The covert set-cover problem with application to
Network Discovery

Sandeep Sen and V.N. Muralidhara

Department of Computer Science and Engineering,
Indian Institute of Technology, Delhi, India.
{ssen,murali}@cse.iitd.ernet.in

Abstract. We address a version of the set-cover problem where we do
not know the sets initially (and hence referred to as covert) but we can
query an element to find out which sets contain this element as well as
query a set to know the elements. We want to find a small set-cover using
a minimal number of such queries. We present a Monte Carlo randomized
algorithm that approximates an optimal set-cover of size OPT within
O(log N) factor with high probability using O(OPT - log® N) queries
where NN is the number of element in the universal set.

We apply this technique to the network discovery problem that involves
certifying all the edges and non-edges of an unknown n-vertices graph
based on layered-graph queries from a minimal number of vertices. By
reducing it to the covert set-cover problem we present an O(log2 n)-
competitive Monte Carlo randomized algorithm for the covert version
of network discovery problem. The previously best known algorithm has
a competitive ratio of £2(y/nlogn) and therefore our result achieves an
exponential improvement.

1 Introduction

Given a ground set S with n/ elements and a family of sets 51,55 ... S,, where!
S; C S, a cover C is a collection of sets from this family whose union is S. It
is known that finding a cover consisting of the minimum number of sets is a
computationally intractable problem [9]. There are many strategies [11,6,10] to
approzimate the smallest cover within a factor of O(logn’) which is known to be
the best possible unless P = NP [7].

In this paper, we consider the following version of the set cover problem.
Although we know m/,n’, we do not know the elements nor the cardinality of
any of the sets S;. We are allowed to query an element e € S that returns all sets
S; that contain e which we refer to as a hitting-set query; we can also query a
set to know its elements. We would like to compute a small set cover of S using
a minimal number of such queries. More specifically, if OPT is the minimum
size of a set cover for any instance of the problem, we would like to find a set

! We have chosen n/, m’ as notations to keep them distinct from graphs with n vertices
and m edges.

cover of size O(OPT - polylogn') using only O(OPT - polylogn’) queries. Note
that by using min{m’, n'} queries, we can reduce it to the standard version but
the number of queries may not satisfy O(OPT - polylogn’). By restricting the
number of queries to be close to OPT', an algorithm cannot afford to learn the
contents of all the sets, yet it is required to find a cover close to the optimal.

This formalisation is also distinct from the online problems addressed in [1,
2] where the sets are known but the adversary chooses a set of the ground set for
which a minimal cover must be computed. An adversary chooses the elements one
after the other and the online algorithm must maintain a cover of the elements
revealed upto a given stage. There is no apparent relationship between the two
versions. In one case, the initial sets are not known but the algorithm can choose
the elements for hitting set queries whereas in the online case, the sets are known
but the adversary chooses the elements. Moreover, the number of queries is also
a measure of performance in the version considered here.

Our research is motivated by the problem of discovering the topologies of
large networks such as the Internet. For large networks such as the Internet
which changes frequently, it is very difficult and costly to obtain the topology
accurately. Nevertheless, such information about the network is very useful -
for example, the robustness properties of the network or studying the routing
aspects.

In order to create the topology of the network, one of the techniques used is
to obtain local views of the network from various locations and combine them
to determine the topology of the network. One can view this technique as an
approach for discovering the topology of the network by some queries. Here, a
query corresponds to the local view of the network from one specific location.
In the real world scenario, the cost of answering a query is usually very high, so
the objective of the network discovery problem is to find the map of the network
using a minimal number of queries.

Note that in the network discovery problem, we have to confirm the existence
and non-existence of an edge between any pair of vertices. So, any query at a
vertex should implicitly or explicitly confirm the absence or presence of edges
between some pair of vertices. The Layered Graph Query Model and Distance
Query Model are the most widely studied query models.

Layered Graph Query Model: A query at a vertex v yields the set of all edges
on shortest paths from the vertex v to any other vertex reachable from v in the
graph. More specifically, we obtain information about an edge (z,y), iff d(v,x)
and d(v,y) are consecutive where d(v, z) is the level of z (from v, see Fig. 1).

Distance Query Model: A query at a vertex v yields the distances of v to
every vertex of the graph, i.e. a query at a vertex v returns a vector v, where
the ith component indicate the distance to ith vertex from vertex v. It is easy
to see that it is a weaker query model as compared to Layered Graph Query
Model. In the Distance Query Model, an edge may be discovered by a combi-
nation of queries as illustrated in Fig 2. In the example shown in Fig 2, query
at vertex 1 discovers the non-edges {(1,4),(1,5),(1,6),(2,6),(3,6)} and edges
{(1,2),(1,3)}. A query at vertex 6 discovers the non-edges

Fig. 1. A query at a vertex v in the layer graph model (a) yields certificate for the
edges in (b) and non-edges in (c)

Q3

Fig. 2. The edges (5,3) and (4, 3) of the graph (a) is discovered by the combination
of queries at vertex 1 in (b) and at vertex 6 in (c) in the distance query model - the
distances are depicted via layers of the graph.

{(1,4),(1,5),(1,6), (2,6), (3,6), (4,2), (5,2), (3,2)} and edges {(3, 1), (1,2), (6,4), (6,5)}.
Combining these two queries, we discover the edges (5,3) and (4, 3). In the off-
line version of network discovery problem, the network is initially known to the
algorithm. Unlike the online problem, here the goal is to compute a minimum
number of queries that suffice to discover the network. Given a network, we can
verify whether what we have been given is the correct information. Thus, we
refer to the off-line version of network discovery problem as network verification.

1.1 Prior work in network discovery

Bejerano and Rastogi [5] studied the problem of verifying all edges of a graph
with as few queries as possible in a model similar to the Layered Graph Query
Model. For a graph with n vertices, they give a set-cover based O(log n)-approximation
algorithm and show that the problem is NP-hard. In contrast to Bejerano and
Rastogi, we are interested in verifying (or discovering) both the edges and the
non-edges of a graph. It turns out that the network verification problem was con-
sidered as a problem of placing landmarks in graphs [8]. The problem was shown
to be NP-complete and an O(logn)-approximation algorithm was presented.
Beerliova et al. [3] proved an 2(logn) lower bound on the approximation factor
for any polynomial time algorithm for the network verification in the Layered
Graph Query Modelunless P = NP.

In the online version of the problem, the network (graph) is unknown to the
algorithm. To decide the next query, the algorithm can only use the knowledge
about the network it has gained from the answers of previously asked queries.
Thus, the difficulty in selecting good queries arises from the fact that we only
have the partial information about the network.

For the network discovery problem, Beerliova et al.[4] have shown an 2(/n)
lower bound on the competitive ratio of any deterministic online algorithm and
an {2(logn) lower bound for any randomized algorithm for the Distance Query
Model. The best known algorithm in the Distance Query Model is a randomized
online algorithm which is O(y/nlogn)-competitive [4]. In contrast, for the Lay-
ered Graph Query Model, Beerliova et al.[4] have shown that no deterministic
online algorithm can be (3 — &) competitive for any € > 0. The best known
algorithm in this model before this work is an O(y/nlogn)-competitive online
randomized algorithm [4] that leaves an exponential gap between the best known
lower and upper bounds for the Layered Graph Query Model.

In this paper, we present a randomized Monte Carlo online algorithm with a
competitive ratio O(log2 n) for the Layered Graph Query Model thereby nearly
closing this exponential gap.

1.2 Our results and techniques

The network verification problem can be solved by reducing it to an appropriate
instance of the set-cover problem (or hitting set problem). Hence, we obtain an
O(logn) approximation algorithm for the network verification problem which is
the best that we can hope to do unless P = N P. In the online network discovery
problem, we do not know the graph a priori and hence the above reduction
cannot be used directly. In particular, the sets are not known explicitly, so we
first develop an algorithm for solving the covert version of the set-cover problem
using queries.

We present an algorithm that computes a set-cover of size at most O(log(m/+
n') - OPT) using at most O(log®(m’ +n') - OPT) queries with high probability.
Using this, we obtain an O(log2 n)-competitive Monte Carlo randomized algo-
rithm for the network discovery problem in the Layered Graph Query Model.
This is a significant improvement from the previously best known O(y/nlogn)-
competitive algorithm ([3]).

Our algorithm for the set-cover simulates the greedy set-cover algorithm with-
out any information about the contents of any of the sets initially. We use esti-
mation using random sampling to choose the (near) largest cardinality set which
is the basis of the greedy algorithm. We have to compensate for the inaccuracies
in sampling by using a more careful amortisation argument for proving the ap-
proximation factor. The greedy algorithm is modified to run in O(log(n’ + m')
rounds instead of the conventional OPT - logn’ stages.

2 Preliminaries

Let G = (V, E) be a connected, undirected, unweighted graph representing a
network of n vertices. For two distinct nodes u,v € V, we say that (u,v) is an
edge if (u,v) € E and non-edges if (u,v) ¢ E. The set of non-edges in G is
denoted by E.

We assume that the set V' of nodes is known in advance and it is the presence
or absence of edges that need to be discovered or verified. A query at node v is
denoted by query(v).

We say that a query(v) certifies (u,v) if by using the answers to the query(v),
one can confirm the presence or absence of the edge (u,v) in the graph, i.e.
query(v) implicitly or explicitly confirms whether (u,v) € E or (u,v) € E. We
associate two sets with each query(v) as follows. For a given vertex v € V, let
@, denotes the set of all (u,v) € V x V such that query(v) certifies (u,v) .
For a given (u,v) € V x V, let H,,) denote the set of all vertices v such that
query(v)certifies (u,v) . The two definitions can be considered duals of each
other.

Qy = {(u,v) € V x V| query(v) certifies (u,v)} Yo € V

H) = {v € V| query(v) certifies (u,v)}V(u,v) € V x V.

The above formulation of the network discovery problem can be reduced to the
set-cover problem in which given a collection of sets @, of E U E, the goal is to
find a (minimum size) subset V/ C V such that U,eyQ, = E U E. Therefore,
querying the vertices of the set-cover will certify all the edges and non-edges
that can be used to discover the network.

In the related hitting-set problem, given a collection of sets H, ,) of V, the
goal is to find a (minimum size) subset V' C V such that for any given set H(,, .,
there exists a vertex v" € V' such that v € H(,,). It may be noted that the
(offline) hitting-set problem is often solved by reducing it to the corresponding
set-cover problem.

In the offfine verification problem, given any query model, one can find the
above sets exactly as the graph is known. So the network verification problem
can be solved by reducing it to the corresponding set-cover problem (or hitting
set problem). Hence, we get an O(logn) competitive algorithm for the network
verification problem. As mentioned earlier this is the best that we can hope to
do for this problem unless P = NP.

In the online network discovery problem, since we do not know the graph
a priori, we cannot compute the above sets explicitly without querying all the
vertices 2 To circumvent this problem, we develop an algorithm for approximat-
ing the set-cover using the related hitting-set queries. It can be easily seen (c.f.
Section 6), that H,) can be obtained from @, and @, in the context of the
network discovery problem.

2 While this may be necessary for some graphs like the complete graphs, in general
this will lead to poor competitive ratio.

3 Approximating set-cover sets using hitting-set queries

In the conventional greedy set-cover algorithm, we choose a set spmax that covers
the maximum number of uncovered elements, say 1,4z, and add it to the cover.
This leads to a logn’ approximation. Instead, if we choose any set that covers
at least half of n,,,, uncovered elements, then it gives a 2logn’ approximation.
Recall that m’,n’ denote the number of elements and the number of sets respec-
tively. More generally, if we choose a set that cover at least %nmam elements,
then we obtain a ¢’ logn’ approximation. We consider a version of this Relazed
Greedy-Set-Cover (RGSC) where we repeat the following in stages 1,2, ...logn’.
At any stage we identify all the sets that contain at least %nmaw uncovered el-
ements. We can consider the sets of in an arbitrary, but fixed ordering O and
include those sets that contribute at least %nm(m uncovered elements by deleting
elements that have been already covered by sets chosen earlier. Note that the
sets that will be included will depend on O - however, at the end of this stage,
there will not be any set that contains 7,4, /2 or more uncovered elements. Since
any such ordering O corresponds to a valid run of RGSC, this will yield a 2logn’
approximation guarantee.

Our algorithm is based around simulating this approach, where we try to
estimate the value of 1,4, indirectly using random sampling. In round i, 3 we
check for nmas € [2”—_'1, 2”—_'2] by choosing a random set of uncovered elements
of an appropriate size. Using hitting set queries, we find the sets containing
these randomly chosen elements. We choose an appropriate number of uncovered
elements that will hit the sets having 2?—:2 elements with high probability. We
consider the sets in a fixed order and if a set contains more than at least a
threshold number of randomly picked elements, then we include the set in the
set-cover. Because of the estimation using random sampling, we lose a factor
¢ > 2 in the underlying RGSC as we may choose some sets which contain fewer

than 7,,42/2 uncovered elements (but at least ™mze).

Algorithm Pseudo Greedy described below, selects all sets containing at
least 7mqz/2 uncovered elements and discards the sets containing less than
%nmm uncovered elements for 4 < ¢ < 8 with high probability.

We assume that the sets are numbered in some canonical order. In the
specific application of the network discovery problem, this ordering is implicit
({v1,va,...v,}, this induces a canonical ordering on the collection @, of sets).
In the general setting, we assume that such an ordering exits or it can be easily
computed.

In Algorithm 1, N denotes the cardinality of the ground set plus the number
sets in the given family (N = n’4+m’). In the case of Network Discovery problem,
N = O([V[*). In round i, we try to identify the sets containing at least 2’%
uncovered elements.

3 the notation nmqs will refer to the maximum in the current round i.

Algorithm 1 Pseudo-Greedy
fori=0,1...do
1: Let n; be the number of elements left in this round and s; = min{;—;, n; }. Choose

a random sample R’ of size (4an;/s;)log N.
Comment: « is a constant whose value will be determined in the analysis.

2: If s; < alog N then solve the hitting set problem directly using at most n; hitting
set queries and run the explicit greedy set-cover algorithm.

3: Else (if s; > alog N), let S® be the sets that contain more than alog N sampled
elements.
If S° is empty, increment i and go to step 1.

4: Process S* = {X1, X2,...} in some predefined order until all sets are exhausted.

(i) Let R; be the union of elements of R’ that are contained in the sets chosen
among)(1,)(27 cen X]'.
(ii) Include Xjy1 in set-cover if

|Xj+1 N (R = R;)| > alog N

else discard.
(iii) Update R; to R;41. using set queries.

5: Update the elements covered by the sets chosen in this round using set queries.

4 Analysis

We begin with a rough intuition behind the previous algorithm. If the largest
set has size n’/t then the minimum number of sets in any set cover is 2(t).
Therefore we can afford to query a sample of size approximately O(¢-polylogn’)
elements without blowing up the competitive ratio. In this context note that a
uniform random sample of size O(t - polylogn’) will have 6(polylogn’) elements
common with a set of size n’/t with high probability. However, if there are £2(t)
sets of size O(n'/t), we cannot afford to sample repeatedly for finding these sets.
The above observations form the crux of the analysis that are now formalized.

Lemma 1. In round i, in Step 3, the following holds with high probability

(i) If a set T contains at least s;/2 elements then with high probability it will
have at least alog N sampled elements.

(ii) Any set T' chosen in Step 3 will contain at least %si elements for 4 < ¢ <8
with high probability.

Proof. Let T be a set where m > |T'| > m/2. Suppose we sample every element
independently with probability p. The expected number of sampled elements Y’
is such that mp >Y > mp/2. From Chernoff bounds,

Pril+e)mp>Y > (1 —e)mp/2] > 1 — 2e~mp/4
ChOOSing E = 1/27 we get
Pr(3/2mp >Y >mp/4] > 1 — 2e~mP/16

In round ¢, each element is picked independently with probability (4a/s;)log N,
therefore, the expected number of hits in a set of size m is (4ma/s;) log N. From
Chernoff bounds, by substituting m = s;,

Pri6alogN >Y > alogN] > 1 — 2e~ /408N — 1 _ 9 /No/4

Since the number of such T is less than N, the algorithm picks all sets
containing at least s;/2 uncovered elements with high probability. On the other
hand, T be any set chosen in Step 3 of the algorithm. Then, by applying Chernoff
bound, we get,

PT‘[T < Si/cl] < 67(51*2)‘1/810%]\7 — 1/N(c'72)a/8
for all 4 < ¢ < 8.

Lemma 2. If round i takes O(%: - f(N)) steps, then the set-cover can be found

using O(ng - f(N)) queries where ng s the size of the set-cover returned by the
underlying RGSC Algorithm.

Proof. In round i, we include all those sets in the cover that covers at least
s;/2 additional elements. In round ¢, let us distribute the cost uniformly to
the remaining elements, i.e., each of the n; elements is charged O(f(N)/s;).
If an element is covered by a set chosen in round ¢ then it is not charged in
the subsequent rounds. So the total cost over all the rounds for element z is

C(z) < f(N) - (1 +i+%i+%ﬂ+...) where s(z) is the set that first

EQ]

covers element z and s;/c¢’ < |s(z)| < s;. The constant ¢’ refers to the constant
in the previous lemma. Therefore

ISECENL) WEEEEID W) DEwe
x T s(z)

z) z€s(x)

The summation represents the cost of the underlying RGSC algorithm and
therefore, it is bounded by 3¢’ f(N) - ng (see Lemma 3 in the Appendix).
Note that the underlying RGSC algorithm is a ¢’ log N approximation to the
set-cover.

Theorem 1. Algorithm 1 returns a set-cover of size at most O(log N - OPT)
using at most O(log? N - OPT) queries with high probability.

Proof. In our algorithm, f(N) is O(log N). When s; < alog N , we solve the
problem directly using at most n; hitting set queries, and explicitly run the
greedy set-cover. Since the largest set has size n'/2¢, the size of the cover is at
least 2(n'/log N) and therefore, the number of queries is O(log N - OPT). In
order to prove the theorem, we will show that the bound on n, in Lemma 2 is
O(log N - OPT). So, we must establish that the sets shortlisted in Step 3 of the
Algorithm and finally included in the cover in Step 4 are only those sets (on the
basis of their estimates) that covers at least s;/c¢’ uncovered elements. There is a

potential complication if the ordering that we choose is arbitrary - in particular,
we must guard against oversampling of the uncovered elements of any set. For
simplicity, let us assume that we consider the sets of S® in increasing order of
their indices.

Let X1, X5... be the sets of S? in the canonical ordering that contain at
least s;/c¢’ elements. We define X/ as all the uncovered elements in X; after
X1,X2,...X;_1 have been considered. We consider X to be under-sampled if
|X!| > s; but the number of sampled elements intersecting X; (not including
X; — X!) is less than alogn. We analogously define oversampling for X/.

We say that a bad event has occurred in round j, if any of the sets X/ is
under-sampled or oversampled and let the complement of this event be Z;. From
Lemma 1, we can bound the probability of under sampling and over sampling
such that Pr[Z;] > 1—3/N (/4= (by choosing ¢/ > 4). Let A; be the event that
no under-sampling or oversampling occurs for X1, X} ... X!. Then,

PI‘[Az] = PI‘[Ai_l ﬂ Zz] = PI‘[Zz|A1_1] . PI‘[Ai_l]
Therefore,
Pr[A;] > Pr[A;_1] - (1 — 3/N(@/9-1) > (1 - 2/N°‘/4‘1)Z for i < N

By choosing sufficiently large « this is at least 1 — 1/N?. Since this holds

for all j < O(log N) rounds, this also bounds the failure probability of our algo-
rithm. We say that the algorithm fails if in any of rounds, it does not pick all
sets containing at least s;/2 uncovered elements or picks any set containing less
than s;/¢’ uncovered elements. Since we do not verify this property, we obtain
a Monte Carlo algorithm.
Remarks: The sizes of sets that will be chosen will satisfy the the above men-
tioned bounds with high probability; otherwise, the algorithm will be deemed to
have failed. Note that the bound of Lemma 2 also holds with the same proba-
bility. A deterministic algorithm picks all the sets of size at least s;/2, and while
our randomized algorithm chooses all sets of size at least s;/2, it may pick some
sets which are little smaller (but greater than s;/c’).

5 Network Discovery

The off-line problem of network verification can be reduced to a set-cover prob-
lem. In the online version, we do not want to compute the sets explicitly since
this will lead to a poor competitive ratio in many situations. So we solve the
problem by using hitting-set queries as described in the previous section that
gives us an estimate of the set sizes. In our setting, the hitting-set problem is
defined on the sets H(,,) and the set-cover problem on the sets Q,. During
any stage, random sampling is done on the set of unresolved edges to obtain
estimates of @, by querying @, where (z,y) is a sampled edge.

Recall that in Layered Graph Query Model, a query at a vertex v yields the
set of all edges on shortest paths between v and any other vertex. Now, we

observe that this query model is equivalent to the model in which a query at
vertex v yields all edges and non-edges between vertices of different distances
from v. Note that an edge connects two vertices of different distance from v if
and only if it lies on a shortest path between v and one of these two vertices. The
shortest path rooted at v implicitly confirms the absence of all edges between
vertices of different distance from v. So given an edge or non-edge whose status
is not yet resolved, say (v, u), we query both the end points v and u to determine
the distances of all nodes to u and v. From this we can deduce the set H(, ,)
of nodes from which the edge or non-edge between u and v can be discovered:
Hyvy = {2z € V|d(u,z) # d(v,z) d(s,z) = distance from s to x}

Algorithm Pseudo Greedy described in the previous section above trans-
lates to the following in the context of the network discovery problem. Randomly
pick a undiscovered edge and query the set H(, .. Let n be the number of vertices
in the graph and let @ denote the query set- this is the (approximately minimal)
set of vertices which will be used to discover the network. If v is contained in
at least alogn of the queried sets, include v in the set-cover Q. Actually, like
the general set-cover problem, it is a two stage process where we first shortlist
and then subsequently run through this list in some predefined ordering, say
according to the labels of the vertices. As before, we solve the set-cover problem
on @, using a sequence of H(, ,) hitting set queries. The reader can easily work
out the details that we omit to avoid repetition.

In the following algorithm N = O(n?). The algorithm takes O(logn) stages
and in each stage we make O(logn - OPT) queries, where OPT is the optimum
number of queries required to solve the network verification problem. Since this
is also optimum for the online problem, Algorithm Network Discovery makes
O(log® n-0PT) queries. The algorithm yields a set O(logn-0PT) Q, queries that
suffices to discover the given network. Therefore the overall number of queries
for the online discovery is still O(log®n - OPT).

Algorithm 2 Network Discovery
fori=0,1...do
1: Let n; be the number of edges and non-edges which needs to be discovered and

s; = min{ (;,i) ,n;}. Choose a random sample of R’ of size (4an;/s;)log N.

2: If s; < alog N then find Hy,) for each of the undiscovered edge/non-edge and
solve the network discovery problem by reducing it explicitly to the set-cover prob-
lem.

3: If s; > alog N, for each sampled edge/non-edge (u,v), find the set Hy, ..

4: Consider the vertices {v1, vz, ...} in this order and include v; in Q (Qy; is in the set-
cover) only if Q,, contains more than «log N sampled edge/non-edge. (v; € Hy o)
for at least arlog N of the (u,v) € R;).

(The actual implementation of this is similar to Steps 3-4 of the Algorithm Pseudo
Greedy.)

From our earlier analysis of the covert set-cover problem it follows that

Theorem 2. There is a O(log2 n)-competitive randomized Monte Carlo algo-
rithm for the network discovery problem in the Layered Graph Query Model.

6 Conclusion and open problem

The algorithm described in the last section gave a O(log2 n) algorithm for the
network discovery problem — Can we improve this to O(logn) ? We can consider
a weighted version of the network discovery problem, where each query at a
vertex costs say w,, it is not clear whether we can extend our approach to solve
the weighted version of the problem.

We note that in the Distance Query Model, by querying both v and wu, we
can discover if u or v is a edge or non-edge. If it is a non-edge, then we can find
the set H(, ,) — a vertex w is in this set if d(u,w) — d(v,w) > 2. But if (u,v) is
an edge, then we can not find the set H(, .. It is not clear how to determine the
partial witnesses, using set-cover queries as before. Therefore, it remains open if
we can we improve the known O(y/nlogn) bound for network discovery problem
to O(poly(logn)) approximation randomized algorithm in the Distance Query
Model?

Acknowledgement The first author is thankful to Rajeev Raman and Thomas
Erlebach for introducing him to the problem and subsequent technical discus-
sions.

Appendix A

Chernoff bounds

If a random variable X is the sum of n iid Bernoulli trials with a success prob-
ability of p in each trial, the following equations give us concentration bounds
of deviation of X from the expected value of np. These are useful for small
deviations from a large expected value.

Prob(X < (1 —e)pn) < exp(—e*np/2) (1)
Prob(X > (1+ €)np) < exp(—e*np/4) (2)

forall 0 < e < 1.
Greedy set-cover
For completeness, we also sketch the proof of approximation factor of RGSC(6)
for 6 < 1, such that at any step, the size of the set chosen is at least 6 - n,,q:.
Let us number the elements of S in the order they were covered by the
greedy algorithm (wlog, we can renumber such that they are x1,x2...). We will
apportion the cost of covering an element e € S as w(e) = ﬁ where e is
covered for the first time by U and V is set of elements covered till then. This
is also called the cost-effectiveness of set U. The total cost of the cover is

I

U ecU

where n(U) is the number of uncovered elements in U when U was chosen and
e is covered for the first time. This can be rewritten as). w(x;).

Lemma 3.

C,/0

i) S ————
w(x)*n—z—i—l

where C, is the number of sets in the optimum cover.

In the iteration when z; is covered for the first time, the number of uncovered
elements is > n — i + 1. The pure greedy choice is more cost effective than any
left over set of the optimal cover. Suppose S;,, Si, . .. S, are the unselected sets
of the minimum set cover. Then, at least one of them has a cost-effectiveness
of < -k < It follows that the set chosen by RGSC(0) achieves a

n—i+l — n— z-l—l
‘ Co/b
cost-effectiveness of So w(z;) < = 7+1.

(n— 1+1)0
Thus the cost of the greedy cover is > .
Hereanﬁ—l—m—f—l

P l+1 which is bounded by C,/0-H,,.

References

1. Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph Naor. The
online set cover problem. pages 100-105, 2003.

2. Baruch Awerbuch, Yossi Azar, Amos Fiat, and Frank Thomson Leighton. Making
commitments in the face of uncertainty: How to pick a winner almost every time
(extended abstract). pages 519-530, 1996.

3. Zuzana Beerliova, Felix Eberhard, Thomas Erlebach, Alexander Hall, Michael Hoff-
mann 0002, Matis Mihaldk, and L. Shankar Ram. Network discovery and verifi-
cation. In WG@, pages 127-138, 2005.

4. Zuzana Beerliova, Felix Eberhard, Thomas Erlebach, Alexander Hall, Michael Hoff-
mann 0002, Matis Mihaldk, and L. Shankar Ram. Network discovery and veri-
fication. IEEE Journal on Selected Areas in Communications, 24(12):2168-2181,
2006.

5. Yigal Bejerano and Rajeev Rastogi. Robust monitoring of link delays and faults
in ip networks. In INFOCOM, 2003.

6. D.S.Jonson. Approximation algorithms for combinatorial problem. Journal of
Computer and System Sciences, (9):256-278, 1974.

7. Uriel Feige. A threshold of In for approximating set cover. J. ACM, 45(4):634-652,
1998.

8. Samir Khuller, Balaji Raghavachari, and Azriel Rosenfeld. Landmarks in graphs.
Discrete Applied Mathematics, 70(3):217-229, 1996.

9. Michel R.Grey and David S. Jonson. Computers and intractability. Freeman, 1979.

10. Vijay V. Vazirani. Approximation algorithms. Springer-Verlag New York, Inc.,
NY, USA, 2001.

11. V.Chatal. A greedy heuristic for the set-covering problem. Mathematics of Oper-
ations Research, (4):233-235, 1979.

