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Abstract

We live in an era of data explosion that necessitates the
discovery of novel out-of-core techniques. The I/O bottle-
neck has to be dealt with in developing out-of-core meth-
ods. The Parallel Disk Model (PDM) has been proposed to
alleviate the I/O bottleneck. Sorting is an important problem
that has ubiquitous applications. Several asymptotically op-
timal PDM sorting algorithms are known and now the fo-
cus has shifted to developing algorithms for problem sizes
of practical interest. In this paper we present several novel
algorithms for sorting on the PDM that take only a small
number of passes through the data. We also present a gen-
eralization of the zero-one principle for sorting. A shuffling
lemma is presented as well. These lemmas should be of in-
dependent interest for average case analysis of sorting al-
gorithms as well as for the analysis of randomized sorting
algorithms.

1. Introduction

The Parallel Disk Model (PDM) has been proposed to
deal with the problem of developing effective algorithms
for processing voluminous data. In a PDM, there is a (se-
quential or parallel) computer C that has access to D(≥ 1)
disks. In one I/O operation, it is assumed that a block of
size B can be fetched into the main memory of C. One typ-
ically assumes that the main memory of C is sized M where
M is a (small) constant multiple of DB.

Efficient algorithms have been devised for the PDM for
numerous fundamental problems. In the analysis of these
algorithms, typically, the number of I/O operations needed
are optimized. Since local computations take much less time
than the time needed for the I/O operations, these analyzes
are reasonable.
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Since sorting is a fundamental and highly ubiquitous
problem, a lot of effort has been spent on developing sort-
ing algorithms for the PDM. It has been shown by Aggar-

wal and Vitter [1] that Ω
(

N
DB

log(N/B)
log(M/B)

)
I/O operations

are needed to sort N keys (residing in D disks) when the
block size is B. Here M is the size of the internal mem-
ory. Many asymptotically optimal algorithms have been de-
vised as well (see e.g., Arge [2], Nodine and Vitter [21], and
Vitter and Hutchinson [29]). The LMM sort of Rajasekaran
[23] is optimal when N, B, and M are polynomially re-
lated and is a generalization of Batcher’s odd-even merge
sort [6], Thompson and Kung’s s2-way merge sort [28], and
Leighton’s columnsort [15].

Recently, many algorithms have been devised for prob-
lem sizes of practical interest. For instance, Demen-
tiev and Sanders [11] have developed a sorting algo-
rithm based on multi-way merge that overlaps I/O and
computation optimally. Their implementation sorts gi-
gabytes of data and competes with the best practical
implementations. Chaudhry, Cormen, and Wisniewski
[9] have developed a novel variant of columnsort that
sorts M

√
M keys in three passes over the data (assum-

ing that B = M1/3). Their implementation is competitive
with NOW-Sort. (By a pass we mean N

DB read I/O oper-
ations and the same number of write operations.) A typ-
ical assumption made in developing PDM algorithms
is that the internal memory size M is a small multi-
ple of DB. In [7], Chaudhry and Cormen introduce
some sophisticated engineering tools to speedup the al-
gorithm of [9] in practice. They also report a three pass
algorithm that sorts M

√
M keys in this paper (assum-

ing that B = Θ(M1/3)). In [8], Chaudhry, Cormen,
and Hamon present an algorithm that sorts M 5/3/42/3

keys (when B = Θ(M2/5)). They combine column-
sort and Revsort of Schnorr and Shamir [26] in a clever
way. This paper also promotes the need for oblivious algo-
rithms and the usefulness of mesh-based techniques in the
context of out-of-core sorting. In fact, the LMM sort of Ra-
jasekaran [23] and all the algorithms in this paper (except
for the integer sorting algorithm) are oblivious.



In this paper we focus on developing sorting algorithms
that take a small number of passes. We note that for most of
the applications of practical interest N ≤ M 2. For instance,
if M = 108 (integers), then M2 is 1016 (integers) (which
is around 100,000 tera bytes). Thus we focus on input sizes
of ≤ M2 in this paper. Another important thrust of this pa-
per is on algorithms that have good expected performance.
In particular, we are interested in algorithms that take only
a small number of passes on an overwhelming fraction of
all possible inputs. As an example, consider an algorithm A
that takes two passes on at least (1 − M−α) fraction of all
possible inputs and three passes on at most M−α fraction of
all possible inputs. If M = 108 and α = 2, only on at most
10−14 % of all possible inputs, A will take more than two
passes. Thus algorithms of this kind will be of great practi-
cal importance.

New Results: There are two main contributions in this pa-
per: 1) We bring out the need for algorithms that have good
expected performance in the context of PDM sorting. A sav-
ing of even one pass could make a big difference if the in-
put size is large. Especially, algorithms that run in a small
number of passes on an overwhelming fraction of all possi-
ble inputs will be highly desirable in practice. As a part of
this effort we prove two lemmas that should be of indepen-
dent interest. 2) The second main contribution is in the de-
velopment of algorithms for input sizes ≤ M 2. This input
size seems to cover most of the applications of practical in-
terest. In this paper we also point out that radix sort can be
useful in PDM sorting of integer keys. And hence it should
be of interest for many practical applications.

The zero-one principle has been extensively used in the
past in the design and analysis of sorting algorithms. This
lemma states that if an oblivious sorting algorithm sorts all
possible binary sequences of length n, then it also sorts ar-
bitrary sequences of length n. In this paper we present a
generalization of this principle that applies to sorting al-
gorithms that sort most of the binary sequences. The stan-
dard 0-1 principle offers great simplicity in analyzing sort-
ing algorithms–it suffices to assume that the input consists
of only zeros and ones. The same level of simplicity is of-
fered by the generalization presented in this paper as well.
We are not aware of any previous formalization of such re-
sult - however, Chlebus [10] has stated an ad-hoc version
without giving any proof of its correctness.

We also present a shuffling lemma that is useful for ana-
lyzing average behavior of sorting random inputs based on
generalizations of odd-even merging technique (see [23]).
Even though the generalized zero-one principle can be used
in place of this lemma, it yields slightly better constants
than the generalized zero-one principle. These two lemmas
should be of independent interest.

The two thrusts of our interest have yielded several spe-

cific algorithms for PDM sorting. All of these algorithms
use a block size of

√
M . Here is a list: 1) We present a sim-

ple mesh-based algorithm that sorts M
√

M keys in three
passes assuming that B =

√
M ; 2) We also present an-

other three pass algorithm for sorting M
√

M keys that is
based on LMM sort that also assumes that B =

√
M . In

contrast, the algorithm of Chaudhry and Cormen [7] uses
a block size of M1/3 and sorts M

√
M/

√
2 keys in three

passes. 3) An expected two pass algorithm that sorts nearly
M

√
M keys. In this paper, all the expected algorithms are

such that they take the specified number of passes on an
overwhelming fraction (i.e., ≥ (1 − M−α) for any fixed
α ≥ 1) of all possible inputs; 4) An expected three pass al-
gorithm that sorts nearly M 1.75 keys; 5) A seven pass algo-
rithm (based on LMM sort) that sorts M 2 keys. 6) An ex-
pected six pass algorithm that sorts nearly M 2 keys; and 7)
A simple integer sorting algorithm that sorts integers in the
range [1, M c] (for any constant c) in a constant number of
passes (for any input size). Unlike the bundle-sorting algo-
rithm of Matias, Segal and Vitter [20] that is efficient only
for a single disk model, our algorithm achieves full paral-
lelism under very mild assumptions.

Notation. We say the amount of resource (like time, space,
etc.) used by a randomized or probabilistic algorithm is
Õ(f(n)) if the amount of resource used is no more than
cαf(n) with probability ≥ (1 − n−α) for any n ≥ n0,
where c and n0 are constants and α is a constant ≥ 1. We
could also define the asymptotic functions Θ̃(.), õ(.), etc.
in a similar manner.

2. A Lower Bound

The following lower bound result will help us judge the
optimality of algorithms presented in this paper.

Lemma 2.1 At least two passes are needed to sort M
√

M
elements when the block size is

√
M . At least three passes

are needed to sort M2 elements when the block size is
√

M .
These lower bounds hold on the average as well.

Proof. The bounds stated above follow from the lower
bound theorem proven in [4]. In particular, it has been
shown in [4] that log(N !) ≤ N log B + I × (B log((M −
B)/B) + 3B), where I is the number of I/O operations
taken by any algorithm that sorts N keys residing in a sin-
gle disk. Substituting N = M

√
M, B =

√
M , we see that

I ≥ 2M(1− 1.45
log M )

(1+ 6
log M )

. The RHS is very nearly equal to 2M .

In other words, to sort M
√

M keys, at least two passes are
needed. It is easy to see that the same is true for the PDM
also. In a similar fashion, one could see that at least three
passes are needed to sort M 2 elements. �



3. A Generalized Zero-One Principle with ap-
plication to PDM sorting

3.1. A Mesh-Based Algorithm

In this section we describe a very simple algorithm that
can sort M3/2 elements using M internal memory. Con-
sider the input arranged as an M ×

√
M array. We will of-

ten refer to sub-meshes r×c where such a submesh contains
a subset of r consecutive rows and c consecutive columns
beginning from a multiple of r rows and c columns respec-
tively.

Algorithm ThreePass1

1. Sort all the
√

M ×
√

M sub-meshes.
The sorting order is row major such that every consec-
utive submeshes have their rows sorted in reverse di-
rections.

2. Sort all columns vertically.

3. Sort every consecutive pair of
√

M/2×
√

M submesh
by bringing them one after the other (in a top to down
ordering) into the internal memory. After sorting, the
smallest

√
M/2 elements are written out and the next

one is brought in till all sub-meshes are exhausted.

Let us first prove the correctness before we show that the
algorithm makes exactly three passes in the worst case.

Theorem 3.1 Algorithm ThreePass1 sorts the M ×
√

M
data items correctly for all inputs.

Proof: Our proof is based on 0-1 principle so that we
only have to analyze inputs consisting of 0’s or 1’s. Cen-
tral to this algorithm as well as others like [26, 18, 19]
is the notion of dirty rows/columns/blocks. Defini-
tion Dirty A row/column is dirty if it contains at mixture of
0’s and 1’s. Similarly a block is dirty if it contains a mix-
ture of 0’s and 1’s.

After Step 1, every
√

M ×
√

M sub-mesh has at most 1
dirty row. After Step 2, there can be at most

√
M dirty rows

which can be further restricted to
√

M/2 from the princi-
ple of Shearsort [27]. This implies at most two dirty

√
M/2

sub-meshes. Step 3 cleans up these in a manner similar to
[18].

Now we proceed to bound the number of passes. As-
sume that the initial data is striped row wise, in blocks of
size

√
M . Therefore the entire submesh can be read using

one parallel read. After sorting them these are written out in
a column major (striped across columns). This also achieves
full parallelism as each submesh contains

√
M blocks -

one from each column. Therefore in the next phase sort-
ing columns can be done by reading one column at a time.
While writing these back we do the reverse of Step 1. Step 3

is clearly one pass through the data reading
√

M ×
√

M el-
ement sub-mesh at a time. �

3.2. Average Case analysis

We now modify the algorithm by eliminating the first
step and reanalyze it. This version of the algorithm called
ExpThreePass1 takes 2 passes for a large fraction of the
input permutations. More precisely,

Theorem 3.2 Algorithm ExpThreePass2 sorts

M
√

M
cα loge M data items correctly in expected 2 passes,

for some constant c.

We prove and use a generalization of the 0-1 principle for
this purpose. The traditional zero-one principle for sorting
networks states that ”if a network with n input lines sorts all
2n binary sequences into nondecreasing order, then it will
sort any arbitrary sequence of n numbers into nondecreas-
ing order.” We prove a generalization of the 0-1 principle
to sorting networks that sort almost all possible binary se-
quences. This generalization will be useful in the average
case analysis of sorting algorithms as well as in the analysis
of randomized sorting algorithms. It may be noted that the
0-1 principle extends to oblivious sorting algorithms [16]
and although our results are stated in the context of sort-
ing networks, they are applicable to oblivious sorting algo-
rithms also.

Theorem 3.3 (Generalized 0-1 principle) Let Sk denote
the set of length n binary strings with exactly k 0’s 0 ≤
k ≤ n. Then, if a sorting circuit with n input lines sorts at
least α fraction of Sk for all k, 0 ≤ k ≤ n, then the cir-
cuit sorts at least (1− (1−α) · (n+1)) fraction of the input
permutations of n arbitrary numbers.

Note that the theorem gives non-trivial bounds only when
α > 1 − 1/(n + 1). A complete proof is given in the ap-
pendix.

The proof of Theorem 3.2 is based on the following sim-
ple observation that if we throw about n3/2 balls in n bins
uniformly at random then the difference between the maxi-
mum and minimum order statistics is O(

√
cαn log n) with

probability exceeding 1−n−α for some constant c (follows
from Chernoff bounds). This is the size of the dirty band af-
ter the column sorting step (either the number of zeros or
the number of 1’s should exceed M 3/2) and hence it can be
cleaned in one more phase.

4. LMM based algorithms and a shuffling
lemma

In this section we present another three-pass algorithm
for sorting on the PDM based on the (l, m)-merge sort
(LMM sort) algorithm of Rajasekaran [23]. The LMM sort



partitions the input sequence of N keys into l subsequences,
sorts them recursively and merges the l sorted subsequences
using the (l, m)-merge algorithm.

The (l, m)-merge algorithm takes as input l sorted se-
quences X1, X2, . . . , Xl and merges them as follows.
Unshuffle each input sequence into m parts. In particu-
lar, Xi (1 ≤ i ≤ l) gets unshuffled into X1

i , X2
i , . . . , Xm

i .
Recursively merge X1

1 , X1
2 , . . . , X1

l to get L1; Recur-
sively merge X2

1 , X2
2 , . . . , X2

l to get L2; · · ·; Recur-
sively merge Xm

1 , Xm
2 , . . . , Xm

l to get Lm. Now shuf-
fle L1, L2, . . . , Lm. At this point, it can be shown that each
key is at a distance of ≤ lm from its final sorted posi-
tion. Perform local sorting to move each key to its sorted
position.

Columnsort algorithm [15], odd-even merge sort [6], and
the s2-way merge sort algorithms are all special cases of
LMM sort [23].

For the case of B =
√

M , and N = M
√

M , LMM sort
can be specialized as follows to run in three passes.

Algorithm ThreePass2

1. Form l =
√

M runs each of length M . These runs
have to be merged using (l, m)-merge. The steps in-
volved are listed next. Let X1, X2, . . . , X√

M be the
sequences to be merged.

2. Unshuffle each Xi into
√

M parts so that each part is
of length

√
M . This unshuffling can be combined with

the initial runs formation task and hence can be com-
pleted in one pass.

3. In this step, we have
√

M merges to do, where each
merge involves

√
M sequences of length

√
M each.

Observe that there are only M records in each merge
and hence all the mergings can be done in one pass
through the data.

4. This step involves shuffling and local sorting. The
length of the dirty sequence is (

√
M)2 = M . Shuf-

fling and local sorting can be combined and finished in
one pass through the data as showm in [23].

We get the following:

Lemma 4.1 LMM sort sorts M
√

M keys in three passes
through the data when the block size is

√
M .

Observation 4.1 Chaudhry and Cormen [7] have shown
that Leighton’s columnsort algorithm [15] can be adapted
for the PDM to sort

√
M1.5/2 keys in three passes. In con-

trast, the three pass algorithm of Lemma 4.1 (based on
LMM sort) sorts M1.5 keys in three passes.

4.1. A Shuffling Lemma

In this section we prove a lemma (we call the shuf-
fling lemma) that will be useful in the analysis of expected
performance of sorting algorithms. Though the generalized
zero-one principle can be employed in its place, this lemma
yields better constants than the generalized zero-one princi-
ple.

Consider a set X = {1, 2, . . . , n}. Let X1, X2, . . . , Xm

be a random partition of X into equal sized parts. Let
X1 = x1

1, x
2
1, . . . , x

q
1; X2 = x1

2, x
2
2, . . . , x

q
2; · · ·; Xm =

x1
m, x2

m, . . . , xq
m in sorted order. Here mq = n.

We define the rank of any element y in a sequence of
keys Y as |{z ∈ Y : z < y}| + 1. Let r be any element of
X and let Xi be the part in which r is found. If r = xk

i (i.e.,
the rank of r in Xi is k) what can we say about the value of
k?

Probability that r has a rank of k in Xi is given by

P =

(
r−1
k−1

)(
n−r
q−k

)
(
n−1
q−1

) .

Using the fact that
(
a
b

)
≤

(
ae
b

)b
, we get

P ≤

(
r−1
k−1

)k−1 (
n−r
q−k

)q−k

(
n−1
q−1

)q−1

Ignoring the −1’s and using the fact that (1 − u)1/u ≤
(1/e), we arrive at:

P ≤
(

rq/n

k

)k

e−(q−k)[r/n−k/q].

When k = rq
n +

√
(α + 2)q loge n + 1 (for any fixed α),

we get, P ≤ n−α−2/e. Thus the probability that k ≥ rq
n +√

(α + 2)q loge n + 1 is ≤ n−α−1/e.
In a similar fashion, we can show that the probabil-

ity that k ≤ rq
n −

√
(α + 2)q loge n + 1 is ≤ n−α−1/e.

This can be shown by proving that the number of ele-
ments in Xi that are greater than r cannot be higher than
(n−r)q

n +
√

(α + 2)q loge n + 1 with the same probability.
Thus, the probability that k is not in the interval

[rq

n
−

√
(α + 2)q loge n + 1,

rq

n
+

√
(α + 2)q loge n + 1

]

is ≤ n−α−1.
As a consequence, probability that for any r the corre-

sponding k will not be in the above interval is ≤ n−α.
Now consider shuffling the sequences X1, X2, . . . , Xm

to get the sequence Z. The position of r in Z will be (k −
1)m + i. Thus the position of r in Z will be in the interval:



[
r − n√

q

√
(α + 2) loge n + 1 − n

q
, r +

n√
q

√
(α + 2) loge n + 1

]

We get the following Lemma:

Lemma 4.2 Let X be a set of n arbitrary keys. Partiton
X into m = n

q equal sized parts randomly (or equiva-
lently if X is a random permutation of n keys, the first
part is the first q elements of X , the second part is the
next q elements of X , and so on). Sort each part. Let
X1, X2, . . . , Xm be the sorted parts. Shuffle the Xi’s to get
the sequence Z. At this time, each key in Z will be at most
n√
q

√
(α + 2) loge n + 1 + n

q ≤ n√
q

√
(α + 2) loge n + 2

positions away from its final sorted position. �

Observation 4.2 Let Z be a sequence of n keys in which
every key is at a distance of at most d from its sorted posi-
tion. Then one way of sorting Z is as follows: Partition Z
into subsequences Z1, Z2, . . . , Zn/d where |Zi| = d, 1 ≤
i ≤ n/d. Sort each Zi(1 ≤ i ≤ n/d). Merge Z1 with Z2,
merge Z3 with Z4, · · ·, merge Zn/d−1 with Zn/d (assuming
that n/d is even; the case of n/d being odd is handled sim-
ilarly); Followed by this merge Z2 with Z3, merge Z4 with
Z5, · · ·, and merge Zn/d−2 with Zn/d−1. Now it can be seen
that Z is in sorted order.

Observation 4.3 The above discussion suggests a way of
sorting n given keys. Assuming that the input permutation
is random, one could employ Lemma 4.2 to analyze the ex-
pected performance of the algorithm. In fact, the above al-
gorithm is very similar to the LMM sort [23].

5. An Expected Two-Pass Algorithm

In this section we present an algorithm that sorts nearly
M

√
M keys when the block size is

√
M in an expected

two passes. The expectation is over the space of all possi-
ble inputs. In particular, this algorithm takes two passes for
a large fraction of all possible inputs. Specifically, this algo-
rithm sorts N = M

√
M

c
√

log M
keys, where c is a constant to be

fixed in the analysis. This algorithm is similar to the one in
Section 4.1. Let N1 = N/M .

Algorithm ExpectedTwoPass

1. Form N1 runs each of length M . Let these runs be
L1, L2, . . . , LN1 . This takes one pass.

2. In the second pass shuffle these N1 runs to get the se-
quence Z (of length N ). Perform local sorting as de-
picted in Section 4.1. Here are the details: Call the se-
quence of the first M elements of Z as Z1; the next M
elements as Z2; and so on. In other words, Z is parti-
tioned into Z1, Z2, . . . , ZN1 . Sort each one of the Zi’s.
Followed by this merge Z1 and Z2; merge Z3 and Z4;

etc. Finally merge Z2 and Z3; merge Z4 and Z5; and
so on.

Shuffling and the two steps of local sorting can be
combined and finished in one pass through the data.
The idea is to have two successive Zi’s (call these Zi

and Zi+1) at any time in the main memory. We can sort
Zi and Zi+1 and merge them. After this Zi is ready to
be shipped to the disks. Zi+2 will then be brought in,
sorted, and merged with Zi+1. At this point Zi+1 will
be shipped out; and so on.

It is easy to check if the output is correct or not
(by keeping track of the largest key shipped out in the
previous I/O). As soon as a problem is detected (i.e.,
when the smallest key currently being shipped out is
smaller than the largest key shipped out in the previ-
ous I/O), the algorithm is aborted and the algorithm of
Lemma 4.1 is used to sort the keys (in an additional
three passes).

Theorem 5.1 The expected number of passes made by Al-
gorithm ExpectedTwoPass is very nearly two. The num-

ber of keys sorted is M
√

M
(α+2) loge M+2 .

Proof. Using Lemma 4.2, every key in Z is at a distance of
at most≤ N1

√
M

√
(α + 2) loge M + 2 from its sorted po-

sition with probability ≥ (1−M−α. We want this distance

to be ≤ M . This happens when N1 ≤
√

M
(α+2) loge M+2 .

For this choice of N1, the expected number of passes
made by ExpectedTwoPass is 2(1 − M−α) + 5M−α

which is very nearly 2. �

As an example, when M = 108 and α = 2, the expected
number of passes is 2+3×10−16. Only on at most 10−14 %
of all possible inputs, ExpectedTwoPass will take more
than two passes. Thus this algorithm is of practical impor-
tance. Please also note that we match the lower bound of
Lemma 2.1 closely.

Observation 5.1 The columnsort algorithm [15] has eight
steps. Steps 1, 3, 5, and 7 involve sorting the columns. In
steps 2, 4, 6, and 8 some well-defined permutations are ap-
plied on the keys. Chaudhry and Cormen [7] show how to
combine the steps appropriately, so that only three passes
are needed to sort M

√
M/2 keys on a PDM (with B =

Θ(M1/3)). Here we point out that this variant of column-
sort can be modified to run in an expected two passes. The
idea is to skip steps 1 and 2. Using Lemma 4.2, one can

show that modified columnsort sorts M
√

M
4(α+2) loge M+2

keys in an expected two passes. Contrast this number with
the one given in Theorem 5.1.



6. Increasing the data size

In this section we show how to extend the ideas of
the previous section to increase the number of keys to be
sorted. First, we focus on an expected three pass algorithm.
Let N be the total number of keys to be sorted and let
N2 = N

√
(α + 2) loge M + 2/(M

√
M).

Algorithm ExpectedThreePass

1. Using ExpectedTwoPass, form runs of length

M
√

M
(α+2) loge M+2 each. This will take an ex-

pected two passes. Now we have N2 runs to be
merged. Let these runs be L1, L2, . . . , LN2 .

2. This step is similar to Step 2 of ExpectedTwoPass.
In this step we shuffle the N2 runs formed in Step 1 to
get the sequence Z (of length N ). Perform local sort-
ing as depicted in ExpectedTwoPass.

Shuffling and the two steps of local sorting can be
combined and finished in one pass through the data (as
described in ExpectedTwoPass).

It is easy to check if the output is correct or not (by
keeping track of the largest key shipped out in the pre-
vious I/O). As soon as a problem is detected (i.e., when
the smallest key currently being shipped out is smaller
than the largest key shipped out in the previous I/O),
the algorithm is aborted and another algorithm is used
to sort the keys. One choice for this alternate algorithm
is the seven pass algorithm presented in the next sec-
tion.

Theorem 6.1 The expected number of passes made by Al-
gorithm ExpectedThreePass is very nearly three. The
number of keys sorted is M1.75

[(α+2) loge M+2]3/4 .

Proof. Here again we make use of Lemma 4.2.

In this case q = M
√

M
(α+2) loge M+2 . In the sequence

Z, each key will be at a distance of at most N2M
3/4[(α +

2) loge M + 2]1/4 from its sorted position (with probabil-
ity ≥ (1 − M−α)). We want this distance to be ≤ M . This

happens when N2 ≤ M1/4

[(α+2) loge M+2]1/4 .
For this choice of N2, the expected number of passes

made by ExpectedTwoPass is 3(1 − M−α) + 7M−α

which is very nearly 3. �

Observation 6.1 Chaudhry and Cormen [7] have recently
developed a sophisticated variant of columnsort called sub-
block columnsort that can sort M 5/3/42/3 keys in four
passes (when B = Θ(M 1/3)). This algorithm has been in-
spired by the Revsort of Schnorr and Shamir [26]. Subblock
columnsort introduces the following step between steps 3
and 4 of columnsort: Partition the r × s matrix into sub-
blocks of size

√
s × √

s each; Convert each subblock into

a column; and sort the columns of the matrix. At the end
of step 3, there could be at most s dirty rows. With the ab-
sence of the new step, the value of s will be constrained
by s ≤

√
r/2. At the end of the new step, the number of

dirty rows is shown to be at most 2
√

s. This is in turn be-
cause of the fact there could be at most 2

√
s dirty blocks.

The reason for this is that the boundary between the zeros
and ones in the matrix is monotonous (see Figure 5 in [7]).
The monotonicity is ensured by steps 1 through 3 of column-
sort. With the new step in place, the constraint on s is given
by r ≥ 4s3/2 and hence a total of M 5/3/42/3 keys can be
sorted. If one attempts to convert subblock columnsort into
a probabilistic algorithm by skipping steps 1 and 2 (as was
done in Observation 5.1), it won’t work since the mono-
tonicity is not guaranteed. So, converting subblock column-
sort into an expected three pass algorithm (that sorts close
to M5/3 keys) is not feasible. In other words, the new step
of forming subblocks (and the associated permutation and
sorting) does not seem to help in expectation. On the other

hand, ExpectedThreePass sorts Ω
(

M1.75

log M

)
keys in three

passes with high probability.

6.1. Sorting M 2 elements

In this section we show how to adapt LMM sort to sort
M2 keys on a PDM with B =

√
M . This adaptation runs

in seven passes. Let N = M 2 be the total number of keys
to be sorted.

Algorithm SevenPass

1. Use LMM sort (c.f. Lemma 4.1) to form runs of length
M

√
M each. Now there are

√
M runs that have to be

merged. Let these runs be L1, L2, . . . , L√
M .

Use (l, m)-merge to merge these runs, with l =
m =

√
M . The tasks involved are listed below.

2. Unshuffle each Li (1 ≤ i ≤
√

M ) into
√

M subse-
quences L1

i , L
2
i , . . . , L

√
M

i .

3. Merge L1
1, L

1
2, L

1
3, . . . , L

1√
M

; Let Q1 be the re-

sultant sequence; Merge L2
1, L

2
2, . . . , L

2√
M

; Let
Q2 be the resultant sequence; · · ·; and merge

L
√

M
1 , L

√
M

2 , . . . , L
√

M√
M

; Let Q√
M be the resultant se-

quence. Note that each Qi(1 ≤ i ≤
√

M) is of length
M

√
M .

4. Shuffle Q1, Q2, . . . , Q√
M . Let Z be the shuffled se-

quence.

5. It can be shown that the length of the dirty sequence in
Z is at most M . Clean up the dirty sequence as illus-
trated in ExpectedTwoPass.

Theorem 6.2 Algorithm SevenPass runs in seven passes
and sorts M2 keys.



Proof: In accordance with Lemma 4.1, step 1 takes three
passes. Step 2 can be combined with step 1. Instead of writ-
ing M keys of a run directly into the disks, do the un-
shuffling and write the unshuffled runs. In step 3 there are√

M subproblems each one being that of merging
√

M se-
quences of length M each. These mergings can be done in
three passes (c.f. Lemma 4.1). Finally, steps 4 and 5 together
need only one pass (c.f. ExpectedTwoPass). �

6.2. An Expected Six Pass Algorithm

In this section we show how to adapt SevenPass to
get an algorithm that sorts nearly M 2 elements in an ex-
pected six passes. Call the new algorithm ExpectedSix-
Pass. This algorithm is the same as SevenPass except
that in step 1, we use ExpectedTwoPass to form runs of

length M
√

M
(α+2) loge M+2 each. This will take an expected

two passes. There are
√

M such runs. The rest of the steps
are the same. Of course now the lengths of Lj

i ’s and Qi’s
will be less. We get the following:

Theorem 6.3 ExpectedSixPass runs in an expected six
passes and sorts M2√

(α+2) loge M+2
keys.

Remark We have designed matching mesh-based algo-
rithms. At this point it is not clear if they offer any ada-
vantage. We will provide details in the full version.

7. Optimal Integer Sorting

Often, the keys to be sorted are integers in some
range [1, R]. Numerous sequential and parallel algo-
rithms have been devised for sorting integers. Several ef-
ficient out-of-core algorithms have been devised by Arge,
Ferragina, Grossi, and Vitter [3] for sorting strings. For in-
stance, three of their algorithms have the I/O bounds

of O
(

N
B logM/B

N
B

)
, O

(
N

FB logM/B
N
F + N

B

)
, and

O
(

K
B logM/B

K
B + N

B logM/B |Σ|
)

, respectively. These

algorithms sort K strings with a total of N charac-
ters from the alphabet Σ. Here F is a positive integer
such that F |Σ|F ≤ M and |Σ|F ≤ N . These algo-
rithms could be employed on the PDM to sort integers. For
a suitable choice of F , the second algorithm (for exam-
ple) is asymptotically optimal.

In this section we analyze radix sort (see e.g., [13]) in
the context of PDM sorting. This algorithm sorts an arbi-
trary number of keys. We assume that each key fits in one
word of the computer. We believe that for applications of
practical interest radix sort applies to run in no more than 4
passes for most of the inputs.

The range of interest in practice seems to be [1, M c] for
some constant c. For example, weather data, market data,

etc. are such that the key size is no more than 32 bits. The
same is true for personal data kept by governments. For ex-
ample, if the key is social security number, then 32 bits are
enough. However, one of the algorithms given in this sec-
tion applies for keys from an arbitrary range as long as each
key fits in one word of the computer. The bundle-sorting al-
gorithm of Matias, Segal and Vitter [20] can be applied to
this scenario but it is efficient only for a single disk model.

The first case we consider is one where the keys are inte-
gers in the range [1, M/B]. Also assume that each key has
a random value in this interval. If the internal memory of a
computer is M , then it is reasonable to assume that the word
size of the computer is Θ(logM). Thus each key of inter-
est fits in one word of the computer. M and B are used to
denote the internal memory size and the block size, respec-
tively, in words.

The idea can be described as follows. We build M/B
runs one for each possible value that the the keys can take.
From every I/O read operation, M keys are brought into
the core memory. From out of all the keys in the memory,
blocks are formed. These blocks are written to the disks in
a striped manner. The striping method suggested in [23] is
used. Some of the blocks could be nonfull. All the blocks
in the memory are written to the disks using as few paral-
lel write steps as possible. We assume that M = CDB for
some constant C. Let R = M/B. More details follow.

Algorithm IntegerSort

for i := 1 to N/M do

1. In C parallel read operations, bring into the
core memory M = CDB keys.

2. Sort the keys in the internal memory
and form blocks according to the val-
ues of keys. Keep a bucket for each possible
value in the range [1, R]. Let the buck-
ets be B1,B2, . . . ,BR. If there are Ni keys
in Bi, then, dNi/Be blocks will be formed
out of Bi (for 1 ≤ i ≤ R).

3. Send all the blocks to the disks using as few
parallel write steps as possible. The runs are
striped across the disks (in the same man-
ner as in [23]). The number of write steps
needed is maxi{dNi/Be}.

A. Read the keys written to the disks and write
them back so that the keys are placed contigu-
ously across the disks.

Theorem 7.1 Algorithm IntegerSort runs in O(1) passes
through the data for a large fraction (≥ (1 − N−α) for
any fixed α ≥ 1) of all possible inputs assuming that
B = Ω(log N). If step A is not needed, the number of passes
is (1+µ) and if step A is included, then the number of passes
is 2(1 + µ) for some fixed µ < 1.



Proof: Call each run of the for loop as a phase of the
algorithm. The expected number of keys in any bucket
is CB. Using Chernoff bounds, the number of keys in
any bucket is in the interval [(1 − ε)CB, (1 + ε)CB] with
probability ≥ [1 − 2 exp(−ε2CB/3)]. Thus, the number
of keys in every bucket is in this interval with probability

≥
(
1 − exp

[
−ε2CB

3 + ln(2R)
])

. This probability will be

≥ (1−N−(α+1)) as long as B ≥ 3
Cε2 (α + 1) ln N . This is

readily satisfied in practice (since the typical assumption on
B is that it is Ω(M δ) for some fixed δ > 1/3).

As a result, each phase will take at most d(1+ε)Ce write
steps with high probability. This is equivalent to d(1+ε)Ce

C
passes through the data. This number of passes is 1 + µ for
some constant µ < 1.

Thus, with probablity ≥ (1 − N−α), IntegerSort takes
(1+µ) passes excluding step A and 2(1+µ) passes includ-
ing step A. �

As an example, if ε = 1/C, the value of µ is 1/C.

Observation 7.1 The sorting algorithms of [29] have been
analyzed using asymptotic analysis. The bounds derived
hold only in the limit. In comparison, our analysis is sim-
pler and applies for any N .

We extend the range of the keys using the following al-
gorithm. This algorithm employs forward radix sorting. In
each stage of sorting, the keys are sorted with respect to
some number of their MSBs. Keys that have the same value
with respect to all the bits that have been processed up to
some stage are said to form a bucket in that stage. In the fol-
lowing algorithm, δ is any constant < 1.

Algorithm RadixSort

for i := 1 to (1 + δ) log(N/M)
log(M/B) do

1. Employ IntegerSort to sort the keys with respect
to their ith most significant log(M/B) bits.

A. Now the size of each bucket is ≤ M .
Read and sort the buckets.

Theorem 7.2 N random integers in the range [1, R] (for
any R) can be sorted in an expected (1 + ν) log(N/M)

log(M/B) + 1

passes through the data, where ν is a constant < 1 pro-
vided that B = Ω(log N). In fact, this bound holds for a
large fraction (≥ 1 − N−α for any fixed α ≥ 1) of all pos-
sible inputs.

Proof. In accordance with Theorem 7.1, each run of step 1
takes (1 + µ) passes. Thus RadixSort takes (1 + µ)(1 +

δ) log(N/M)
log(M/B) passes. This number is (1 + ν) log(N/M)

log(M/B) for
some fixed ν < 1.

It remains to show that after (1 + δ) log(N/M)
log(M/B) runs of

step 1, the size of each bucket will be ≤ M . At the end of
the first run of step 1, the size of each bucket is expected to
be NB

M . Using Chernoff bounds, this size is ≤ (1 + ε) NB
M

with high probability, for any fixed ε < 1. After k (for
any integer k) runs of step 1, the size of each bucket is
≤ N(1 + ε)k(B/M)k with high probability. This size will
be ≤ M for k ≥ log(N/M)

log[ M
(1+ε)B ]

. The RHS is ≤ (1+δ) log(N/M)
log(M/B)

for any fixed δ < 1.
Step A takes nearly one pass. �

Observation 7.2 As an example, consider the case N =
M2, B =

√
M and C = 4. In this case, RadixSort takes

no more than 3.6 passes through the data.

8. Conclusions

In this paper we have presented several novel algorithms
for sorting on the PDM. We believe that these algorithms
will perform well in practice. For sorting M

√
M keys,

both ThreePass1 and ThreePass2 seem to have similar
performance. They can sort slightly more keys than that
of [7]. Both ThreePass1 and ThreePass2 use a block
size of

√
M and the algorithm of [7] uses a block size of

M1/3. Lemma 2.1 yields a lower bound of 1.75 passes
when B = M1/3 and 2 passes when B =

√
M (when

N = M
√

M ).
For sorting more than M

√
M keys, LMM sort seems

to be the best. For instance, SevenPass sorts M 2 keys
whereas our mesh based algorithm sorts M 2/4 keys. We
believe that combining mesh-based techniques with those
of [23] and [7] will yield even better results.
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A. Proof of the generalized 0-1 principle

Definition: A string s ∈ {0, 1}n is a k-string if it has ex-
actly k 0’s , 0 ≤ k ≤ n.

The set of all k-strings for a fixed k is called a k-set and
will be denoted by Sk.

Observation A.1 Sks are pairwise disjoint and their union
consists of all possible 2n strings over {0, 1}.

Let A(n), B(n) be two totally ordered multisets of n el-
ements each. A bijection f : A(n) → B(n) is monotone if
for all x, y ∈ A(n) and x ≤ y, f(x) ≤ f(y).

Observation A.2 If f : A(n) → B(n) is monotone then the
inverse of f is also monotone.

The correctness of the standard zero-one principle is
based on the following elegant result (see Knuth[14] for a
proof).

Theorem A.1 For any sorting circuit C and a monotone
function f , f(C(a)) = C(f(a)).

Given In = {1, 2, . . . n}, the only monotone function
between In and strings in Sk is given by fk(j) = 0 for
j ≤ k and 1 otherwise. The extension of f to a sequence
a = (a1, a2 . . .) is given by (f(a1), f(a2) . . .).

From our previous observation f−1
k is also monotone.

From the previous theorem it follows that

Lemma A.1 If a sorting circuit does not sort some a ∈ Sk

then it does not sort (the permutations corresponding to)
f−1

k (a). Conversely, if the circuit correctly sorts fk(σ) for
all k, for an input permutation σ, then it correctly sorts σ.

Consider the mapping between permutations of In and
strings a ∈ Sk such that ai = fk(Π(i)) for a permutation
Π. This can be represented as a bipartite graph Gk with n!
elements in one set and |Sk| on the other (for each k). Note
that a single permutation can map to exactly one string in
Sk. Using simple symmetry arguments, it follows that



Lemma A.2 Each set in the bipartite graph Gk has has
vertices with equal degree. In particular, the vertices repre-
senting Sk have degrees equal to n!

|Sk| .

If the circuit does not sort some permutation Π of In then
it does not sort one (or more) string in {0, 1}n, say a ∈ Sk

for some k. Conversely, if the circuit does not sort some
string a ∈ Sk then from Lemma A.1 it does not sort any of
the permutations in the inverse map. Consider the graph Gk

where we mark all the nodes corresponding to the permuta-
tions that are not sorted correctly and likewise we mark the
nodes of Sk that are not sorted correctly. For a fixed k, if the
circuit does not sort β|Sk| (β < 0) strings it does not sort
β|Sk|· n!

|Sk| permutations. Therefore the total fraction of per-
mutations (over all values of k) that may not get sorted cor-
rectly is β · (n + 1). Setting α = 1− β completes the proof
of Theorem 3.3 .

Corollary: If for some k, the sorting circuit does not sort
any string in Sk, then it does not work correctly on any per-
mutation.

Remark: Note that the number of strings in the set Sp,
0.49n ≤ p ≤ 0.51n form an overwhelming fraction of all
length n binary strings. One can design many sorting algo-
rithms that work correctly for Sp but which sort only a neg-
ligible fraction of Slog n (for example). The above corollary
rules out strengthening the main result in the following ob-
vious way -

If a sorting network sorts most binary strings then it sorts
most arbitrary inputs.

Chlebus[10] claimed an ad-hoc version of Lemma A.1
but didn’t follow it up with any of the latter arguments thus
leaving the connection imprecise and incomplete.


