sequence of epochs of(u, v) separated by the contin-
uous periods when(u, v) is not matched.

The third invariant implies that epochs can be partition into epochs at level 0 and level 1. In order to
bound the computation time per update, we calculate the computation involved in an epoch at level 0 and 1.
We will see that the major computations are done either at time of the start of an epoch (when the edge is
included in the matching) or at the end of an epoch(when the edge removed from the matching). An update
steps may involve starting and ending of many epoch. Let the total time taken by our algorithm at update
stept is Ct. For the analysis we will redistribute this computational time among the various epochs at step
t. Precisely, if an epoch of(u, v) starts at timet, let the computational cost associated with the start of this

epoch beS(u,v)
t . Similarly, let the computational cost associated with theend of epoch of(w, y) beQ(w,y)

t .
We redistributeCt in such a way that the sum of all theSt’s andQt’s is Ct at update stept. Now, we look
at all the procedures of our algorithm and try to distribute their computation cost among various epochs.

1. NAIVE -SETTLE(u)
In the procedureNAIVE -SETTLE(u), eitheru finds a matev or it becomes free. In both the cases the



time required isO(
√
n) asu searches atmost

√
n owned edges at level 0. Let us deal with these cases

separately.

(a) u manages to find a new matev
In this case, an epoch of(u, v) starts. TheO(

√
n) time is associated with the start of the epoch

of (u, v).

(b) u becomes free
Even in this case the time required isO(

√
n). We have to associate this cost to some epoch.

Let us now look at the procedureNAIVE -SETTLE(u) closely. NAIVE -SETTLE(u) can be called
from two places:HANDLING -INSERTION (line 7 and line 8) andHANDLING -DELETION(line 5
and line 11). In these caseNAIVE -SETTLE(u) is executed because of the following reason: the
previous mate ofu(sayw) has moved to level 1.w moves to level 1 either to executeRANDOM-
SETTLE or due to the fact that some vertex at level 1 executedRANDOM-SETTLE and chosew
as its random mate. So the computation cost ofO(

√
n) is associated with the end of epoch of

(u,w).

2. RANDOM-SETTLE(u)
In RANDOM-SETTLE(u), u finds a random matev from level 0. It then pullsv to level 1 to satisfy the
third invariant. In this process,v becomes the sole owner of all the edges that have other endpoint at
level 0(line 2,3). Sincev was the owner of atmost

√
n edges, the total computation time involved in

performing this step isO(
√
n). Other steps inRANDOM-SETTLE can be executed inO(1) time. So

the total computation time isO(
√
n). This computation time is associated with the start of the epoch

(u, v).

3. HANDLING -INSERTION(u, v)
We have already taken care of line 6,7 and 8 ofINSERTION-HANDLE as it calls eitherRANDOM-
SETTLE or NAIVE -SETTLE on those lines. The only non-trivial step in this procedure left is line 4 and
5. Here, vertexu is about to executeRANDOM-SETTLE(u). In a preparation for this, it becomes the
sole owner of its edges at level 0. Sinceu was the owner of atmost

√
n edges, the total computation

time involved in performing this step isO(
√
n). This computation time is associated with the start of

the epoch(u, v).

4. HANDLING -DELETION(u, v) Again note that we have already accounted for the major part of this
procedure. Only line 1 and line 2 are the non-trivial sectionof this procedure that are not accounted.
Here a matched edge ofu was deleted andu starts this procedure by disowning all its owned edges
whose other endpoint is at level 1. The number of such edges can beO(n). Therefore, the computation
time isO(n) and it is associated to the end of the previous epoch ofu.

Excluding the updates that cause the start and end of an epochof (u, v), every other edge update on
u andv during the epoch is handled in justO(1) time. Therefore, we shall focus only on the amount of
computation associated with the start and end of an epoch. Let us now analyze the actual computation
associated with the epoch at level 0 and level 1.

• Epoch at level 0
The only non-trivial computation associated with the startof the epoch is inNAIVE -SETTLE. We have
already seen that the computational cost ofNAIVE -SETTLE is O(

√
n) and can be associated with the

start or end of some epoch.

• Epoch at level 1
Consider the epoch of(u, v) at level 1. There are two ways in which epoch at level 1 starts:



LEVEL 1

LEVEL 0Time
epoch of(u,w)

epoch of(u,w)

epoch of(u, v)
epoch of(u, v)

epoch of(v, x)

epoch of(v, x)

Figure 3: Epochs at level 0 and 1; the creation of an epoch at level 1 can destroy at most two epochs at level
0.

– In HANDLING -INSERTION

The computation cost associated with the start of the epoch of (u, v) is atmost the computation
cost required in executing the procedureHANDLING -INSERTION. We have already calculated
that line 4,5 ofHANDLING -INSERTION takesO(

√
n) time. All this computation cost is associ-

ated to epoch of(u, v).

– In HANDLING -DELETION

In HANDLING -DELETION, a epoch of(u, v) may start due to callingRANDOM-SETTLE at line
4 or at line 10. In both the cases the cost associated is equal to the cost of executingRANDOM-
SETTLE which isO(

√
n).

Now let us calculate the computation cost associated with epoch of (u, v) when it ends. The only
place where computation cost is associated with the end of the epoch is at line 1-2 ofHANDLING -
DELETION. This cost is atmostO(n).

From our analysis, it follows that the amount of computationassociated with an epoch at level 0 is
O(
√
n) and to level 1 isO(n+

√
n) which isO(n).

An epoch corresponding to some edge, say(u, v), ends because of exactly one of the following causes.

(i) if (u, v) is deleted from the graph.

(ii) u (or v) get matched to some other vertex leaving its current mate free.

An epoch will be called anatural epoch if it ends due to cause (i); otherwise it will be called aninduced
epoch. Inducedepoch can end prematurely since, unlike natural epoch, the matched edge is not actually
deleted from the graph when aninducedepoch ends.

It follows from the algorithm described above that every epoch at level 1 is a natural epoch whereas
an epoch at level 0 can be natural or induced depending on the cause of its termination. Furthermore,
each induced epoch at level 0 can be associated with a naturalepoch at level 1 whose creation led to the
termination of the former. In fact, there can be at most two induced epochs at level 0 which can be associated
with an epoch at level 1. It can be explained as follows (see Figure 3).

Consider an epoch at level 1 associated with an edge, say(u, v). Suppose it was created by vertexu. If
u was already matched at level 0, letw 6= v be its mate. Similarly, ifv was also matched already, letx 6= u
be its current mate at level 0. So matchingu to v terminates the epoch of(u,w) as well as the epoch of edge
(v, x) at level 0. Wechargethe overall cost of these two epochs to the epoch of(u, v). We have seen that
the computational cost associated with an epoch at level 0 isO(

√
n). So the overall computationchargedto

an epoch of(u, v) at level 1 isO(n+ 2
√
n) which isO(n).



Lemma 3.1 The computation charged to a natural epoch at level 1 isO(n) and the computation charged
to a natural epoch at level 0 isO(

√
n).

In order to analyze our algorithm, we just need to get a bound on the computationchargedto all natural
epochs at level 0 and level 1 during a sequence of updates. In particular, we need to bound the computation
chargedto all the natural epochs which either end during the updatesor remainalive at the end of all the
updates. Byalive, we mean that matched edges corresponding to these epoch remain in the matching after
all the update ends.

3.1.1 Bounding the computation charged to the natural epochs destroyed

Let t be the total number of updates. Each natural epoch at level 0 which is destroyed can be assigned
uniquely to the deletion of its matched edge. Hence it follows from Lemma 3.1 that the computationcharged
to all natural epochs destroyed at level 0 duringt updates isO(t

√
n).

Now we shall analyze the number of epochs destroyed at level 1. Consider an epoch at level 1initiated
by some vertex,u by selecting a random edge(u, v) fromOinit

u . From the invariant,Oinit
u has at least

√
n

edges. Consider the sequence of edge deletions following the creation of the epoch initiated byu. Let tu
denote the subsequence of edges fromOinit

u , and observe that the this epoch is completely determined bytu
and the epoch ends when(u, v) is deleted. Since the vertexu selected a matched edge out ofOinit

u uniformly
at random, the matched edge ofu may appear anywhere in this subsequence with equal probability 1. The
durationof the epoch initiated byu is the number of edges inOinit

u deleted during the epoch (before(u, v))
and is a random variable uniformly distributed in the range[1, |Oinit

u |]. See Figure 4.
Henceforth,tu will denote the truncated subsequence and we denote thedurationof this epoch by|tu|.

Since an edgee can be deleted and inserted multiple times in an update sequence, letei denote thei-th
occurrence of the edgee - ei+1 can appear only afterei is deleted. Letτu denote thelabelledversion of
tu where the edges carry the additional information of their occurrence index. Since an edge can be owned
exactly by oneinitiator at any time, it implies the following observation.

Lemma 3.2 τw andτu are disjoint forw 6= u.

In our subsequent discussion, we will not distinguish betweentu andτu and assume thattu’s are disjoint.

u

......
Oinit

u

sequence of deletion of edges incident onu

sequence of deletion of edgesOinit
u

matched edge ofu

(i) (ii)

Figure 4: (i) Edges incident onu and the setOinit
u at any moment of time; (ii) The matched edge can appear

any where in the subsequence of deletions ofOinit
u .

For a vertexu, let t′u denote the concatenation of successivetu for all the epochs initiated byu. For a
deletion sequencet′u, we will find the expected number of epochs which created thisdeletion sequence. We

1assuming that all the edges appear and only the first deletionof any edge is relevant



will prove that on expectation, the number of epochs for a deletion sequencet′u isO(|t′u|/
√
n). Since thet′u

are disjoint (Lemma 3.2), the expected total number of epochs isO(t/
√
n), wheret is the total number of

edges deleted at level 1. From Lemma 3.1, the expected total cost charged to these epochs isO(t
√
n).

LetXt be the random variable denoting the number of epochs at level1 destroyed during a sequence of
t updates. As described aboveXt =

∑

uX|t′
u
|, wheret′u is the deletion sequence foru as described above.

Consider thefirst epoch ofu to be the first epoch to terminate during a sequence oft′u updates such that
|t′u| = k. At the moment of its creation,u ownedOinit

u edges and the duration of this epoch is a random
variableZ distributed uniformly in the range[1...Oinit

u ]. Using the law of conditional expectation, that is,
E[Xk = E[E[Xk|Z]], and settingyk = E[Xk] andM = |Oinit

u |, we obtain the following recurrence.

yk =







1
M

∑M
i=1(yk−i + 1) for k ≥M

1
M

∑k−1
i=1 (yi + 1) for 2 < k < M

(1)

wherey1 = Pr[Z = 1] = 1/M . For k < M , by subtracting the recurrence ofyk−1 from yk, we obtain
yk − yk−1 =

1
M (yk−1 + 1). Solving the recurrence, we obtain

yk =

(

1 +
1

M

)

yk−1 +
1

M

=

(

1 +
1

M

)k−1

y1 +
1

M

k−2
∑

i=0

(

1 +
1

M

)i

=

(

1 +
1
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We will prove that for for allk, yk ≤ 5ek/M . We prove this by using induction onk. The base cases

is true :∀0 ≤ i < M , yi ≤ 5ei/M . By induction hypothesis,∀i ≤ k − 1, yi ≤ 5ei/M . To show that the
claim holds foryk, we substitute the values ofyk−1, yk−2, . . . , yk−M in Equation 1. We obtain

yk ≤ 1
M

(

∑M
i=1

5e(k−i)
M + 1

)

= 1 + 5ek/M −
(

5e
M2

∑M
i=1 i

)

= 1 + 5ek/M −
(

5e
M2

M(M+1)
2

)

≤ 1 + 5ek/M − 1 = 5ek/M

SoE[Xt] =
∑

uE[X|t′
u
|] ≤

∑

u 5e|t′u|/
√
n = 5et/

√
n.

Thus we conclude the following lemma:

Lemma 3.3 For anyt > 0, E[Xt] = O (t/
√
n).

Notice that this proof does not rely on the independence of the random numbers since it is obtained by
summing up expectation of random variables representing number of epochs destroyed over subsequences
of updates. For the base case of a sequence of length 1, we use arandom number in the range[1..M ], where
M = |Oinit

u | ≤ n. To choose a random numberRM in the range[1..M ], we first generate a random number
R in the range[1..n] and ifR ≤ n − (n mod M) then setRM = (R mod M) + 1 else generate a new



R and repeat the procedure. The reason for choosingR in this way is to ensure uniform distribution in the
range[1..M ]. Forn ≥ 2M , the expected number of repetitions is less than 2.

If we allow total independence, then we can obtain this boundwith high probability as well. Since the
matched edge of an epoch is selected independent of other epochs, it follows that duration of each natural
epoch at level 1 is independent of other natural epochs. Hence we can state the following lemma.

Lemma 3.4 The probability that a given epoch at level 1 has duration at mosti is bounded by i√
n

Lemma 3.5 For any givenq ≥ 1,

Pr[Xt = q] ≤
(

4et

q
√
n

)q/2

Proof: If there areq epochs destroyed duringt updates, at least half of them have duration≤ 2t/q. Hence,
Pr[Xt = q] is bounded by the probability that there are at leastq/2 epochs of duration at most2tq . So, using
Lemma 3.4 and exploiting the independence among the epochs,

Pr[Xt = q] ≤
(

q

q/2

)(

2t

q
√
n

)q/2

≤
(

4et

q
√
n

)q/2

For the last inequality we used
( q
q/2

)

≤
(

eq
q/2

)i
= (2e)i. �

We use Lemma 3.5 to analyzeE[Xt] and deviation ofXt.

Lemma 3.6 For anyt > 0Xt is O(t/
√
n+ log n) with very high probability.

Proof:
We chooseq0 = 4 (log n+ 4et/

√
n). It follows from Lemma 3.5 that for anyq ≥ q0, Pr[Xt = q] is of

the formbq where baseb < 1/2. HencePr[Xt ≥ q0] is bounded by a geometric series with the first term
< 2−q0 and the common ratio less than1/2. Furthermoreq0 > 4 log n, hencePr[Xt ≥ q0] is bounded by
2/n4. HenceXt is bounded byO(t/

√
n+ log n) with high probability. �

Notice that the proofs of 3.6 rely heavily on the total independence of random numbers used for selecting
random mates. Using standard techniques based on generalized Chebyshev’s inequality, we can obtain the
same bound usingO(log n) way independence ([?]).

Now, recall from Lemma 3.1 that each natural epoch destroyedat level 1 hasO(n) computationcharged
to it. So Lemmas 3.3 and 3.6, when combined together, imply the following result.

Lemma 3.7 The computation costchargedto all the natural epochs which get destroyed during any se-
quence oft updates isO(t

√
n) in expectation andO(t

√
n+ n log n) with high probability.

Let us now analyze the costchargedto all those epochs which are alive at the end oft updates. Consider
an epoch (say epoch of(u, v)) such that(u, v) is still in the matching aftert updates. Note thatu(as well
asv) is involved in at most one live epoch. Since epoch of(u, v) doesn’t end, the costchargedto this epoch is

1. The computation cost of starting the epoch is equal to the edges owned byu andv at the start of epoch
(u, v). Since each vertex is involved in at most one live epoch, thiscost is at most

∑

v:epoch ofv is
live aftert updates

|Oinit
v |,

where|Oinit
v | is the number of edges owned byv when the live epoch ofv started. Note that the num-

ber of edges owned byv is less than the number of edges added tov during t updates. Iftv is the the
total number of edges added tov, then

∑

vOv ≤
∑

v tv. This implies that the cost associated to all
live epochs≤∑

v tv = 2t



2. The computation cost associated with theinducedepoch which may have ended due to epoch of
(u, v). The cost associated with theseinducedepoch is charged tonatural epoch of(u, v). We know
that can be atmost two such epoch( say epoch of(u,w) and (v, y)). By Lemma 3.1, this cost is
O(
√
n). Since the total number of updates att, the total live epoch at aftert updates can atmost bet.

So this computation charged to live epochs due to theseinducedepoch is at mostO(t
√
n).

It thus follows that the computation costchargedto all the live epochs at aftert updates isO(t
√
n). During

any sequence oft updates, the total number of epochs created is equal to the number of epochs destroyed
and the number of epochs that are alive at the end oft updates. Hence using Lemma 3.7 we can state the
following theorem.

Theorem 3.1 Starting with a graph onn vertices and no edges, we can maintain maximal matching for any
sequence oft updates inO(t

√
n) time in expectation andO(t

√
n+ n log n) with high probability.

3.2 On improving the update time beyondO(
√
n)

In order to extend our 2-LEVEL algorithm for getting a better update time, it is worth exploring the reason
underlyingO(

√
n) update time guaranteed by our 2-LEVEL algorithm. For this purpose, let us examine the

second invariant more carefully. Letα(n) be the threshold for the maximum number of edges that a vertex
at level 0 can own. Consider an epoch at level 1 associated with some edge, say(u, v). The computation
associated with this epoch is of the order of the number of edgesu andv own which can beΘ(n) in the
worst case. However, the expected duration of the epoch is ofthe order of the minimum number of edgesu
can own at the time of its creation, i.e.,Θ(α(n)). Therefore, the expected amortized computation per edge
deletion for an epoch at level 1 isO(n/α(n)). Balancing this with theα(n) update time at level 0, yields
α(n) =

√
n.

In order to improve the running time of our algorithm, we needto decrease the ratio between the max-
imum and the minimum number of edges a vertex can own during anepoch at any level. It is this ratio
that actually bounds the expected amortized time of an epoch. This insight motivates us for having a finer
partition of vertices : the number of levels should be increased toO(log n) instead of just 2. When a vertex
creates an epoch at leveli, it will own at least2i edges, and during the epoch it will be allowed to own at
most2i+1 − 1 edges. As soon as it starts owning2i+1 edges, it should migrate to higher level. Notice that
the ratio of maximum to minimum edges owned by a vertex duringan epoch gets reduced from

√
n to a

constant.
We pursue the approach sketched above combined with some additional techniques in the following

section. This leads to a fully dynamic algorithm for maximalmatching which achieves expected amortized
O(log n) update time per edge insertion or deletion.

4 Fully dynamic algorithm with expected amortizedO(logn) time per up-
date

Like the 2-LEVEL algorithm, we maintain a partition of vertices among various levels. We iterate the differ-
ence in the partition vis-a-vis 2-LEVEL algorithm.

1. The fully dynamic algorithm maintains a partition of vertices among⌊log n⌋ + 2 levels. The levels
are numbered from−1 to L0 = ⌊log n⌋. We will see that the algorithm moves a vertex to leveli if the
vertex is the owner of atleast2i edges at that moment. So a vantage point is needed for a vertexthat
does not own any edge. As a result, we introduce a level -1 thatcontains all the vertices that do not
own any edge.



2. We use the notion of ownership of edges which is slightly different from the one used in 2-LEVEL

algorithm. In the 2-LEVEL algorithm, at level 0, both the endpoints of the edge are the owner of the
edge. Here, at every level, each edge is owned by exactly one of its endpoints. In particular, the
endpoint at the higher level always owns the edge. If the two endpoints are at the same level, then the
tie is broken appropriately by the algorithm.

Like the 2-LEVEL algorithm, each vertexu will maintain a dynamic hash table storing the edgesOu

owned by it. In addition, the generalized fully dynamic algorithm will maintain the following data structure
for each vertexu. For eachi ≥ LEVEL(u), let E iu be the set of all those edges incident onu from vertices
at leveli and are not owned byu. For each vertexu and leveli ≥ LEVEL(u), the setE iu will be maintained
in a dynamic hash table. However the onus of maintainingE iu will not be onu. For any edge(u, v) ∈ E iu, v
will be responsible for the maintenance of(u, v) in E iu since(u, v) ∈ Ov.

4.1 Invariants and a basic subroutine used by the algorithm

As can be seen from the 2-level algorithm, it is more cost-effective for each vertexu to get settled at a higher
level once it owns alarge number of edges. Pushing this idea still further, our fully dynamic algorithm will
allow a vertex to rise to a higher level if it can ownsufficiently largenumber of edges after moving there. In
order to formally define this approach, we introduce an important notation here.

For a vertexv with LEVEL(v) = i,

φv(j) =

{ |Ov |+
∑

i≤k<j |Ekv | if j > i

0 otherwise

In other words, for any vertexv at leveli and anyj > i, φv(j) denote the number of edges whichv can
own if v rises to levelj. Our algorithm will be based on the following strategy. If a vertexv hasφv(j) ≥ 2j ,
thenv would rise to the levelj. In case, there are multiple levels to whichv can rise,v will rise to the highest
such level. With this key idea, we now describe the three invariants which our algorithm will maintain.

1. Every vertex at level≥ 0 is matched and every vertex at level -1 is free.

2. For each vertexv and for allj > LEVEL(v), φv(j) < 2j holds true.

3. Both the endpoints of the matched edge are at the same level.

By definition, vertices at level -1 cannot be owner of any edge. We will see that our algorithm moves a
vertex from level -1 to a higher level as soon as it becomes theowner of some edges. In fact, the second
invariant bounds us to act in such a manner. If a vertexv still remains at level -1 after owning some edges
thenφv(0) ≥ 1 ≥ 20, violating the second invariant. This, together with the fact that an edge is owned by
one of its endpoints, implies that a vertex at level -1 cannotbe a neighbor of another vertex at that level.
This fact together with the first invariant imply that the matching maintained by the algorithm will indeed
be a maximal matching. Figure 5 depicts a snapshot of the algorithm. The second invariant captures the key
idea described above - after processing every update there is no vertex which fulfills the criteria of rising.
An edge update may lead to violation of the invariants mentioned above and the algorithm basically restores
these invariants. This may involve rise or fall of vertices between levels. Notice that the second invariant
of a vertex is influenced by the rise and fall of its neighbors.We now state and prove two lemmas which
quantify this influence more precisely.

Lemma 4.1 Consider a vertexu for which both invariants hold. The rise of any neighbor, sayv, cannot
violate the second invariant foru.
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Figure 5: A snapshot of the algorithm onK9: all vertices are matched( thick edges) except vertexx at level
-1. Vertexv is the owner of just the edge(v, x). φv(2) = 2 < 22 andφv(3) = 4 < 23, sov cannot rise to a
higher level.

Proof: Let LEVEL(u) = k. Since the invariants hold true foru before rise ofv, soφu(i) < 2i for all i > k.
It suffices if we can show thatφu(i) does not increase for anyi due to the rise ofv. We show this as follows.

Let vertexv rises from levelj to ℓ. If ℓ ≤ k, the edge(u, v) continues to remain inOu, and so there is
no change inφu(i) for anyi. Let us consider the case whenℓ > k. The rise ofv from j to ℓ causes removal
of (u, v) from Ou (or Eju if j ≥ k) and insertion toEℓu. As a resultφu(i) decreases by one for eachi in
[max(j, k) + 1, ℓ], and remains unchanged for all other values ofi. �

Lemma 4.2 Consider a vertexu for which both invariants hold. Then any fall of one of its neighbors, say
v, from levelj to j − 1 increasesφu(j) by at most one.

Proof: Let LEVEL(u) = k. In casek ≥ j, there is no change inφu(i) for any i due to fall ofv. So let us
consider the casej > k. In this case, the fall ofv from level j to j − 1 leads to the insertion of(u, v) in
Ej−1
u and deletion fromEju. Consequently,φu(i) increases by one only fori = j and remains unchanged for

all other values ofi. �

In order to detect any violation of the second invariant for avertexv due to rise or fall of its neighbors,
we shall maintain{φv(i)|i ≤ L0} in an arrayφv [] of sizeL0 + 2. The updates on this data structure during
the algorithm will involve the following two types of operations.

• DECREMENT-φ(v, I): As per Lemma 4.1, when a neighbor ofv rises from levelj to l, φv(i) decreases
by one for alli in interval [max(j, LEVEL(v)) + 1, ℓ]. This operation decrementsφv(i) by one for all
i in intervalI = [max(j, LEVEL(v)) + 1, ℓ].

• INCREMENT-φ(v, i): this operation increasesφv(i) by one. This operation will be executed when
some neighbor ofv falls from i to i− 1.

It can be seen that a singleDECREMENT-φ(v, I) operation takesO(|I|) time which isO(log n) in the worst
case. On the other hand any singleINCREMENT-φ(v, i) operation takesO(1) time. However, sinceφv(i) is
0 initially and is non-negative always, we can conclude the following.



Lemma 4.3 The computation cost of allDECREMENT-φ() operations over all vertices is upper-bounded by
the computation cost of allINCREMENT-φ() operations over all vertices during the algorithm.

Observation 4.1 It follows from Lemma 4.3 that we just need to analyze the computation involving all
INCREMENT-φ() operations since the computation involved inDECREMENT-φ() operations is subsumed by
the former.

Procedure GENERIC-RANDOM-SETTLE(u, i)

if LEVEL(u) < i then //u owns edges till it reaches level i1

for eachj = LEVEL(u) to i− 1 do2

for each(u,w) ∈ Eju do3

transfer(u,w) from Eju to E iw;4

transfer(u,w) fromOw toOu;5

DECREMENT-φ(w, [j + 1, i]);6

Let (u, v) be a uniformly randomly selected edge fromOu;7

if v is matchedthen8

x← MATE(v);9

M←M\{(v, x)}10

else
x← NULL11

for eachj = LEVEL(v) to i− 1 do //v rises to level i and thus owns edges incident12

from vertices at levels LEVEL(v) to i− 1

for each(v,w) ∈ Ejv do13

transfer(v,w) from Ejv to E iw;14

transfer(v,w) fromOw toOv;15

DECREMENT-φ(w, [j + 1, i]);16

M←M∪ {(u, v)};17

LEVEL(u)← i; LEVEL(v)← i;18

returnx;19

Figure 6: Procedure used by a free vertexu to settleat leveli.

If any invariant of a vertex, sayu, gets violated, it might rise or fall, though in some cases, it may still
remain at the same level. However, in all these cases, eventually the vertexu will execute the procedure,
GENERIC-RANDOM-SETTLE, shown in Figure 6. This procedure is essentially a generalized version of
RANDOM-SETTLE(u) which we used in the 2-level algorithm.GENERIC-RANDOM-SETTLE(u, i) starts with
movingu from its current level (LEVEL(u)) to level i. If level i is higher than the previous level ofu, u
acquires the ownership of all the edges whose endpoints lie at the level∈ [LEVEL(u), i − 1]. For each
such edge(u, v) that is now owned byu, we performDECREMENT-φ(v, [LEVEL (v) + 1, i]) to reflect that
the edge is now owned by vertexu which has moved to leveli. Henceforth, the procedure then resembles
RANDOM-SETTLE. It finds a random edge(u, v) from Ov and movesv to leveli. The procedure returns the
previous mate ofv, if v was matched.

Lemma 4.4 Consider a vertexu that executesGENERIC-RANDOM-SETTLE(u, i) and ends up selecting a
matev. Excluding the time spent inDECREMENT−φ operations, the computation time of this procedure is



of the order of|Ou| + |Ov | whereOu andOv is the set of edges owned byu and v just at the end of the
procedure.

4.2 Handling edge updates by the fully dynamic algorithm

Our fully dynamic algorithm will employ a generic procedurecalled PROCESS-FREE-VERTICES(). The
input to this procedure is a sequenceS consisting of ordered pairs of the form(x, k) wherex is a free
vertex at levelk ≥ 0. Observe that the presence of free vertices at level≥ 0 implies that matchingM
is not necessarily maximal. In order to preserve maximalityof matching, the procedurePROCESS-FREE-
VERTICES restores the invariants of each such free vertex tillS is emptied. We now describe our fully
dynamic algorithm.

Handling deletion of an edge

Consider deletion of an edge, say(u, v). For eachj > max(LEVEL(u), LEVEL(v)), we decrementφu(j)
andφv(j) by one. If (u, v) is an unmatched edge, no invariant gets violated. So we only delete the edge
(u, v) from the data structures ofu andv. Otherwise, letk = LEVEL(u) = LEVEL(v). We execute the
ProcedurePROCESS-FREE-VERTICES(〈(u, k), (v, k)〉).

Handling insertion of an edge

Consider the insertion of an edge, say(u, v). We check if the second invariant has got violated for eitherof u
orv. The invariant may get violated foru (likewise forv) if there is any integeri > max(LEVEL(u), LEVEL(v)),
such thatφu(i) was2i − 1 just before the insertion of edge(u, v). In case there are multiple such integers,
let imax be the largest such integer. We incrementφu(ℓ) andφv(ℓ) by one for eachℓ > imax. To restore
the invariant,u leaves its current mate, sayw, and rises to levelimax. We executeGENERIC-RANDOM-
SETTLE(u, imax), and letx be the vertex returned. Letj andk be respectively the levels ofw andx. Note
thatx andw are two free vertices now. We executePROCESS-FREE-VERTICES(〈(x, k), (w, j)〉).

Suppose that the insertion of edge(u, v) violates the second invariant for bothu andv. Wlog assume

that u is at a higher level thanv. We add(u, v) to Ou andELEVEL(u)
v . The highest level to whichu can

rise after this insertion isj. This impliesOu +
∑

LEVEL(u)≤k<j |Eku | = 2j just after this edge is inserted.

Similarly, v may rise atmost to levell andOv +
∑

LEVEL(v)≤k<l |Ekv | = 2l. If j > l, we selectu which can
rise to the higher level and restore its second invariant. After movingu to level j, edge(u, v) becomes an
element ofEjv . So

∑

LEVEL(v)≤k<l |Ekv | decreases by 1. So,Ov +
∑

LEVEL(v)≤k<l |Eku | decreases by one and

is now strictly less than2l, thus the second invariant forv is also restored. Ifi > j, then we first processv
and move it to a higher level and the invariant ofu is restored automatically. So we only process the vertex
which can move to a higher level in this case.

4.2.1 Description of ProcedurePROCESS-FREE-VERTICES

The procedure receives a sequenceS of ordered pairs(x, i) such thatx is a free vertex at leveli. It processes
the free vertices in the decreasing order of their levels starting from L0. We give an overview of this
processing at leveli. For a free vertex at leveli, if it owns sufficientlylarge number of edges, then it settles
at leveli and gets matched by selecting a random edge from the edges owned by it. Otherwise the vertex
falls down by one level. Notice that the fall of a vertex from level i to i − 1 may lead to rise of some of
its neighbors lying at level< i. However, as follows from Lemma 4.2, for each such vertexv, only φv(i)
increases by one andφv() value for all other level remains same. So the second invariant may get violated
only for φv(i). This implies thatv will rise only to leveli. After these rising vertices move to leveli(by



Procedure PROCESS-FREE-VERTICES(S)

for each(x, i) ∈ S do ENQUEUE(Q[i], x);1

for i = L0 to 0 do2

while Q[i] 6= ∅ do3

v ← DEQUEUE(Q[i]);4

if FALLING (v) then //v falls to i− 15

LEVEL(v)← i− 1;6

ENQUEUE(Q[i − 1], v);7

for eachu ∈ Ov do89

transfer(u, v) from E iu to E i−1
u ;10

INCREMENT-φ(u, i);11

INCREMENT-φ(v, i);12

if φu(i) ≥ 2i then //u rises to i13

x← GENERIC-RANDOM-SETTLE(u, i);14

if x 6= NULL then15

ℓ← LEVEL(x);16

ENQUEUE(Q[ℓ], x);17

18

else //v settles at level i

x← GENERIC-RANDOM-SETTLE(v, i);19

if x 6= NULL then20

ℓ← LEVEL(x);21

ENQUEUE(Q[ℓ], x);22

Function FALLING(v)

i← LEVEL(v);1

for each(u, v) ∈ Ov such thatLEVEL(u) = i do //v disowns all edges at level i2

transfer(u, v) from Ov to Ou;3

transfer(u, v) from E iu to E iv;4

if |Ov | < 2i then returnTRUE else returnFALSE;5

Figure 7: Procedure for processing free vertices given as a sequenceS of ordered pairs(x, i) wherex is a
free vertex atLEVELi.



executingGENERIC-RANDOM-SETTLE), we move onto leveli−1 and proceed similarly. Overall, the entire
process can be seen as a wave of free vertices falling level bylevel. Eventually this wave of free vertices
reaches level -1 and fades away ensuring maximal matching. With this overview, we now describe the
procedure in more details and its complete pseudocode is given in Figure 7.

The procedure uses an arrayQ of size L0 + 2, whereQ[i] is a pointer to a queue (initially empty)
corresponding to leveli. For each ordered pair(x, k) ∈ S, it insertsx into queueQ[k]. The procedure
executes a for loop fromL0 down to 0 where theith iteration extracts and processes the vertices of queue
Q[i] one by one as follows. Letv be a vertex extracted fromQ[i]. First we execute the functionFALLING (v)
which does the following.v disowns all its edges whose other endpoint lies at leveli. If v owns less than2i

edges then it is decided thatv has to fall, otherwisev will continue to stay at leveli.

1. v has to stay at leveli
v executesGENERIC-RANDOM-SETTLE and selects a random mate, sayw, from levelj < i (if w is
present inQ[j] then it is removed from it and is raised to leveli). If x was the previous mate ofw,
thenx is a falling vertex. Vertexx gets added toQ[j]. This finishes the processing ofv.

2. v owns less than2i edges and has to fall
In this case,v falls to leveli − 1 and is inserted toQ[i − 1]. This fall leads to increaseφu(i) by one
for each neighboru of v lying at level lower thani (see Lemma 4.2). In caseφu(i) has become2i, u
has to rise to leveli and is processed as follows.u executesGENERIC-RANDOM-SETTLE and selects
a random mate, sayw from level j < i. If w was inQ[j] then it is removed from it. Ifx was the
previous mate ofw, thenx is a falling vertex, and so it gets added to queueQ[j].

In case 1,v remains at the same level andw moves to the level ofv. This rendersx free andx is added
to theQ[j]. We want to see if the invariant of any other vertex is violated in processingv andw. Sincex is
free, the first invariant ofx is violated. Sox is added to the queue at its level. The processing ofv does not
changeφu for any neighboru of v. Furthermore, the rise ofw does not lead to the violation of any invariant
due to Lemma 4.1. In case 2,v falls to leveli− 1 and due to this some vertex rise to leveli. All such rising
vertex executeGENERIC-RANDOM-SETTLE. The second invariant is not violated for other vertices except
these vertices. As in case 1, we see that processing these rising vertices may create some free vertices which
are duly added to the queue at their level. However, their processing does not break second invariant to any
other vertex.
Thus we conclude the following lemma.

Lemma 4.5 After ith iteration of the for loop ofPROCESS-FREE-VERTICES, the free vertices are present
only in the queues at level< i, and for all vertices not belonging to these queues the threeinvariants holds.

Lemma 4.5 establishes that after termination of procedurePROCESS-FREE-VERTICES, there are no free
vertices at level≥ 0 and all the invariants get restored globally. We want to mention this specially for the
second invariant. The second invariant ensures that if a vertex can rise to a higher level, it should rise.
We have seen that many vertex may rise from one level to a higher level. The algorithm processes these
vertices in any arbitrary order. Since every vertex acts in alocal way, when it is processed, it restores its
second invariant if it is indeed violated at that moment. Lemma 4.5 ensures that there is a stable state for
our algorithm, when all the vertices have their invariant restored.

4.3 Analysis of the algorithm

Processing the deletion or insertion of an edge(u, v) begins with decrementing or incrementingφu(i) and
φv(i) for all levels i ≥ max(LEVEL(u), LEVEL(v)). The computation associated with this task over a



sequence oft updates will beO(t log n). This task may be followed by executing the procedurePROCESS-
FREE-VERTICES. We would like to mention an important point here. Along withother processing, the
execution of this procedure involvesINCREMENT-φ() and DECREMENT-φ() operations. However, as im-
plied by Observation 4.1, the computation involvingDECREMENT-φ() is subsumed byINCREMENT-φ()
operations.

Our analysis of the entire computation performed while processing a sequence oft updates is along
similar lines to the 2-LEVEL algorithm. We visualize the entire algorithm as a sequence of creation and
termination of various matched epochs. All we need to do is toanalyze the number of epochs created and
terminated during the algorithm and computation associated to each epoch.

Let us analyze an epoch of a matched edge(u, v). Suppose this epoch got created by vertexv at level
j. Sov would have executedGENERIC-RANDOM-SETTLE and selectedu as a random mate from level< j.
Note thatv must be owning less than2j+1 edges andu would be owning at most2j edges at that moment.
This observation and Lemma 4.4 imply that the computation involved in creation of the epoch isO(2j).
Once the epoch is created, any update pertaining tou or v will be performed in justO(1) time until the
epoch gets terminated. Let us analyze the computation performed when the epoch gets terminated. At this
moment either one or bothu andv become free vertices. Ifv becomes free,v executes the following task
(see procedurePROCESS-FREE-VERTICES in Figure 7)v scans all edges owned by it, which is less than
2j+1, and disowns those edges incident from vertices of levelj. Thereafter, ifv still owns at least2j edges,
it settles at levelj and becomes part of a new epoch at levelj. Otherwise,v keeps falling one level at a
time. For a single fall ofv from level i to i − 1, the computation performed involves the following tasks:
scanning the edges owned byv, disowning those incident from vertices at leveli, incrementingφw values
for each neighborw of v lying at level less thani, and incrementingφv(i) by one. All this computation is
of the order of the number of edgesv owns at leveli which is less than2i+1. Eventually eitherv settles at
some levelk ≥ 0 and becomes part of a new epoch or it reaches level -1. The total computation performed
by v is, therefore, of the order of

∑j
i=k 2

i+1 = O(2j). This entire computation involvingv (andu) in this
process is associated with the the epoch of(u, v). Hence we can state the following Lemma.

Lemma 4.6 For anyi ≥ 0, the computation associated with an epoch at leveli is O(2i).

Let us now analyze the number of epochs terminated during anysequence oft updates. An epoch
corresponding to edge(u, v) at leveli could be terminated if the matched edge(u, v) gets deleted. However,
it could be terminated by any of the following reasons also.

• u or v get selected as a random mate by one of their neighbors present at LEVEL > i.

• u or its mate starts owning2i+1 or more edges.

Each of the above factors render the epoch to be an induced epoch. We shall assign the cost of each
induced epoch to the epoch which led to the destruction of theformer. To this objective, we now introduce
the notion of computationchargedto an epoch at any leveli. Note that no epoch is created at level -1 as the
vertices at level -1 are always free. Ifi = 0, the computationchargedto the epoch is the actual computation
performed during the epoch which isO(1). For any leveli > 0, the creation of an epoch causes destruction
of at most two epochs at levels< i. It can be explained as follows: Consider an epoch at leveli associated
with an edge, say(u, v). Suppose it was created by vertexu. If u was already matched at levelj(j < i),
let w 6= v be its mate. Similarly, ifv was also matched already, letx 6= u be its current mate at levelk.
So matchingu to v terminates the epoch of(u,w) and(v, x) at levelj andk respectively. Wechargethe
overall cost of these two epochs to the epoch of(u, v).

The computation charged to an epoch at leveli > 0 is defined recursively as the actual computation cost
of the epoch and the computationchargedto at most two epochs destroyed by it at level< i. LetCi be the
computation charged to an epoch at leveli. The epoch terminated by this epoch can be at leveli− 1 in the



worst case. Also the computational cost associated with an epoch at leveli is c.2i wherec is a constant. So
we get the following recurrence:Ci ≤ 2Ci−1 + c.2i. This impliesCi = O(i2i).

Lemma 4.7 The computation charged to a natural epoch at leveli isO(i2i).

Henceforth we just proceed along the lines of the analysis ofour 2-LEVEL algorithm analogous to the proof
of Lemma 3.3. LetXt(i) be the random variable denoting the number ofnaturalepochs at leveli terminated
during a sequence ofti updates. Recall thatXti =

∑

uX|tu(i)|, wheretu(i) is the deletion sequence foru
By substitutingM = 2i, in the the earlier analysis for two levels, using identicalarguments, it follows that
E[Xt(i)] =

∑

uE[X|tu(i)|] =
∑

uO(tu(i)/2
i) = O(ti/2

i).

Note that Lemma 3.5 shows thatPr[Xt = q] ≤
(

4et
qM

)q/2
, whereM =

√
n. Similarly by using

M = 2i, we can show that ifti is the deletion sequence at leveli andXti is the random variable denoting

the total number of epoch ending at leveli, thenP [Xti = q] ≤
(

4eti
q2i

)q/2
. Similar to Lemma 3.6, we

chooseq0 = 4 (log n + 4eti/2
i). For anyq ≥ q0, Pr[Xti = q] is of the formbq where baseb < 1/2.

HencePr[Xti ≥ q0] is bounded by a geometric series with the first term< 2−q0 and the common ratio less
than1/2. Furthermoreq0 > 4 log n, hencePr[Xti ≥ q0] is bounded by2/n4. HenceXti is bounded by
O(t/2i + log n) with high probability.

Lemma 4.8 The expected number of natural epochs terminated at leveli is O(ti/2
i) andO(ti/2

i + log n)
with high probability.

It thus follows from Lemma 4.7 and Lemma 4.8 that the computation chargedto all natural epochs ter-
minated at leveli is O(iti) in expectation. Summing up for all levels, the expected total number of nat-

ural epoch =
logn
∑

i=1

iti ≤ log n
∑logn

i=1 ti = O(t log n). Similarly the total number of epochs at leveli is

O(iti + i2i log n) with high probability. Summing up for all the levels, and using the union bound, the

total number of epochs over all thelog n levels =
logn
∑

i=1

(iti + i2i log n) ≤ t log n + log2 n
∑logn

i=1 2i ≤

O(t log n+ n log2 n) with high probability. We can summarize as follows.

Lemma 4.9 For any sequence oft updates, the computationchargedto all the natural epochs which get
terminated isO(t log n) in expectation andO(t log n+ n log2 n) with high probability.

Let us now analyze the costchargedto all those epochs which are alive at the end oft updates. Consider
an epoch (say epoch of(u, v) at leveli) such that(u, v) is still in the matching aftert updates.

By Lemma 4.7, computation charged to epoch of(u, v) is O(i2i). If Oinit
v was the edges owned byv

at the start of the epoch, then since|Oinit
v | ≥ 2i at the start of the epoch. We can say that the computation

charged isO(i|Oinit
v |) ≤ O((log n)tv) wheretv is the total updates onv. Since a vertex can be part of only

one live epoch, the total computation cost charged to all thelive epochs is
∑

v O(tv log n) = O(t log n).
Hence we can conclude the following result.

Theorem 4.1 Starting from an empty graph onn vertices, a maximal matching in the graph can be main-
tained over any sequence oft insertion and deletion of edges inO(t log n) time in expectation andO(t log n+
n log2 n) time with high probability.



5 Conclusion

We presented a fully dynamic algorithm for maximal matchingwhich achieves expected amortizedO(log n)
time per edge insertion or deletion. Maximal matching is also 2-approximation of maximum matching.

Our experiments show that for most of the inputs, the matching maintained is very close to the maximum
matching. But it is not hard to come up with update sequence such that at the end of the sequence, the
matching obtained is strictly half the size of maximum matching. We present one such example. Let
G(V ∪U,E) be a graph such thatV = {v1, v2, . . . , vn} andU = {u1, u2, . . . , un}. Consider the following
update sequence. In the first phase, add edges between two points(vi, vj) if there is no edge between them.
Eventually this process ends when there is a complete graph on vertices ofV . In the second phase, add
edge(vi, ui) for all i. Note that the degree of eachui is one at the end of the updates. Let us now find the
matching which our algorithm maintains. After the first phase of update ends, we have a complete graph on
V . At that moment, we claim that the size of matching obtained by our algorithm isn. Indeed, size of any
maximal matching on a complete graph of sizen is n. Let (vi, vj) be an edge in the matching after phase 1.
Note that both these endpoints are at a level greater than -1.A vertex inU is at level -1 as it does not have
any adjacent edges after phase 1. When an edge(ui, vi) is added, sincevi is at a higher level thanui, vi
becomes the owner of this edge. In the worst case, the second invariant ofvi is not violated after this edge
deletion and nothing happens at this update step andui still remains at level -1. Using same reasoning, we
can show thatuj also remains at level -1 after the addition of edge(vj , uj). Since bothui anduj are free
after these edge updates, there is a 3-augmenting path passing through edge(vi, vj). In general, there will
be a vertex disjoint 3-augmenting passing through all the matched vertices. This implies that the maximum
matching is2n after phase 2. But size of matching of our algorithm isn at that point.

It would be a challenging problem to see ifc-approximate maximum matching forc < 2 can also be
maintained inO(log n) update time. In particular, for maintaining a 3/2-approximate matching, we have to
take care of all the 3-augmenting path. It is not clear how to extend our algorithm to handle 3-augmenting
paths.
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