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Abstract. Thorup and Zwick, in the seminal paper [Journal of ACM,
52(1), 2005, pp 1-24], showed that a weighted undirected graph on n

vertices can be preprocessed in subcubic time to design a data struc-
ture which occupies only subquadratic space, and yet, for any pair of
vertices, can answer distance query approximately in constant time. The
data structure is termed as approximate distance oracle. Subsequently,
there has been improvement in their preprocessing time, and presently
the best known algorithms [4, 3] achieve expected O(n2) preprocessing
time for these oracles. For a class of graphs, these algorithms indeed run
in Θ(n2) time. In this paper, we are able to break this quadratic barrier
at the expense of introducing a (small) constant additive error for un-
weighted graphs. In achieving this goal, we have been able to preserve
the optimal size-stretch trade offs of the oracles. One of our algorithms
can be extended to weighted graphs, where the additive error becomes
2 · wmax(u, v) - here wmax(u, v) is the heaviest edge in the shortest path
between vertices u, v.

1 Introduction

Let G = (V, E) be a graph on |V | = n vertices and |E| = m edges, and δ(u, v) de-
note the distance between any pair of vertices u, v ∈ V in graph G. The all-pairs
shortest paths (APSP) problem requires preprocessing the given graph G so as to
build a data structure using which we can retrieve distance or the shortest path
between any pair of vertices efficiently. APSP is undoubtedly one of the most
fundamental algorithmic graph problems of computer science. Despite being a
classical problem with widespread applications, there exists a huge gap between
the lower bound Ω(n2) and the worst case upper bound O(n3/ log2 n) (due to
Chan [6]) of the time complexity of APSP problem. Furthermore, Θ(n2) space
requirement is a major bottleneck for graphs in many large scale applications.
These two factors have motivated researchers to design efficient algorithms (or
data structures) for reporting approximate distances. In the last fifteen years,
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many novel algorithms [1, 8, 7, 2, 11] have been designed which work for undi-
rected graphs. However, among all these algorithms the approximate distance
oracles designed by Thorup and Zwick [12] deserve special mention. They showed
that any given weighted undirected graph on n vertices can be preprocessed in
sub-cubic time for any integer t ≥ 3 to build a data structure of sub-quadratic
size which for any pair of vertices u, v reports t-approximate distance - at least
δ(u, v) and at most tδ(u, v). There are two very impressive features of their data
structure. First, the trade-off between stretch t and the size of data structure is
essentially optimal assuming a 1963 girth lower bound conjecture of Erdős [9]
and second, in spite of its sub-quadratic size their data structure can answer
any distance query in constant time, hence the name “oracle”. More precisely,
Thorup and Zwick achieved the following result.

Theorem 1. [12] For any integer k ≥ 1, an undirected weighted graph on n
vertices and m edges can be preprocessed in expected O(kmn1/k) time to build
a data structure of size O(kn1+1/k) that can answer any (2k − 1)-approximate
distance query in O(k) time.

Having achieved optimal size-stretch trade offs, and essentially constant query
time, it is only the preprocessing time of these oracles which may be improved.
The preprocessing time has been improved to O(min(n2, kmn1/k)) for unweighted
graphs [4], and recently for weighted graphs as well [3]. Therefore, a natural
question is whether it is possible to achieve O(m+n2−ǫ) - a subquadratic upper
bound for constructing approximate distance oracles. Note that any approximate
all pairs shortest path algorithm takes Ω(n2) steps because of the output size.
Therefore, a sub-quadratic time oracle construction provides a clear advantage
over such algorithms when we are not interested in all the pair-wise distances.
The main objective here is to achieve sub-quadratic preprocessing time for ap-
proximate distance oracles without violating the size-stretch trade off. It may be
noted that the quadratic upper bound of the existing preprocessing algorithms
[12][4] for these oracles is indeed tight - there exists a family of graphs on which
these algorithms would execute in Θ(n2) time.

In this paper, we design approximate distance oracles which, at the expense
of constant additive error, are constructable in sub-quadratic time and preserve
size stretch trade-off optimally. More precisely, we show the following. For any
k > 1, there is a data-structure which occupies O(kn1+1/k) space such that for

any pair of vertices u, v ∈ V , it takes O(k) time to return δ̂(u, v) satisfying

δ(u, v) ≤ δ̂(u, v) ≤ (2k − 1)δ(u, v) + ck where ck = 2 for k ≥ 3 and c2 = 8

As a natural extension of (2k−1)-approximate distance oracle of [12], we denote
the above oracle by (2k−1, ck)-approximate distance oracle, where the first term
(2k−1) is the stretch (multiplicative error) and ck is the surplus (additive error).
The expected preprocessing time for (2k−1, ck) oracle is O(m+kn2−αk), where
αk takes value in the interval [ 1

12
, 1

2
) - takes value 1

12
for k = 2 and approaches

1

2
steadily as k increases (see Table 1).
In short, the small additive error has allowed us to break the quadratic barrier

of preprocessing of approximate distance oracles. It would be very important to



Stretch Space Preprocessing Time Reference

(2k − 1, 0) O(kn1+1/k) O(min(n2, kmn1/k)) [12, 3, 4]

(3, 8) O(n3/2) O(min(m + n
23
12 , m

√
n)) this paper

(2k − 1, 2), k ≥ 3 O(kn1+1/k) O(min(m + kn
3
2
+ 1

2k
+ 1

2k−2 , kmn
1
k )) this paper

Table 1. Comparing the new algorithms with the existing algorithms for approximate
distance oracles.

explore the limits to which the preprocessing time can be further improved. The
result of this paper can be viewed as the first significant step in this direction.

1.1 Overview of the new algorithms

The observation which forms the basis of our algorithms is the simple fact that
the O(kmn1/k) time complexity of the algorithm of Thorup and Zwick [12] is
already sub-quadratic provided the graph is sparse enough. In order to utilize
this observation, we use the idea of partitioning the graph into sparse and dense
subgraphs. Previously this idea was used by the algorithms which compute all-
pairs approximate distance with purely additive error only [1, 8]. Using a random
sample S ⊆ V of vertices, we define a sparse subgraph with o(n2−1/k) edges,
and execute Thorup and Zwick algorithm on this sub graph. This algorithm will
execute in o(n2) time and will easily take care of the case when the shortest
paths between a pair of vertices is fully preserved in the sparse graph. Novelty
of our algorithms is to handle the other case. Our algorithms make use of a
combination of old and new ideas which enables achieving sub-quadratic space
without compromising the optimal size-stretch trade-off. In order to make these
ideas work, our algorithms effectively use suitable emulators and spanners which
are sufficiently sparse.

Definition 1 An (α, β)-spanner of a graph G = (V, E) is a subgraph (V, E′), E′ ⊆
E with the property that distance between any two vertices u, v ∈ V in the span-
ner is at least δ(u, v) and at most α(δ(u, v)) + β.

Definition 2 An (α, β)-emulator of a graph G = (V, E) is a weighted graph
(V, E∗) such that the distance δ∗(u, v) between any two vertices u, v ∈ V in the
emulator is at least δ(u, v) and at most αδ(u, v) + β.

In the following section we describe the notations and lemmas which will be used
throughout this paper. In section 3, we describe our (3, 8)-approximate distance
oracle. In section 4, we describe (2k−1, 2)-approximate distance oracle for k > 2.

2 Preliminaries

For a given graph G = (V, E), and any subset S ⊆ V , we shall use the following
notations :



– N (v) : the set consisting of v and every neighbor of v in the graph G.
– N (S) : ∪v∈SN (v).
– pS(v) : the vertex from set S which is nearest to v (break the tie arbitrarily

in case there are multiple nearest vertices).
– δ(v, S) : distance between v and pS(v).
– E(v) : the set of edges in G which are incident on v.
– ES(v) : the set E(v) if v is not adjacent to any vertex of set S, and ∅ otherwise.
– ES : ∪v∈V ES(v).
– GS : the subgraph (V, ES).
– OG

t : the t-approximate distance oracle of Thorup and Zwick [12] created on
a subgraph G of G.

Our data structure will store information about pS(v) and δ(v, S) for each vertex
in the given graph G. To compute this information, the graph G can be processed
in just O(m) time as follows : insert a dummy vertex o in to the graph, connect
it to all the vertices of set S, and perform a BFS traversal on the graph starting
from o. We shall use TS to denote the set of edges of this BFS tree excluding
the edges incident on the dummy vertex.

Lemma 1. The edge set TS preserves the shortest path between v and pS(v) for
all v ∈ V . The size of TS is O(n).

Now we redefine an important concept (due to Thorup and Zwick [12]) of ball
around a vertex.

Definition 3 [12] For a vertex u ∈ V and a set S ⊆ V in a graph G = (V, E),
we define ball(u, V, S) as the sub graph induced by all those vertices v ∈ V which
satisfy δ(u, v) < δ(u, S) (i.e., for u, it is v which is nearer than pS(u)).

We now state the following Lemma about the number of vertices and edges in
ball(u, V, S) when S is formed by random sampling.

Lemma 2. [12, 4] For a given graph G = (V, E), let S ⊆ V be a set formed
by selecting each vertex from V independently with probability q > 0. Then the
expected number of vertices and expected number of edges in ball(u, V, S) are
O(1/q) and O(1/q2) respectively.

We shall now state a few important Lemmas about the sparse subgraph (V, ES).

Lemma 3. If set S ⊆ V is formed by selecting each vertex independently with
probability q > 0, the expected size of the set ES would be O(n/q).

Lemma 4. If on the shortest path between any two vertices u, v ∈ V in the
graph G = (V, E) there are no two consecutive vertices in set N (S), then the
shortest path between u and v is preserved exactly in the subgraph (V, ES).

The above property of the edge set ES will prove to be very useful in our con-
struction. For the other case we observe the following.

Lemma 5. If the shortest path between u and v in the graph G contains at least
2 consecutive vertices from N (S), then δ(u, S) + δ(v, S) ≤ δ(u, v) + 1.



Proof. Suppose on the shortest path between u and v, u′ be the vertex from
the set N (S) nearest to u, and v′ be the vertex from the set N (S) nearest to
v. Since u′ ∈ N (S) either u′ belongs to S or some neighbor of u′ belongs to S.
This implies that δ(u, u′) ≥ δ(u, S) − 1. Similarly δ(v, v′) ≥ δ(v, S) − 1. Also
note that δ(u, u′) + δ(u′, v′) + δ(v′, v) = δ(u, v). Furthermore, δ(u′, v′) ≥ 1 since
there are at least two vertices from N (S) on the shortest path between u and v.
Therefore, δ(u, u′) + δ(v′, v) + 1 ≤ δ(u, v). This along with the lower bounds on
δ(u, u′) and δ(v, v′) derived above imply that δ(u, S) + δ(v, S) ≤ δ(u, v) + 1.

For construction of our (2k−1, 2)-oracle for k > 2, we shall employ the following
result on spanners.

Theorem 2. [10] For a given unweighted graph G = (V, E) and any integer
k > 1, there exists an O(m) time algorithm for computing a (2k− 1)-spanner of
size O(n1+1/k).

3 A (3, c)-approximate distance oracle in expected

O(n2−
1

12 ) time

Let G be the given undirected unweighted graph. Let S be a set formed by
selecting each vertex independently with probability n− 5

12 . Our preprocessing
algorithm for (3, c)-approximate distance oracle, where c = 8, will employ the
sparse subgraph (V, ES) and an emulator of the given graph G. We shall need
a (3, 2)-emulator which also satisfies some additional properties which are very
crucial (see Lemma 7). We describe the construction and properties of this em-
ulator in the following subsection first.

3.1 The emulator (V, E∗) : its construction and properties

In the construction of the emulator, we shall employ the (3, 2)-spanner designed
by Baswana et al. [5].

Theorem 3. [5] For a given graph G = (V, E), let S′ be a set formed by select-

ing each vertex from V independently with probability p = n− 1
3 . It takes expected

O(m) time to construct a (3, 2)-spanner of size O(n4/3) that satisfies the follow-
ing additional properties for each u ∈ V .

1. If u ∈ V has no neighbor from set S′ in G, then every edge incident onto u
will be in the spanner.

2. If u has one or more neighbors from set S′ in G, then for some unique
neighbor among them, denoted by c(u), the following assertions hold true.

(a) the edge (u, c(u)) is present in the spanner also.
(b) for each edge (u, v) ∈ E not present in the spanner, there is a path

between c(u) and c(v) in the spanner with length at most 3.



Algorithm for building emulator (V, E∗)

1. Add the edges of TS (see Lemma 1)to E∗.

2. Let S′ be the set formed by selecting each vertex with probability n− 1
3 , and

let span be the (3, 2)-spanner of the graph as stated in Theorem 3. Add all
the edges of span to E∗.

3. From each vertex v ∈ V \S perform BFS traversal up to level δ(v, S) − 1
to compute distance to each x ∈ S′ which is present in ball(v, V, S), and
add an edge (v, x) of weight δ(v, x) to E∗.

Lemma 6. The emulator (V, E∗) output by the above algorithm has size O(n4/3)
and can be constructed in expected O(m + n11/6) time.

Proof. The first two steps take expected O(m) time [5]. The third step is per-
formed by executing BFS traversal from each v ∈ V \S up to level δ(v, S) − 1.
This will involve traversing only the edges of the subgraph ball(v, V, S). So it
follows from Lemma 2 that the expected time spent per vertex v in step 3 is
O(n

5
6 ). So the expected time spent for constructing E∗ will be O(n

11
6 + m).

Let us analyze the number of edges of E∗. The first two steps will contribute
O(n

4
3 ) edges to E∗. It follows from elementary probabilistic analysis that the

expected number of vertices of set S′ in ball(v, V, S) will be O(n
1
12 ). So the

expected number of weighted edges contributed to E∗ by each vertex v ∈ V \S is

O(n
1
12 ). Hence the expected number of edges in E∗ will be O(n

13
12 +n

4
3 ) = O(n

4
3 ).

We repeat the above algorithm if |E∗| exceeds twice its expected value; it follows
from Markov inequality that the expected number of repetitions needed will be
at most 2. So we can conclude that the above algorithm can be made to run in
expected O(m + n

11
6 ) time to compute emulator (V, E∗) with |E∗| = O(n

4
3 ).

It follows from the second step in the above algorithm that (V, E∗) is a (3, 2)-
emulator of the given graph. Furthermore, it nearly preserves exact distance from
every vertex u to all the vertices with in ball(u, V, S). The following Lemma
formalizes this fact.

Lemma 7. For each vertex u and any vertex v ∈ ball(u, V, S), the distance
δ∗(u, v) in the emulator (V, E∗) is at least δ(u, v) and at most δ(u, v) + 4

Proof. Consider the shortest path between u and v in the original graph. If
v ∈ S′, it follows that δ∗(u, v) = δ(u, v). Otherwise, let w be the vertex nearest
from v(excluding v) on this path which belongs to N (S′). If no such w exists,
then the entire path is preserved in the emulator as follows from Theorem 3(1).
Otherwise it follows from Theorem 3(2) that there is a vertex x ∈ S′ such that
the edge (x, w) is present in the (3, 2)-spanner (and hence in the emulator too).
Note that x must belong to ball(u, V, S) also, therefore, there is a weighted edge
(u, x) in the emulator with weight δ(u, x). Now there are two cases.



1. (w, v) ∈ E : In this case, δ(u, x) ≤ δ(u, v). Now consider the sub-case when
v ∈ N (S′), it follows from Theorem 3(2) that for some vertex c(v) ∈ S′,
the edge (v, c(v)) as well as a path between x and c(v) of length at most
3 is present in the spanner, and hence in the emulator. This implies that
δ∗(u, v) ≤ δ(u, x) + δ∗(x, c(v)) + δ(c(v), v) ≤ δ(u, v) + 4.
If v /∈ N (S′) then the edge (w, v) is preserved in emulator as follows from
Theorem 3(1). Thus the distance δ∗(u, v) ≤ δ(u, x) + 2 ≤ δ(u, w) + 3 ≤
δ(u, v) + 2.

2. (w, v) /∈ E : In this case, δ(u, x) ≤ δ(u, w) + 1. Furthermore, it follows from
definition of w and Theorem 3(1) that the entire path between w and v
is preserved in the spanner, and hence in the emulator. The weighted edge
(u, x), the edge (x, w) and the w ↔ v path constitute a path in the emulator
of length at most δ(u, v) + 2.

Now we shall describe the preprocessing algorithm for the (3, c)-approximate
distance oracle.

3.2 Preprocessing and query algorithm for (3, c)-Oracle

The following is the preprocessing algorithm for (3, c)-oracle.

1. Choose a random sample S ⊆ V by picking each vertex independently with
probability n−5/12.

2. Build a 3-approximate distance oracle OGS

3 using Thorup and Zwick [12] for
the subgraph GS = (V, ES).

3. For each s ∈ S, perform Dijkstra’s single source shortest path (SSSP) al-
gorithm on emulator (V, E∗). Let Dist be the matrix which stores shortest
distance between each pair of vertices from set S in the emulator.

4. Compute pS(u) and δ(u, S) for all u ∈ V \S; Let R be an array such that
R[u] = δ(u, S).

The (3, c)-oracle will consist of OGS

3 , matrix Dist[], and array R[]. We now
describe the query algorithm.

Query(u, v) {
d1 ← O

GS

3 (u, v).
d2 ←R[u] +R[v] + Dist[pS(u), pS(v)].

return min(d1, d2) }

3.3 Analysis of the new oracle

Let us first analyze the stretch of the approximate distance reported by Query(u, v)
for any two vertices u, v ∈ V . If the shortest path between u and v in G doesn’t
contain two consecutive vertices in N (S), then from Lemma 4, it follows that



stretched by
(3,2)−emulator

pS(u) pS(v)

u′

v′u v

Fig. 1. Analyzing the (3, c)-approximate distance oracle when there are at least two
consecutive vertices from N (S) on the shortest path between u and v

this shortest path is captured in the sparse subgraph GS = (V, ES) as well. It
follows from Theorem 1 that the data structure OGS

3 will report a stretch-3 es-
timate of shortest distance, and we are done. Let us consider the case where
the shortest path between u and v contains two or more consecutive vertices
from N (S). It follows from Lemma 5 that R[u] + R[v] ≤ δ(u, v) + 1. In this
case ball(u, V, S) and ball(v, V, S) will be non-overlapping (see Figure1). We di-
vide the shortest path between u and v into 3 separate sub-paths : the path
u ↔ u′ lying inside ball(u, V, S), the path v′ ↔ v lying inside ball(v, V, S), and
the path u′ ↔ v′ not covered by either of the two balls. It follows from Lemma
7 that δ∗(u, u′) ≤ δ(u, u′) + 4 = (δ(u, S) − 1) + 4 = R[u] + 3, and similarly
δ∗(v′, v) ≤ R[v] + 3. Moreover, since the emulator has stretch (3, 2), so

δ∗(u′, v′) ≤ 3δ(u′, v′) + 2 ≤ 3(δ(u, v)−R[u]−R[v] + 2) + 2

= 3δ(u, v)− 3R[u]− 3R[v] + 8

Combining the length of the three sub-paths in the emulator, it follows that
that δ∗(u, v) ≤ 3δ(u, v) − 2R[u] − 2R[v] + 14. Thus the distance reported by
Query(u, v) is at most :

R[u] +R[v] + Dist[pS(u), pS(v)] ≤ 2R[u] + 2R[v] + δ∗(u, v) ≤ 3δ(u, v) + 14

Additive error can be reduced to 8 by a more careful analysis. However, for sake
of simplicity, we have omitted the details in this version.

We now analyze the space and preprocessing time of this (3, c)-oracle.

Lemma 8. The size of (3, c)-approximate distance oracle is O(n3/2).

Proof. It follows from Theorem 1 that the size of OGS

3 is O(n3/2). The size of S
will be concentrated around its expected value of O(n7/12) (this is because |S| is
sum of n independent Bernoulli random variables, and we can apply Chernoff’s
bound). Therefore, with high probability, the size of matrix Dist is |S| × |S| =



O(n14/12) which is o(n3/2). For each u ∈ V we also store vertex pS(u) and
distance R[u]; this will require additional O(n) space for all the vertices. So the
overall space required is concentrated around O(n3/2) with high probability. We
may rebuild the oracle again from scratch if the space exceeds its expected value
by some large constant; using Markov inequality, it follows that the expected
number of repetitions will be just a constant.

Lemma 9. The expected time taken by preprocessing algorithm is O(n2−α2 +m)
where α2 = 1

12
.

Proof. Steps 1 and 4 of the preprocessing algorithm take O(m) time. In step 2,

it follows from Theorem 1 that the OGS

3 construction takes O(|ES | · n
1
2 ) time,

and we know from Lemma 3 that the expected value of |ES | is O(n1+ 5
12 ). Thus

constructing OGS

3 takes expected O(n2− 1
12 ) time. Emulator construction takes

expected O(m+n
11
6 ) time which follows from Lemma 6. In Step 3 of the prepro-

cessing algorithm, we execute Dijkstra’s single source shortest path algorithm
∀s ∈ S on E∗ which will take expected O(|S| · (|E∗|+ n logn)) time. Also note

that |E∗| = O(n
4
3 ) (see Lemma 6). Thus the expected time required in step

3 of the preprocessing algorithm is O(n
7
12 + 4

3 ) = O(n2− 1
12 ). Thus the expected

running time of the preprocessing algorithm is O(n
23
12 ).

We can thus conclude the following Theorem.

Theorem 4. A given unweighted graphs on n vertices and m edges can be pre-
processed in expected O(m + n

23
12 ) time to build a (3, 8)-approximate distance

oracle of size O(n
3
2 ).

4 A (2k − 1, 2) approximate distance oracle in o(n2) time

In this section we describe a (2k − 1, 2)-approximate distance oracle, for any
integer k ≥ 3, which can be constructed in expected sub-quadratic time. The
space occupied by the oracle is O(kn1+1/k).

Let S ⊆ V be formed by selecting each vertex independently with proba-

bility n− 1
2−

1
2k(k−1) . Thus the expected size of S is O(n

1
2−

1
2k(k−1) ). Just like our

(3, c)-approximate distance oracle, our preprocessing algorithm for (2k − 1, 2)-
approximate distance oracle will employ an emulator (V, E∗). However, this em-
ulator will be a proper sub graph of the original graph G as can be observed
from its construction described below.

Constructing emulator (V, E∗)

1. Add the edges of TS (see Lemma 1)to E∗.

2. Compute a (2k − 3)-spanner span of size O(n1+ 1
k−1 ) for the given graph

using O(m) time algorithm of Theorem 2. Add all edges of span to E∗.



Lemma 10. The subgraph (V, E∗) output by the above algorithm is an (2k−3)-

emulator of size O(n1+ 1
k−1 ). It is computed in O(m) time. Furthermore, this

emulator preserves distance between u and pS(u) for each u ∈ V .

4.1 Preprocessing and query algorithm for (2k − 1, 2)-approximate
distance oracle

We preprocess the graph to obtain (2k − 1, 2)-oracle as follows.

1. Choose a random sample S ⊆ V by picking each vertex independently with

probability n− 1
2−

1
2k(k−1) .

2. Construct a (2k − 1)-approximate distance oracle of Thorup and Zwick [12]
on GS = (V, ES). Let us denote this data structure by OGS

2k−1
.

3. For each s ∈ S, execute SSSP algorithm on emulator (V, E∗) to obtain matrix
Dist, which stores distance δ∗(u, v) between u and v in the emulator for all
u, v ∈ S.

4. Compute pS(u) for each u ∈ V , and construct an array R such that R[u] =
δ(u, S) for each u ∈ V .

The oracle will consist of OGS

2k−1
, matrix Dist[], and array R[]. We now de-

scribe the query algorithm.

Query(u, v) {
d1 ← O

GS

2k−1
(u, v).

d2 ←R[u] +R[v] + Dist[pS(u), pS(v)].
return min(d1, d2) }

(2k−3)−spanner
stretched by

pS(u) pS(v)

u v

Fig. 2. Proving stretch bound in (2k − 1, 2)-approximate distance oracle



4.2 Analysis of stretch, space and preprocessing time of oracle

Let us analyze the distance reported by Query(u, v) for any two vertices u, v ∈
V . We consider the two cases to prove the stretch bound as follows:

1. If the shortest path between u and v doesn’t contain two or more consecutive
vertices in N (S), then it follows from Lemma 4 that this shortest path is
captured in the sparse subgraph GS = (V, ES) as well. By Theorem 1, the
data structure OGS

2k−1
will report a stretch-(2k − 1) estimate of the shortest

distance between u and v.
2. If the shortest path between u and v contains two or more consecutive ver-

tices in N (S), then it follows from Lemma 5 that R(u) +R(v) = δ(u, S) +
δ(v, S) ≤ δ(u, v) + 1, where δ(u, v) is the length of the shortest path be-
tween u and v in G. In this case, it is easy to observe that ball(u, V, S)
and ball(v, V, S) do not overlap (see Figure 2). It follows from Lemma 10
that δ∗(u, pS(u)) = δ(u, pS(u)), and similarly δ∗(v, pS(v)) = δ(v, pS(v)).
Hence, Dist(pS(u), pS(v)) ≤ δ(u, S) + δ(v, S) + δ∗(u, v). Now δ∗(u, v) ≤
(2k−3)δ(u, v) since (V, E∗) is a (2k−3)-emulator. Combining these inequal-
ities and using Lemma 5, the approximate distance returned by Query(u, v)
can be bounded by :

R[u] +R[v] + Dist[pS(u), pS(v)] ≤ 2δ(u, S) + 2δ(v, S) + δ∗(u, v)

≤ (2k − 1)δ(u, v) + 2

Lemma 11. The size of the (2k − 1, 2)-oracle constructed is O(kn1+1/k).

Proof. It follows from Theorem 1 that OGS

2k−1
uses O(kn1+ 1

k ) space. Dist matrix

will use |S|2 = O(n1− 1
k(k−1) ) space, and array R will use O(n) space.

Lemma 12. The expected time taken in computing a (2k − 1, 2)-approximate
distance oracle is O(kn2−αk + m) where αk = (1

2
− 1

2k −
1

2k−2
).

Proof. It follows from Theorem 1 that the construction of OGS

2k−1
takes O(k|ES | ·

n
1
k ) time, and we know from Lemma 3 that the expected value of |ES | is

O(n
3
2+ 1

2k(k−1) ). So the construction ofOGS

2k−1
will take expected O(kn

3
2+ 1

2k
+ 1

2k−2 +
m) time. In Step 3 of the preprocessing algorithm, the construction of emula-
tor takes O(m) time. We run Dijkstra’s SSSP algorithm for each s ∈ S on

(2k − 3)-emulator (V, E∗) of size O(n1+ 1
(k−1) ).1 This will take expected O(|S| ·

n1+ 1
(k−1) ) = O(n

3
2+ 1

2k
+ 1

(2k−2) ) time. Step 4 will take O(m) time. Thus the ex-
pected time complexity of computing (2k − 1, 2)-approximate distance oracle is

O(kn
3
2+ 1

2k
+ 1

2k−2 + m).

We can thus conclude the following Theorem.

Theorem 5. For any integer k > 2, an unweighted undirected graphs on n

vertices and m edges can be preprocessed in expected O(kn
3
2 + 1

2k
+ 1

2k−2 + m) time

to compute (2k − 1, 2)-approximate distance oracle of O(kn1+ 1
k ) size.

1 Although this space exceeds O(n1+1/k), it is only required during the construction
of the oracle and does not contribute to the size of the oracle.



5 Concluding Remarks

For the case of k ≥ 3, we can obtain further improvements in time bounds
by some modifications in the techniques we used. In particular for k = 3, we
can obtain a (5, 4) oracle in O(n11/6 + m) time and for k ≥ 4 we can get a

(2k − 1, 2k − 2) oracle in O(kn2+ 1
k
−⌊ k

2 ⌋·
1
k + m) running time, which is better

for all even values of k. However, the additive stretch here is not a constant but
depends on k.

A more careful analysis of the algorithm for k ≥ 3 yields a (2k−1, 2wmax(u, v))
oracle for weighted graphs where wmax(u, v) is the weight of the heaviest edge
between u, v. In fact when edge weights are identical, we obtain the algorithm in
the previous section as a special case. Details are straight forward and omitted
from this version.
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9. P. Erdős. Extremal problems in graph theory. In Theory of Graphs and its Appli-
cations (Proc. Sympos. Smolenice,1963), pages 29–36, Publ. House Czechoslovak
Acad. Sci., Prague, 1964.

10. S. Halperin and U. Zwick. Linear time deterministic algorithm for computing
spanners for unweighted graphs. unpublished manuscript, 1996.

11. L. Roditty, M. Thorup, and U. Zwick. Deterministic construction of approximate
distance oracles and spanners. In Proceedings of 32nd International Colloquim on
Automata, Languagaes and Programming (ICALP), volume 3580 of LNCS, pages
261–272. Springer, 2005.

12. M. Thorup and U. Zwick. Approximate distance oracles. Journal of Association
of Computing Machinery, 52:1–24, 2005.


