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Abstract. Let G(V, E) be an undirected weighted graph with |V| = n, and |E| = m. A
t-spanner of the graph G(V, E) is a sub-graph G(V, Es) such that the distance between any
pair of vertices in the spanner is at most ¢ times the distance between the two in the given
graph. A 1963 girth conjecture of Erd8s implies that 2(n'T'/*) edges are required in the
worst case for any (2k — 1)-spanner, which has been proved for £ = 1,2, 3,5. There exist
polynomial time algorithms that can construct spanners with the size that matches this
conjectured lower bound, and the best known algorithm takes O(mn'/*) expected running
time. In this paper, we present an extremely simple linear time randomized algorithm that
constructs (2k — 1)-spanner of size matching the conjectured lower bound.

Our algorithm requires local information for computing a spanner, and thus can be adapted
suitably to obtain efficient distributed and parallel algorithms.
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1 Introduction

A spanner is a (sparse) sub-graph of a given graph that preserves approximate distance between
all-pairs of vertices. In precise words, a sub-graph G(V, Eg) is said to be a t-spanner of the graph
G(V, E) if, between any pair of vertices, the distance in the spanner is at-most ¢ times the distance
in the original graph. The value ¢ is the stretch factor associated with the spanner.

The concept of a sparse spanner is motivated by numerous applications that involve compu-
tation of distances in a graph. Since the running time is proportional to the number of edges,
therefore to achieve efficiency in computation time it is desired to have a sub-graph (of a given
dense graph) that is sparse, but at the same time, preserves all-pairs distances approximately.

Spanners are used as underlying graph structures in various areas of distributed computing; e.g.
the design of synchronizers [2] and design of succinct routing tables [9] implicitly generate spanners.
Spanners are also used in computational biology [3] in the process of reconstructing phylogeny trees
from matrices whose entries represent genetic distances among contemporary living species. For
other numerous applications, please refer to the papers [1,2,9,10].

1.1 Previous Work

Previously a number of papers [1,6,11] had addressed the problem of computing sparse spanners
of graphs efficiently. In addition, a lot of work [9, 11] had also been done to establish a lower bound
on the size of spanner in terms of stretch factor. To establish these bounds on the size of the
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spanner, these results use the following relationship between the stretch of a spanner and girth of
the graph.

A graph has girth at-least t + 2 if and only if it does not have a t-spanner other than the graph
itself.

A classical result from graph theory shows that every graph with 2(n't'/*) edges must have
a cycle of size at most 2k. It has been conjectured by Erdds [7], Bondy and Simonovits [5], and
Bollob4s [4] that this bound is indeed tight. Namely, for any k > 1, there are graphs with £2(n'+1/%)
edges that have girth greater than 2k. However, the proof exists only for the cases k = 1,2,3 and 5.
Since any graph contains a bipartite sub-graph with at least half the edges, the conjecture implies
the existence of graphs with £2(n!*1/*) edges and girth at-least 2k 4 2. This bound and the relation
between the stretch of a spanner and girth of given graph (mentioned above) imply a lower bound
of O(n'*+'/*) on the size of (2k — 1)-spanner.

For unweighted graphs, Halperin and Zwick [8,12] gave an O(m) time algorithm to construct
a (2k — 1)-spanner of size O(n'+1/%). However, their algorithm does not seem to be extensible to
weighted graphs. For weighted graphs, the first algorithm for constructing (2k — 1)-spanners of
O(n'*'/*) size was given by Althofer et al. [1]. However, the best known implementation of their
algorithm has a running time of O(mn'*+'/*). Thorup and Zwick [11], improving a result of Cohen
[6], gave a randomized algorithm for computing (2k — 1)-spanner of optimal size in O(kmn'/*)
expected time. All the existing algorithms require computation of shortest distance information
between many pairs of vertices [1], or computing shortest path trees from a set of (n'/*) vertices
[11]. Since there is a bound of O(m) on the best known algorithm for shortest path trees, the
running times of the earlier algorithms may not be able to achieve a bound of O(m).

1.2 Our Contribution

We present a randomized algorithm that takes expected linear time for computing (2k — 1)-spanner
of optimal size. More specifically we show that

Given a weighted graph G(V, E), and integer k > 1, a spanner of stretch (2k — 1) and
O(kn't1/%) size can be computed in expected time O(km).

Unlike previous algorithms that require global information (computing full shortest path tree from
few vertices or determining the pair-wise distance), our algorithm requires only local information,
viz. in the neighborhood of each vertex or a group of vertices. In addition to achieving a linear
time sequential static algorithm for computing spanner, the local approach of our algorithm leads
to near optimal algorithms for computing a (2k — 1)-spanner in distributed/parallel environment
and in external memory as well. The algorithm can be suitably adapted to provide efficient partial
dynamic algorithms for maintenance of spanners for small k as well.

We have organized the paper as follows. As a warm-up, we first present an O(m) expected
time algorithm for 3-spanner, and mention some of the key ideas (clustering of vertices) which
we formalize and extend in order to compute a (2k — 1)-spanner. We present an overview of the
algorithm followed by the details and proofs of correctness of the algorithm. The details of the
other applications are not given in this extended abstract.

2 Computing a 3-Spanner

In order to build 3-spanner of a graph (with potentially #(n?) edges), the objective is to minimize
the number of edges (at most O(n3/2)) to be included in the spanner, and still ensure that the
distance between any pair of vertices is not stretched beyond a factor of 3.

The algorithm selects edges to be included in the spanner in two phases. Without loss of
generality, we can assume that the edge weights are distinct.



1. Forming the clusters :
We form a sample R C V by picking each vertex independently with probability n~%. The
expected size of the sample set is O(y/n). We group the set of vertices neighboring to these
sampled vertices into clusters. Initially the clusters are {{u}lu € R}. Each v € R will be
referred to as the center of its cluster. We process a vertex v € V — R as follows.

— If v is not adjacent to any sampled vertex, we add all its edges to the spanner.

— If v is adjacent to one or more sampled vertices, let N (v, R) be the sampled neighbor
that is nearest to v. We add the edge e(v, N (v, R)) to the spanner, and every other edge
incident on v with weight less than the weight of the edge e(v,N'(v,R)) to the spanner.
The vertex v is added to the cluster centered at N'(v,R).

Finally, all the intra-cluster edges, i.e., the edges between the vertices belonging to the same
cluster are removed.

2. Joining the Clusters:
For each vertex v, we group all its neighbors into their respective clusters. There will be at-
most |R| neighboring clusters of v. For each cluster adjacent to v, we add the least-weight edge
among all the edge between (the vertices of) the cluster and v to the spanner.

It is easy to see that the above algorithm merely requires exploring the adjacency list of each
vertex at-most twice (once in each of the two phases) in addition to picking a random sample of
vertices. Thus the running time of the algorithm is O(m). Let E} and E% be the sets of edges
added to the spanner in the first phase and the second phase respectively.

From the description of the first phase of the algorithm, the following Lemma holds true.

Lemma 1. For each edge e(u,v) € E — E§, the edge from u to N'(u,R) (the center of the cluster
to which u belongs) has weight no more than the weight of the edge e(u,v).

We shall us the following Lemma to show that the set Ef U E% is a 3-spanner.

Lemma 2. For an edge e(u,v) € E that is not present in the spanner G(V, (E% U E%) constructed
above, the following assertion holds true:
There is a path in the spanner with weight at-most three times the weight of the edge e(u,v).

Proof. Tt follows from the first phase of the algorithm described above that both v and v must be
adjacent to vertices of the sample R. There are two cases now.

Case 1 : Both the vertices belong to same cluster, say the cluster centered at w € R. It follows
from Lemma 1 that there is a 2-edge long path 4 —w — v in the spanner with weight no more than
twice the weight of the edge (u, v). (This provides a justification for deleting any intra-cluster edge
from the set E at the end of first phase)

Case 2 : The vertices u and v belong to different clusters, and let u belongs to the cluster centered
at € R. Let e(u',v) be the least weight edge € E — EY among all the edges incident on v from
the vertices of the cluster centered at z. It follows from the second phase of our algorithm, that
the edge e(u',v) was added to the spanner. Hence there is a path u — z — u' — v from u to v in the
spanner and its weight wg can be bounded as follows.

WS(uav) =W ’LL,(E) + W(xa ul) + w(ula U)

u,v) + w(z,u') + w(u',v) {using Lemma 1 }

u,v) + 2w(u',v) {using Lemma 1 }

3w(u,v) {follows from the second phase of the algorithm}

Using the above Lemma, we can show that the spanner G(V, E§ U E%) has stretch 3 as follows.

Consider any pair of vertices u,v € V', and the shortest path p,, between the two in the graph
G(V, E). For each edge e of this path that is missing in the spanner G(V, Et U E%), there is a path



in the spanner with weight at-most thrice the weight of the edge e (using Lemma 2). Applying this
argument for each missing edge, we can conclude that there is a path between the vertex v and
the vertex v in the spanner with weight at-most thrice the weight of the shortest path between the
two in the graph G(V, E).

Now we shall show that the size of the 3-spanner E§ U E% as computed by our algorithm given
above is bounded by O(n%/?).

Note that the sample set R is formed by picking each vertex randomly independently with
probability —=. It thus follows from elementary probability that for each each vertex v € V, the

expected number of incident edges with weight less than that of e(v, N'(v,R) is v/n. Thus the
expected number of edges contributed to the spanner by each vertex in the first phase of the
algorithm is v/n. So the expected size of the set E§ is O(n®/2).
Remark Since we can verify the number of edges chosen in the first phase , we will repeat the
sampling if the number of edges exceeds O(n?/?) - the expected number of repetitions will be O(1).
The number of the edges added to the spanner in the second phase (Joining the Clusters) is
O(n|R|). Since the expected size of the sample R is y/n, therefore, the expected size of E% is also
O(n®/?). Hence the expected size of the spanner EL U E% is O(n®/2).
Thus we can conclude that 3-spanner of a weighted undirected graph can be computed in O(m)
expected time.

3 Key Ideas Underlying the Algorithm

The algorithm for computing a (2k — 1)-spanner selects a set Eg of O(kn't1/*) edges from the
given graph G(V, E) ensuring that the following proposition holds true for each edge e ¢ Es.

Pr(e) : there is a path between the end-points of the edge e in the graph
G(V, Es) consisting of at-most (2k — 1) edges, and the weight of each edge on
this path is no more than that of the edge e

We say that Py (v) holds for a vertex if P (e) holds true for each edge e incident on the vertex v.
It follows from the discussion at the end of the previous section that the spanner formed in this
way will be of stretch (2k — 1).

In order to pick a (small) set Eg of O(n'*'/*) edges (from potentially O(n?) edges in a graph),
that would ensure the proposition Py (e) for each edge e € E — Eg, the key idea underlying our
algorithm is the partitioning of set of vertices into clusters. Recall from the previous section how
the clustering of the vertices (by sampling a random set of vertices, and grouping each vertex with
its nearest sampled neighbor) proves to be crucial in the computation of a 3-spanner with O(n?/?)
edges. Tt is the smaller number of these clusters (only 1/n) compared to the number of vertices (n)
that enables us to get a bound on the size of the 3-spanner, and it is the closeness of the vertices
within a cluster that ensured a bound on the stretch of the spanner. Note that the latter property
(closeness of vertices of same cluster) is achieved by associating each vertex to its nearest sampled
vertex in the clustering.

In order to design an algorithm for computing (2k—1)-spanner, we formally define the clustering
of vertices, and associate a parameter called radius of a cluster that captures the closeness of the
vertices of the same cluster compared to the vertices outside the cluster.

3.1 Definitions and Notations

The following definitions and notations are in context of a given weighted graph G(V, E).



Definition 1. A cluster is a subset of vertices. A partition of a set V! CV into clusters is called
clustering.

Definition 2. A set S C E is a spanning set for a cluster ¢ C V if each pair of vertices of c is
connected by a path that is internal to the cluster (i.e., the intermediate vertices of the path belong
to the cluster ¢) and consists of edges from the set Es only.

Definition 3. A cluster ¢ C V' with a spanning set Es C E' is a cluster of radius < i in the
graph G(V', E"), if there is a vertex u € c¢ called the center of the cluster ¢ such that the following
holds true :

For each each edge e(x,y) € E'—Eg, x € ¢, there is a path from x to u internal
to the cluster and consisting of at-most i edges each from the set Es and having
weight no more than the weight of the edge e(x,y).

Intuitively the vertices of a cluster are close together compared to the vertices lying outside the
cluster.

Definition 4. A clustering C with a spanning set Es C E is a clustering of radius < i if each of
its cluster with spanning set Es is a cluster of radius < i.

We shall use the following notations in the rest of our paper.

— &(x,c1) : the edges from the set £ that are incident from the vertices of cluster ¢; to the vertex
x.

— &(e1,c2) : the set of edges between vertices of cluster ¢; and vertices of cluster ¢, that belong
to the set £.

— &(S8) : the set of edges from set £ between the vertices of the clusters of the set S.

— |C| : The number of clusters in the clustering C (also referred as the size of the clustering).

Our algorithm exploits the properties of a clustering of bounded radius as mentioned in the fol-
lowing two Lemmas.

Lemma 3. For a given graph G(V',E' U Eg), let C be a clustering with Es as its spanning set,
and let ¢ € C be a cluster having radius at-most i. For a vertex u ¢ ¢, adding the least weight edge
from the set E'(u,c) to the spanning set Es will ensure that the proposition Piy1(e) holds for the
entire set E'(u,c).

Cluster C

Fig. 1. Ensuring that the proposition P;11 holds true for the set E’'(u,c).



Proof. Let the edge e(u,y) of weight a be the least-weight edge from the set £(u, ¢). Let (u,z) be
any other edge of weight 8 > « from the set £(u, ¢) (see the Figure 1). Since the radius of the cluster
¢ is at-most i, therefore, there is a path p,, from z to the center v (of the cluster ¢) consisting
of edges from the set Eg only, and its weight is at-most ¢ times S. Using the same argument, we
deduce that there is a path p,, from vertex y to v consisting of edges from the set Eg, and with
weight at-most ¢a. Thus there is path p,, from vertex u to vertex x formed by concatenating the
edge (u,y) and the paths py,, Py, in this order; and its weight can be bounded as follows.

W(puz) = w(u,y) + W(pyo) + W(poa)
<a+ia+if <p+if+if { since a < 8}
=2i+1D)=020i+1)-1)p

Therefore, we can conclude that adding the edge e(u, y) to the spanning set makes the proposition
Pi+1(e) hold true for each edge e € £'(u, ¢).

Along similar lines we can prove the following Lemma.

Lemma 4. For a given graph G(V',E' U Eg), let C be clustering with Eg as a spanning set, and
let ¢1,¢0 € C be two clusters having radius i and j respectively. Adding the least weight edge of the
set E'(c1,c2)} to the spanning set Es will ensure that the proposition Py, k =i+ j + 1 holds true
for the entire set E'(c1,c2).

4 Algorithm for Computing a (2k — 1)-Spanner

4.1 An Overview

Based on the key observations of a clustering of finite radius mentioned in the Lemmas 3 and 4,
the algorithm for computing a (2k — 1)-spanner of a weighted graph G(V, E) selects edges to be
included in the spanner in two phases.

The first phase Forming the Clusters starts with a clustering {{v}|v € V'} (of n clusters but zero
radius), and executes [%J iterations. In ith iteration, a set of edges are selected to be added to the
spanner that makes the proposition P;;; true for a (possibly large) set of edge and vertices (using
Lemma 3). All these edges (and vertices) are removed from the graph. A clustering is obtained
again for the remaining vertices. In successive iterations, the size of the clustering (the number of
clusters) reduces geometrically while the radius of clusters increase by just one unit (see Figure 2).

At the end of | %] iterations, we obtain a clustering of the rest of the vertices (for whom Piyq

does not hold) that consists of only n'=%L5] clusters. Moreover, a subset of spanner-edges added
till ngth iterations spans this clustering, and ensures that the radius of each cluster is no more
than [%J This clustering consisting of very few clusters and not-so-large radius is passed onto the
second phase of the algorithm.

In the second phase Joining the Clusters, the clusters are joined together by adding the least
weight edge between each pair of neighboring clusters. This phase employs Lemma 4 to ensure that
Pr. holds true for all the vertices left in the graph after the first phase.

4.2 Details of the Algorithm

We describe the details of the two phases of our algorithm for computing a (2k — 1)-spanner of a
weighted graph G(V, E) as follows.

Phase 1 : Forming the clusters
This phase executes in | %] iterations. At each stage in this phase, EY denotes the set (initially @)
of edges that are added to the spanner, and E’ denotes the set of edges remaining in the graph.
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ith iteration begins with a clustering C; of the set V' of vertices defined by the endpoints of E’
after (i — 1)th iteration.

For the first iteration, the sets are Ef = (), E' = E,V{ = V,, and the clustering is C; = {{v}|v €
V1.

We describe the processing done in an iteration as follows.

In 4th iteration, a sample R; of clusters is formed by picking each cluster from the clustering C;
randomly independently with probability n~%. The vertices belonging to the sampled clusters are
added to the set V},,, and passed onto the next iteration as it is. Each of the remaining vertices

of the set V' are processed according to the following two cases.

— If v is not adjacent to any sampled cluster, for each cluster ¢ € C; adjacent to v, we add the
least weight edge from the set E'(v,c¢) to the spanner. We remove all the edges incident on v
from the graph.

— If vertex v is adjacent to one or more sampled cluster, let ¢ € R; be the cluster that is adjacent
to v with edge of least weight (say w) among all the clusters from the set R;. We add the least
weight edge from the set E'(v,¢) to the spanner, and remove the entire set E'(v,c) from the
graph. In addition, we do the following. For each cluster ¢’ € C; adjacent to vertex v with an
edge of weight < w, we add the least weight edge from the set E'(v,c) to the spanner, and
remove the entire set E'(v,c) of edges from the graph.

(It can be seen that all the edges from set E’ that remain incident on the vertex v with weight
< w are removed in ith iteration). For the (i + 1)th iteration, the vertex v is added to the set
Vit

For the (i + 1)th iteration, the set V}'; thus consists of only those vertices from the set V
which either belong to or are adjacent to some cluster from the sample R;. The clustering of C;;1
for these vertices is obtained as follows. After initializing C;11 to R;, each vertex v € Vi1 not
belonging to any cluster from sample R; is added to the cluster from R; that is incident with
the least weight edge to v. Thus a cluster ¢ € C;y; can be viewed as a union of a cluster from
the sample R; with the set of all those vertices from V; for whom ¢ was the sampled neighboring
cluster incident with the least weight edge. As a last step of ith iteration, we eliminate all the



intra-cluster edges (whose both end-points belong to the same cluster) of the clustering C;y1 from
the graph (i.e., the set E').

Theorem 1. The following assertion holds for each j > 1.

A(j) : For each cluster c € Cj, there exist a subset £ of edges added to the spanner by the end of
(j — 1)th iteration such that c with £ as its spanning set is a cluster of radius < (j —1) in the graph
GV}, E'U¢E).

Proof. We shall prove the theorem by induction j > 1.

Base Case : j = 1 : In the beginning of the algorithm, the clustering is C; = {{v}lv € V},
Es =0,V =V,E' = E. Tt is easy to observe that each cluster of C; is a cluster of radius 0 in the
graph G(V, E) Therefore, the assertion .4(1) holds.

Induction Hypothesis : j <4 : Let the assertion .A(4) holds.

Proof of assertion A(i + 1) :

As mentioned in the first phase of the algorithm, a cluster from the clustering C;;+1 is a union
R UNR of a cluster R € R; with the set N of vertices v € V; for whom the cluster R is the
sampled cluster incident with the least weight edge among all adjacent clusters that belong to the
sample R;. For each vertex v € Ng, we add to the spanner the edge (say, e(v,u),u € R) of least
weight from the set E'(v, R) in the ith iteration.

It follows from the induction hypothesis that there exists a subset £ of edges added to the
spanner by the end of (¢ — 1)th iteration such that, with £ as its spanning set, R is a cluster of
radius (¢ — 1) in the graph G(V;, E' UE). From the definition of cluster-radius, it implies that there
is a vertex r € R called the center of the cluster R such that the following holds true :

For each edge e(v,z) € E',x € R, there is a path from x to the vertex v, that is internal to the
cluster R and consists of at-most (i — 1) edges from the set £ only; and each edge on the path has
weight no more than that of e(v, x).

Since the edge e(v, u) belongs to E' at the end of (i —1)th iteration, and is added to the spanner
in ith iteration, so there is a path from the vertex v to the vertex r consisting of at-most ¢ edges,
each belonging to the spanner and having weight no more than that of the edge e(v,u). Also it
follows from the processing of the vertex v in ith iteration that there is no edge incident on v
from the set E' whose weight is less than that of e(v,u). Thus we can conclude that for each edge
e(v,y) € E',v € RUNg at the end of ith iteration, there exists a subset £’ of edges added to the
spanner by the end of ith iteration so that the following holds true :

there is a path from v to the vertex r € RUNR (center of the cluster RUNg) that is internal
to the cluster R U Ng, and consists of at-most i edges, each from the set £', and weight of each
edge being no more than that of e(v,y).

From definition of the cluster-radius, it follows that the cluster R U Ny with spanning set £’ is
a cluster of radius < i in the graph G(V; ,E' U £’).

Similar arguments can be given for any other cluster in the clustering C;11, i.e., for each cluster
¢ € Cit1, there is a subset &, of edges added to the spanner by the end of ith iteration such that ¢
with & as its spanning set is a cluster of radius < in the graph G(V,;, E' U&,).

Thus the assertion .4;1 holds. Hence by the principle of mathematical induction, the assertion
Aj; holds for all j > 1.

Using Lemma 3 and the Theorem given above, we can state the following corollary.

Corollary 1. For each edge e € E' eliminated from the graph in ith iteration, the proposition Piy1
holds true.

Since there are Lg] iterations in the first phase, it follows from the corollary stated above that

Py holds for each edge eliminated from the graph in the first phase.
We shall now bound the expected number of edges added to the spanner in the first phase.



Lemma 5. The expected number of edges added to the spanner in each iteration of the first phase
of our algorithm is n'+1/k.

Proof. Consider ith iteration, and a vertex v € V;'. All the neighbors of the vertex v are grouped
into their respective clusters of the clustering C;. Let c1,co,---,¢ be the clusters adjacent to v,
and arranged in the increasing order of the weight of their least-weight edge incident on v, i.e., the
least weight edge from a set E'(v, c;) is lighter (has less weight) than the least weight edge from
the set E'(c,cj41) for all j < 1.

It follows from the algorithm that for the cluster ¢; adjacent to v, we add just one edge (the
least weight edge) from the set E'(v,c;) to the spanner, if none of the clusters preceding it, i.e.,
c1,-*+,cj—1 are sampled. Since each cluster is sampled independently with probability n~1/k the
probability that we add an edge from E'(v,c;) to the spanner is no more than (1 — n=1/k)i=1,
Thus the expected number of edges contributed to the spanner by a vertex v € V; is given by

J=l

Z (1 _ nfl/k)j—l < ni/k — pl/k

Jj=1

Thus the expected number of edges added to the spanner in ith iteration is bounded by n'*1/k.

We repeat an iteration if the number of edges exceed O(n't'/*) - the expected number of
repetitions is O(1). There are total L%J iterations, so the expected number of edges added to the
spanner in the first phase is O(kn'+1/k).

Let E’ be the set of edges left in the graph after first phase, and let V' be the end-points of

the edges E'. The first phase outputs a clustering C %] for the vertices V'. Note that after each

iteration in the first phase, the number of clusters reduces by a factor of n'/*. Since there are L]

number of iterations, the clustering C k| has only nl=%L5] clusters. Moreover, it follows from the
Theorem 1 that a subset of edges added to the spanner in first phase of the algorithm spans the
. k .
clustering C; k| and ensures a bound of || on the radius of each cluster c € C L&)
In order to ensure that the proposition P}, holds for the remaining vertices V' also, the algorithm
makes use of Lemma 4 in the second phase of addition of edges.

Phase 2 : Joining the Clusters

In this phase, we perform the following two operations of adding the edges to the spanner depending
on whether k is even or odd.

— If k is odd, then for each pair of clusters ¢/,c" € C k|, We add the least-weight edge between
the two clusters (i.e., the least weight edge from the set E'(C(u),C(v))) to the spanner Eg. It
follows from Lemma 4 that P holds for each edge e € E’. Also note that the number of edges
added is at-most square of the number of clusters, i.e., |C & |2, which is n!+1/k,

— If k is even, then for each cluster ¢ € C k], We do the following. We group the vertices incident

on the cluster c in their respective clusters of the clustering at the end of the (|£] — 1)th
iteration (the second last iteration). For each group of vertices (belonging to same cluster in
the second last iteration) we pick the least-weight edge among the set of edges incident from
these vertices to the cluster ¢, and add it to the spanner. It follows from Lemma 4 that Py
holds for each edge e € E'.

The number of edges added is at-most the number of clusters in the last clustering C, k) times

the number of clusters in the second last clustering Cx)_;, which is niti/k,

Figure 3 shows how the clusters are joined in the second phase of our algorithm for building
the spanner of stretch 3,5,7 and 9 (i.e., k = 2,3,4,5).
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Fig. 3. Joining the clusters in the second phase, and ensuring the stretch-bound

Let EZ be the set of edges added to the spanner in the second phase of our algorithm. From
the Theorem 1, and the arguments given above, we can state the following theorem.

Theorem 2. If EY, and E% are the sets of edges selected to form the spanner in the first and
the second phase of our algorithm for the graph G(V,E) and parameter k, then the sub-graph
G(V,EL U E%) is a (2k — 1)-spanner for the graph G(V, E) and consists of O(kn'*t1/*) edges.

Running time of the Algorithm :

We shall now show that both the phases of our algorithm run in O(km) time. For sake of
brevity, we sketch the analysis of running time of the first phase only (the analysis for the second
phase is analogous).

It is easy to observe that having sampled a subset R; of clusters from C;, it will take a total of
O(|E'|) time to find out the neighboring cluster (if exists) for each vertex v € V' that is incident
with the least weight edge among all the sampled clusters adjacent to v.

In order to perform the remaining task of the ith iteration, we need an efficient way to pick the
least weight edge from a set E'(v,c¢),c € C; (to be added to the spanner), followed by removing
the entire set E'(v,c) from E'. This entire task of ith iteration can be accomplished in O(|E’|)
time if adjacency list of each v € V] is ordered in such a way that the edges incident on v from the
vertices belonging to same cluster appear contiguous in the adjacency list of v. Such an order of
edges in the adjacency lists can be achieved in O(|E'|) time using a radix sort on the end-points
of the edges as follows.

A clustering C on a set of vertices V' can be expressed by a labeling function fo : V! — V'
where fo(u) = fo(v) iff both u and v belong to the same clusters in the clustering C. Given a
clustering C, such a labeling fco can be defined by labeling all the vertices of a cluster by a vertex
(arbitrary one) picked from the same cluster. Given a graph G(V, E) with a clustering C and its
associated function fo, we do the following :

We concatenate all the adjacency lists of the vertices to form a list £. Note that an edge between
a vertex u and a vertex v appears twice in this list - once as e(u,v) (from the adjacency list of
u), and once as e(v,u) (from the adjacency list of v). First we sort £ on the label of the second
end-point of edges as defined by fc. This will bring together all the edges whose second end-points
belongs to the same cluster. Let £’ be the new list after the sorting. Now we sort £’ on the first
end-point of edges. This will arrange all the edges of £’ in such a way that edges belonging to
adjacency list of a vertex appear together, and within each adjacency list also the edges incident
from same cluster appear together. The entire process of getting this desired ordering as explained
above takes O(|E'|) time since the radix sort runs in linear time.



Thus each iteration of the first phase of our algorithm runs in O(|E’|) = O(m) time. Total

number of iterations being L%J, it can be concluded that the running time of the first phase of our
algorithm is O(km). We repeat an iteration of the first phase if the total number of edges exceed
O(n'+/%), and the expected number of repetitions is O(1). Along similar lines, it can be shown

th

at the second phase of our algorithm runs in O(m) time. Thus the expected running time of our

algorithm is O(km). Combining with Theorem 2, we state the following Theorem.

Theorem 3. Given a weighted graph G(V,E), and integer k > 1, a spanner of stretch (2k — 1)
and O(n'+1/*) size can be computed in expected time O(km).
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