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1. INTRODUCTION

In this paper, we are concerned with the electronic properties of small
metal particles. By 'small' we mean a particle of a size intermediate between
that of a few-atom duster and the bulk solid - with a radius roughly in
the range 5 to 50 Angstroms. More important than the actual numbers,
perhaps, is the fact that the sizes of interest are much smaller than the
typical mean free path of an electron in a bulk sample. This provides
an a priori reason to expect size effects to show up strongly in electronic
properties, and experiments show that they do.

The most important advance in this area in recent years has been an
experimental one. It has become possible to use mass spectroscopy to sep-
arate small particles of an exactly determined mass without contamination
by particles of dose-by mass /1,2/. This has proved to be a very significant
step because physical properties turn out to show oscillatory dependences
on the size. In experiments on samples with a spread of sizes, oscillations
are averaged out, and their effects suppressed.

A key experimental finding is the existence of shell effects - as typified by
the occurrence of magic numbers /1-3/. These represent conglomerates of
atoms which are especially stable. The stability is associated with the filling
of electronic levels, rather than with structural stability coming from atomic
close-packing. Magic numbers show up not only in relative abundances,
but also in physical properties such as the ionisation potential, electrical
polarisabiUty and resonant optical response /1-4/. These experiments also
provide indirect, but strong, evidence that dusters take on distorted, non-
spherical shapes away from the magic cases. From the point of view of
the present paper - which is primarily concerned with sorting out the size
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dependences of various energy scales - magic iiumbe.as t-Agnify that there is
a scale proportional to the inverse linear dimension of the particle. This is
because magic numbers are relatively evenly spaced as a fm?cfcion of N1^
rather than iV, the number of free electrons in the particle.

The simplest theoretical model of a small metal particle was first pro-
posed by Kubo /5,6/. It consists of a number of noninteracting electrons
(an ideal Fermi gas) confined to a finite volume. This model is simplified
in several respects. It ignores band structure effects, electron-electron in-
teractions and realistic surface potentials. But it does have the essential
feature of the problem, namely the fact of finiteness, built into it. As such
it is worth understanding in some detail. The advantage is that one can
hope for an analytical understanding of overall trends in the size depen-
dence, thus complementing numerical studies with more realistic starting
points (e.g. self-consistent jellium calculations /7,8/ or cluster calculations
/9,10/). We will explore some consequences of the noninteracting electron
model in this paper.

2. GENERAL CONSIDERATIONS

Let us see what we can say about the Fermi gas model without any
calculation at all. Since we are modelling systems in which the fermionic
density does not vary too much as the size is changed (like nuclei, and
unlike atoms) it makes sense, in the first approximation, to assign a size-
independent value Ef to the Fermi energy. If L is a characteristic linear
dimension and kp the Fermi wave-vector, the number of one-electron states
below EF} which is an extensive quantity, is proportional to (kpL)*. The
mean spacing between successive states is thus <— EpI^kpL)*. However, the
mean spacing between successive energy levels (each of which may contain
many states) may be quite different, as the degeneracy of a level near the
Fermi energy may grow with the size.

The mean level spacing, which we denote 6L{E), depends on the sym-
metries of the confining potential and also upon commensurability effects.
If the confimW region has an irregularly enough shaped surface, all degen-



-13-

eracies are lifted, and in that case Si(E) is given by Epf{kpL)1 /6 , l l / . At
the other extreme of regularity is an isotropic harmonic potential which is
adjusted to keep the Fermi energy constant as the number of electrons is
varied /12,13/. In this case, the degeneracy of a level near the Fermi energy
is of order (kpL)2 while the spacing between levels is of order Ep/kpL.

In between the irregular surface model which exhibits no degeneracies
at all, and the harmonic model with its extremely large degeneracies, are
confining potentials with intermediate symmetry. It is members of this
-class that are studied here. It turns out in such cases that there are two,
distinct size-dependent energy scales /14,15/. The inner scale is the mean
level spacing Si(E), which was considered above. Besides, there is also
an 'outer' energy scale A which describes an oscillatory structure in the
density of states, on a scale which includes very many levels. A varies as
Ep/kpL, and is the energy scale which makes contact with the experimen-
tal observation of magic numbers and concommitant shell structure. An
interesting consequence of having two distinct energy scales is that there
are three regimes of temperature T. (i) If T is larger than A (but still much
smaller than Ep), all oscillations are washed out, and normal metallic be-
haviour results, (ii) If T is of the order of or smaller than A, but larger
than 6, the inner scale structure is averaged out, but not the outer scale
oscillations. The system is metallic insofar as there are very many states
within an energy T of the Fermi energy. However the shell-structure ripples
in the density of states have observable effects. We refer to this region of
temperature as the shell-metallic regime, (iii) Finally, if T is much smaller
than 8, energy levels above Ep are populated with an exponentially small
probability - giving rise to activated behaviour characteristic of a semicon-
ductor.

3. THE MEAN LEVEL SPACING 6.

Consider an ideal Fermi gas confined in a finite region of volume V. We
will study two shapes - spheres and cubes. The motivation for studying
cubes is more theoretical than experimental, but as we shall see below both
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geometries are regular enough to display broadly similar characteristics on
both the inner (6) and outer (A) scales of energy.

The edge length of the cube is taken to be 2xL while the radius of the
sphere is (6x-2)l/*£.. With these definitions, a cube and a sphere with equal
values of L have equal volumes. Single particle states have energies given

by

Periodic Cube

2 v »>«jr«r*=Of±l,±2,--- (la)

Hard-walled Cube

D n** or z = 1, 2,3, . . . (16)

where ant is the location of the n'th zero of the /'th order spherical Bessel
function.

For the sphere, each distinct pair of the radial and orbital quantum
numbers (n, /) identifies a level. Each level is (21 + l)-fold degenerate, and
moreover both quantum numbers n and I depend linearly on kpL (as can be
seen, for instance, by using the Debye approximation for spherical Bessel
functions /12,16/). Since the number of states is proportional to (kpL)9

and there are ~ kpL states per level, the mean spacing between leveb must
be of the order of lj{kFLf.

A similar conclusion holds for the cube, but the argument is different.
From Eqs. la and lb we see that except for a constant factor, cL2 is given by
the sum of three squared integers. Degeneracies arise because it is possible
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for different sets (nx,ny,nz) to result in the same value of cL2. Now it is
known /17/ that the fraction of integers which can be written in at least
one way as the sum of three squares, approaches an asymptotic limit, 5/6.
Since each such integer corresponds to a level, the mean spacing between
levels is proportional to \jl?. Moreover, the degeneracy of each level must
be of order L in order to have an extensive total number of states.

How robust is the result 6i ~ EpftkpL)2, which we have seen holds both
for the sphere and the cube? Consider a rectangular parallelopiped with
sides 2icaL, 2r/3L and 2xyL. If the ratios a/fi} /3/-f and 7/a are irrational,
it is not possible for distinct sets (nt,nv,nz) to be degenerate. (We are
discounting the finite degeneracy coming from symmetry operations such
as an interchange of nx and nv or a sign change.) Consequently, in contrast
to the cube, no large degeneracies are possible, and the mean spacing varies
as l/(kpL)i in the incommensurate case.

What if at/fl, 0/j and 7/a are rational but not unity? We have inves-
tigated this case numerically, and find that, as with the cube, the mean
spacing varies as lf{kpL)2 for large enough values of kpL. But for kpL
lower than some characteristic crossover value, if the rational numbers in
question are close to quadratic irrationals, the mean spacing appears to be
~ lKkpLy. The crossover is being investigated at presei>u.

One might wonder whether the rational case has any significance at all -
after all, there are many more irrationals than rationals, and in that sense in
the 'space of shapes' (even if restricted to cuboids), rationally related sides
occur with zero probability. However, it may be argued that the shape
should not be chosen at random from the set of all shapes, but rather in
such a way as to minimize the energy. The most favourable shapes in this
sense are quite likely to be determined by rational ratios - for instance, the
relatively larger gap to the next excited level (~ 1/L2 in the commensu-
rate case as opposed to -— 1/L* in the incommensurate case) may indicate
larger stability. In this general form, the argument should apply as much
to ellipsoids (the presumed shapes of metal clusters) as to the rectangular
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boxea under discussion in the previous paragraph, but this assertion is yet
to be checked.

4. THE OUTER ENERGY SCALE A

Now let us turn to the outer scale fluctuations in the density of states.
The energy scale which characterizes these fluctuations is AL(E), which we
will see below, varies as Ep/kpL. These outer scale osculations are the ones
which relate to the shell effects and magic numbers seen in experiment.

A general theory for these oscillations in spectral properties was formu-
lated by Balian and Bloch /18/ and by Berry and Tabor /19/. Their results
can be generalized /14,15/ to study the finite temperature properties of the
Fermi gas, as sketched below.

The density p of fermions at temperature T and chemical potential ft is

±J 1 (2)

where i labels the one-electron states. For the regular systems under con-
sideration here, i is specified by a set of quantum numbers denoted by m.
(For the box, m consists of the triad nx,ny,nz; for the sphere it consists
of the radial, and orbital quantum numbers n and I but there is an extra
factor of (21 + 1) in Eq. 2 to account for orbital degeneracy.) Let us recall
the Poisson sum formula of Fourier transform theory: if a function is eval-
uated at all integer points and then summed, the answer is the same if the
operation is repeated on its Fourier transform. On applying this result to
the sum over quantum numbers m we get

where r is the integer triplet {TX,TU,TZ). (If the quantum numbers are
restricted to be positive, as for the hard-walled box and sphere, appropriate
step functions must be inserted before taking the Fourier transform).
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The principal advantage of Eq. 3 over Eq. 2 is that it provides a large
size expansion. To see this, notice firstly that the term with r = 0 gives
the familiar answer for the bulk or infinite volume limit. The other terms
contain m in the exponent, and since \m\ is typically of order of the size L
of the system, the exponent oscillates rapidly and contributes successively
less for larger values of r. Thus keeping just a few terms in the f sum gives
an accurate answer for large sizes.

Any particular term on the right hand side of Eq. 3 gives an oscillatory
contribution to the density, with a period proportioned to Ef/kpL\r\. The
longest finite period comes from |rj = 1, and corresponds to the energy
scale A.

For the periodic box the result is particularly simple and appealing
/14,15/. EVom Eq. 3 one finds that the right hand side just involves the
correlation function < alar > for the Fermi gas in the bulk. Thus, Friedel
oscillations in the bulk system get linked to oscillatory functions in the
density as a function of size.

Although both the cube and the sphere exhibit oscillations on the outer
scale A, the amplitude of oscillation depends on the shape. For kpL >̂
EF/T, the amplitude of oscillation dies down exponentially in both cases.
But for 1 < kFL < EF/T, the amplitude falls off as l/{kFL)2 for the cube
but only as l/(fc/?L)3/2 for the sphere.

Shell effects, namely oscillatory effects on the scale of A, remain ap-
preciable so long as T does not exceed A. It is important to realize that
there are two ways in which shell structure can be probed: (i) as oscillations
in physical properties as a function of size (ii) as an oscillatory feature in
the density of states, for a fixed size. The experiments discussed in the
introduction provide striking evidence for type (i) oscillations. It would
be interesting to have evidence of shell structure from experiments in the
second category as well. A calculation shows that the imaginary part of
the dielectric constant C^UJ) shows pronounced oscillations as a function of
frequency /20/. But there does not seem to be unequivocal experimental
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evidence for such oscillations as yet.

However, the energy scale A does seem to show up in experiments on
Mie scattering, though as a line width rather than as an oscillatory feature.
Experiments show that the width T is inverse proportional to the radius
/21,22/. The reason for this, it has been argued /22/, is that F is inversely
proportional to the time r a ballistic electron moving with the Fermi velocity
vp takes to hit the wall. Since, r = Ax radius/vp, where A is a constant,
F should be proportional to (radius)"1 /23/ . Notice that the linewidth T
determined thus is proportional to the outer scale of energy A.

5. CONCLUSIONS

For a Fermi gas confined in regularly shaped regions like a sphere or a
cube, there are two size-dependent energy scales of importance.

The inner scale 8 is the mean spacing between successive energy levels.
It is given by 6 ~ Ep/(kpL)7 for both the sphere and the cube. For cuboids
with irrationally related sides, 6 ~ Ep/(kpL)*. For cuboids with rationally
related sides, 6 ~ Epf{kpL)2 asymptotically, but there can be a crossover
to irrational-type behaviour at smaller valuer of hpL. The scale 6 governs
the very low temperature behaviour, which is semiconductor-like.

The outer scale A is associated with the shell structure that has been
seen in experiment. When 6 <C T < A, thermodynamic properties show an
oscillatory fluctuation around a smooth background as the size or energy is
varied. The period of the fluctuations is set by A for both the sphere and
the cube, but the amplitude is stronger for the sphere.

Existing experiments probe shell structure effects in physical observables
as the size is varied. While the associated energy scale A also seems to show
up as the linewidth of the Mie resonance, it would be interesting to have
experimental confirmation of oscillatory effects on the A-scale in the energy
spectrum of a system of a fixed size.
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