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Abstract

The baryon-qqq vertex function governed by the Markov-Yukawa Transversality
Principle (MY TP ), is formulated via the Covariant Null-Plane Ansatz (CNPA) as
a 3-body generalization of the corresponding qq̄ problem, and employed to calculate
the proton e.m. form factor and baryon octet magnetic moments.The e.m. coupling
scheme is specified by letting the e.m. field interact by turn with the ‘spectator’
while the two interacting quarks fold back into the baryon. The S3 symmetry of the
matrix element is preserved in all d.o.f.’s together. The CNPA formulation ensures,
as in the qq̄ case, that the loop integral is free from the Lorentz mismatch disease of
covariant instantaneity (CIA), while the simple trick of ‘Lorentz completion’ensures
a Lorentz invariant structure. The k−4 scaling behaviour at large k2 is reproduced.
And with the infrared structure of the gluonic propagator attuned to spectroscopy,
the charge radius of the proton comes out at 0.96fm. The magnetic moments of
the baryon octet, also in good accord with data, are expressible as (a+ bλ)/(2+λ),
where a, b are purely geometrical numbers and λ a dynamics-dependent quantity.
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1 Introduction

There is a close connection between the physics of qq̄ mesons and that of qqq baryons
since in many ways a diquark behaves like a color 3∗ antiquark. Therefore the dynamics
of both systems should be alike, so that it is fair to expect that a theory which is pre-
tested for one should also work for the other, except for external characteristics like the
number of degrees of freedom. Some important tests for any new form of dynamics are the
scaling behaviour [1] of hadronic form factors, as well as the structure of baryon magnetic
moments, the latter believed to be governed by chiral SU(3)×SU(3) symmetry [2] on the
one hand, and vector meson dominance (V MD) [3] on the other. The form of dynamics we
wish to consider here is the Markov-Yukawa Transversality Principle (MY TP ) [4] via the
covariant null plane ansatz (CNPA) [5], which is applicable to all Salpeter-like equations
[6]. It was recently applied to the e.m. form factor of the pion [5], showing the expected
scaling behaviour (∼ k−2). With this check on the validity of MY TP under CNPA
conditions [5], we now wish to extend the same from the qq̄ [5,6] to the qqq dynamics.

In Section 2 we derive the baryon-qqq vertex function under MY TP on the covariant
null-plane (CNPA), on closely parallel lines to its Covariant Instantaneity (CIA) for-
mulation [7,8], in the same notation [8] except when new features arise. Section 3 gives
the matrix element for the baryon e.m. coupling wherein the spectator interacts with the
external photon, and the two interacting quarks fold back into the baryon. Section 4 gives
the results for the e.m. form factor of the proton which confirm its k−4 behaviour at large
k2, and gives a value of the charge radius at 0.96fm, with the infrared part of the gluon
propagator [9] attuned to baryon spectroscopy [10]. Section 5 gives the corresponding
results on the magnetic moments of the baryon octet within the same framework. Section
6 concludes with a summary.

2 Derivation Of Baryon-qqq Vertex Function

To formulate the baryon-qqq vertex function under MY TP , we proceed as in ref.[8] for
the 2- and 3-body kinematics, except for a generalization from covariant instantaneity
(CIA) [7,8] to the covariant null-plane ansatz (CNPA) [5,6]. In this Section we consider
spinless quarks [8] using the method of Green’s functions, to be followed by the more
realistic case of fermion quarks at the end of the Section. Now since the momentum
kinematics for qq̄ under CNPA [5,6] turn out to be formally identical to those under
the standard null-plane formalism [11,12] (which is easier to use), the latter notation (±)
[11-12] may be profitably employed instead of the nµ dependent notation [5,6]. Now the
essential point of the CNPA formalism [5,6] is that the longitudinal (z) and scalar (0)
components of a 4-momentum piµ for quark #i in a hadron of mass M and 4-momentum
Pµ are [5,6]:

piz; pi0 =
Mpi+

P+

;
Mpi−

2P−

(2.1)

The former, along with the transverse components pi⊥, obeys the ‘angular condition’
[13,12] which effectively defines a 3-vector p̂i ≡ {pi⊥, piz}, a key ingredient for the MY TP
formulation to follow.
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2.1 3D-4D Interlinkage for qq Green’s Fns

We first derive the 3D-4D interlinkage for the qq system by the method of Green’s func-
tions, as a prototype for the qqq system to follow. The Green’s function under MY TP
satisfies the BSE [8]:

(2π)4iG(q, q′; P ) =
1

∆1∆2

∫

d4q′′V (q̂, q̂′′)G(q′′, q′; P ) (2.2)

Now define the 3D Green’s function [8]

Ĝ(q̂, q̂′) =
∫

dq0dq′0G(q, q′; P ) (2.3)

where the time-like components are defined a la (2.1). Integrating both sides of (2.2) gives
via (2.3) the 3D BSE for a bound state which does not need an inhomogeneous term:

(2π)3D(q̂)Ĝ(q̂, q̂′) =
∫

d3q̂′′V (q̂, q̂′′)Ĝ(q̂′′, q̂′) (2.4)

where the 3D denominator function D(q̂) is defined as

2iπ

D(q̂)
=

∫ dq0

∆1∆2
(2.5)

leading (for general unequal mass kinematics) to [12]

D(q̂) =
M

P+
D+(q̂); D+(q̂) = 2P+[q̂2 − λ(M2, m2

1, m
2
2)

4M2
] (2.6)

where (2.1) defines the 3-vector q̂ and λ is the triangle function of its arguments. Now
define the hybrid Green’s functions [8]:

G̃(q̂, q′) =
∫

dq0G(q, q′; P ); G̃(q, q̂′) =
∫

dq′0G(q, q′; P ) (2.7)

Using (2.7) on the RHS of (2.2) gives

(2π)4iG(q, q′; P ) =
1

∆1∆2

∫

d3q̂′′V (q̂, q̂′′)G̃(q̂′′, q′) (2.8)

Integrating (2.2) w.r.t. dq′0 only, and using (2.7) again, gives

(2π)4iG̃(q, q̂′) =
1

∆1∆2

∫

d3q̂′′V (q̂, q̂′′)Ĝ(q̂′′, q̂′) (2.9)

Eqs.(2.9) together with the 3D equation (2.4) for Ĝ gives a connection between the hybrid
G̃ and the 3D Ĝ:

G̃(q, q̂′) =
D(q̂)

2iπ∆1∆2
Ĝ(q̂, q̂′) (2.10)

Interchanging q and q′ in the last equation gives the dual result

G̃(q̂, q′) =
D(q̂′)

2iπ∆′
1∆

′
2

Ĝ(q̂, q̂′) (2.11)
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Substituting these results in (2.8) gives the desired 3D-4D interconnection

G(q, q′; P ) =
D(q̂)

2iπ∆1∆2
Ĝ(q̂, q̂′; P )

D(q̂′)

2iπ∆′
1∆

′
2

(2.12)

Now making spectral representations for the 4D and 3D Green’s functions on both sides
of eq.(2.12) in the standard manner [8], viz.,

G(q, q′; P ) =
∑

n

Φn(q; P )Φ∗(q′; P )/(P 2 + M2); (2.13)

Ĝ(q̂, q̂′) =
∑

n

φn(q̂)φ
∗

n(q̂′)/(P 2 + M2) (2.14)

where Φn and φn are 4D and 3D wave functions respectively, one can directly read off
from (2.12) their interconnection, valid near a bound state pole (dropping the suffix n for
simplicity):

Γ(q̂) ≡ ∆1∆2Φ(q; P ) =
D(q̂)φ(q̂)

2iπ
(2.15)

which tells us that the vertex function Γ under CNPA is again a function of q̂ only [8],
except for its definition (2.1) under CNPA. This derivation is a prototype for the qqq
case to follow.

2.2 3D Reduction for Scalar qqq BSE

For the qqq problem, we have a pair of internal variables which may be chosen in one of
3 distinct ways. With index #3 as basis, the pair ξ3, η3 may be defined as [8]

√
3ξ3 = p1 − p2; 3η3 = −2p3 + p1 + p2; P = p1 + p2 + p3 (2.16)

The space-like and time-like parts of ξ, η are defined as in (2.1), so that, e.g.,

ξz3 =
Mξ+

P+

; ξ03 =
Mξ−
2P−

and similarly for η. We shall also use the ± notation in parallel with the 3-vector notation
in the following.

The Green’s function, after taking out an overall δ- function for the c.m. motion,
may be written as G(ξη; ξ′η′) at the 4D level, while the fully 3D Green’s function may be
defined as [8]

Ĝ(ξ̂η̂; ξ̂′η̂′) =
∫

dξ0dη0dξ′0dη′

0G(ξη; ξ′η′) (2.17)

Both G and Ĝ are S3 symmatric, since the measure dξ0dη0 is S3-invariant. In addition,
two hybrid Green’s functions are [8]:

G̃3ξ(ξ̂3η3; ξ̂
′

3η
′

3) =
∫

dξ30dξ′30G(ξη; ξ′η′); G̃3η(ξ3η̂3; ξ
′

3η̂
′

3) =
∫

dη30dη′

30G(ξη; ξ′η′); (2.18)

where the suffixes 3ξ,3η signify that G̃ is not S3 symmetric since the integration now
involves only one of the two ξ,η variables. Now the 4D qqq BSE under MY TP is [8]:

i(2π)4G(ξη; ξ′η′) =
∑

123

∫

9d4ξ′′

16∆1∆2
V (ξ̂3, ξ̂

′′

3G(ξ′′3η3; ξ
′

3η
′

3) (2.19)
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where the factor 9/16=[
√

3/2]4 stems from the relation 2q12 =
√

3ξ3, and the association
of η3 with ξ′′3 in the Green’s function signifies that the spectator #3 remains unaffected
by the interaction in the (12) pair, and so on by turns cyclically. The 3D reduction is
achieved by integrating (2.19) via (2.17) which gives, as in the CIA derivation [8]:

(2π)3Ĝ(ξ̂η̂; ξ̂′η̂′) =
∑

123

3
√

3

8D12

∫

d3ξ̂′′3V (ξ̂3, ξ̂
′′

3 )Ĝ(ξ̂′′3 η̂
′′

3 ; ξ̂
′

3η̂
′

3) (2.20)

where, as in (2.6), D12 = MD12+

P+
, with

D12+ = 2ω2
1⊥p2+ + 2ω2

2⊥p1+ − 2P12−p1+p2+ (2.21)

and ω2
i⊥ = m2

i + p2
i⊥; P12 = p1 + p2. Now making use of the on-shellness (∆3 = 0) of the

spectator (#3), we have P12− = P−p3− = P−ω2
3⊥/p3+, whose substitution in (2.21) gives

rise to the S3 symmetric result:

p3+D12+ ≡ D++ = 2
∑

123

p2+p3+ω2
1⊥ − 2p1+p2+p3+P− (2.22)

Substitution of this result in (2.20) gives rise to the requisite 3D BSE in which the denom-
inator function may be identified with D++ in an exact fashion. This is a much neater
result than under CIA [7] where a corresponding denominator function could be obtained
only through an approximate treatment [10]. Since this quantity will play a crucial role in
this study, we recast it in terms of the ξ, η variables by first redifining it as D++ ≡ P 2

+D,
and D ≡ D0 + δD, where

D0 =
1

3
(ξ2

⊥
+ η2

⊥
) +

1

2
(1 −

∑

123

m2
i /M

2)(ξ2
l + η2

l ) +
2

3
(
∑

123

m2
i /3 − M2/9) (2.23)

with (ξl, ηl) ≡ M(ξ+, η+)/P+ and

δD =
ηl

2M
[η2

l − 3ξ2
l ] −

3

2M2
[η2

l ξ
2
⊥

+ ξ2
l η

2
⊥
] (2.24)

Note that this null plane description gives different scales for the longitudinal and trans-
verse components of the ξ, η variables.

The D-function is the driving term for the 3D eq.(2.20) which in turn is the right
vehicle for spectroscopy [10], and is the source of the 3D wave function φ via the spectral
representation (2.14). In this respect, the main role is played by the D0 function, while
δD is a correction term.

2.3 Reconstruction of 4D Vertex Function

We now indicate the steps for reconstruction of G in terms of 3D ingredients. First, the
hybrid function G̃3η, eq.(2.18), is expressed in terms of fully 3D quantity Ĝ exactly as in
eq.(2.11) for the two-body problem:

G̃3η(ξ3η̂3; ξ
′

3η̂
′

3) =
P+D

2iπp3+∆1∆2
Ĝ(ξ̂η̂; ξ̂′η̂′)

P+D′

2iπp′3+∆′
1∆

′
2

(2.25)
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In a similar way the fully 4D G function is expressible in terms of the hybrid function G̃3ξ

as

G(ξη; ξ′η′) =
∑

123

P+D

2iπp3+∆1∆2
G̃3ξ(ξ̂3η3; ξ̂

′

3η
′

3)
P+D′

2iπp′3+∆′
1∆

′
2

(2.26)

At this stage we need an ansatz [8] on the G̃3ξ function which, as in the CIA case [8], is
not determined from MY TP qqq dynamics:

G̃3ξ(ξ̂3η3; ξ̂
′

3η
′

3) = Ĝ(ξ̂η̂; ξ̂′η̂′)F (p3, p
′

3) (2.27)

where we have incorporated the S3 symmetry of Ĝ and taken the balance of the p3

(spectator) dependence in the (unknown) F function. This is subject to an explicit self-
consistency check for the ansatz (2.27) which may be found by integrating both sides
w.r.t. dp3−dp′3−,to give

∫ ∫ M2dp3−dp′3−
4P 2

−

F (p3, p
′

3) = 1

This condition is satisfied by the ansatz [8]:

F (p3, p
′

3) =
A3

∆3

δ[
Mp3−

2P−

− Mp′3−
2P−

] (2.28)

if A3 is determined by the equation

A3

∫

Mdp3−

2P−∆3

= 1

which gives

A3 =
2Mp3+

iπP+
; p3− =

ω2
3⊥

p3+

After a little simplification, we have finally:

F (p3, p
′

3) = 4p2
3l

δ(∆3)

iπ∆3
(2.29)

which finally defines the 4D G function in terms of Ĝ via the sequence (2.27) and (2.26).
Finally the spectral representations (2.13-14) near a bound state pole give the connection
between the #3 part Φ3 of the 4D wave function and the 3D wave function φ:

Φ3 =
2MD

2iπ∆1∆2
φ(ξη)

√

δ(∆3)

iπ∆3
(2.30)

whence the baryon-qqq vertex function V3 is inferred via

Φ3 ≡
V3

∆1∆2∆3
:

V3 =
MDφ(ξη)

iπ

√

∆3δ(∆3)

iπ
(2.31)

For explanation on the appearance of the δ-function under radicals in eq.(2.31), see
ref.[8] where it has been shown that this has nothing to do with any lack of connectedness
in a 3-body amplitude.
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2.4 Baryon-qqq Vertex with Fermion Quarks

For the more realistic case of fermion quarks, we employ the method of Gordon reduction
[14-15] whose logic and advantages have been described elsewhere in the context of the qq̄
problem [5,6]. To extend the same to the 3-body case, define a (fictitious) scalar function
Φ which is related to the actual BS wave function Ψ by [15]

Ψ = Π123S
−1
F i (−pi)Φ(pip2p3) (2.32)

with an explicit indexing w.r.t. the individual quarks, which however can be subsumed
in a common Dirac matrix space a la Blankenbecler et al [16], as illustrated in the next
Section. The connection with sect.2.3 is now established by identifying Φ of (2.32) with
the sum Φ1 + Φ2 + Φ3 where Φ3 is given by (2.30). Therefore the form (2.31) for V3

continues to be valid, except that its relation to Ψ is

Ψ = Π123SF i(pi)[V1 + V2 + V3] (2.33)

We end this Section with a listing of the (gaussian) structure of the 3D wave function φ as
a solution of the fermionic counterpart of eqs.(2.20-24). Since this paper is not concerned
with baryon spectroscopy (see [10] for details),we list merely the gaussian form of φ:

φ = exp [−ξ2
⊥

+ η2
⊥

2β2
t

− M2x2 + M2y2

2β2
l

] (2.34)

where the transverse and longitudinal scale parameters follow from the structure of the
D function (2.23), by proceeding as in [12,10]:

β4
t =

8M

81
ω2

qq/[1/4 − 3C0ω
2
qq

9Mω2
0

] (2.35)

β4
l =

8M

81
ω2

qq/[1/2 − 3C0ω
2
qq

9Mω2
0

− 3m2
q

2M2
]

where the input parameters ωqq etc are listed in [10,12]. The numerical values of the β2

parameters for the full baryon octet in GeV 2 units are

β2
t (N) = 0.068; β2

l (N) = 0.054; (2.36)

β2
t (Σ) = 0.080; β2

l (Σ) = 0.062;

β2
t (Λ) = 0.076; β2

l (Λ) = 0.061;

β2
t (Ξ) = 0.079; β2

l (Ξ) = 0.063.

3 E.M. Coupling Of qqq Baryon

The e.m. coupling of the qqq baryon is given by fig.1 plus two more obtained by cyclic
permutations of the indices. It shows that the spectator (#3) scatters against the (space-
like) photon before being re-absorbed into the baryon, while the two interacting quarks
(1, 2) fold back into the baryon.Fig.1 is in keeping with the standard additivity principle
(the hallmark of the quark model) for single quark transitions. On the other hand the
(complementary) diquark-photon diagram [17], which does not show a similar property,
will be presumed to be dynamically suppressed, hence left out of further consideration in
this paper.
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Figure 1: Triangle loop for baryon e.m. vertex

3.1 Structure of E.M. Matrix Element

The imbedding of the indices 123 in a common Dirac matrix space may be done a la
ref.[16], after taking account of the S3 symmetry a la ref.[17]. In a [2, 1] representation of
S3 symmetry, the two spin functions χ′, χ′′ are expressible as [16,17]

| χ′ > = [γ5
C√
2
]αβ ⊗ Uγ(P ) (3.1)

| χ′′ > = [iγ̂µ
C√
6
]αβ ⊗ [γ5γ̂µU(P )]γ

where γ̂µ would naively be expected to be transverse to Pµ, but one must again anticipate a
problem analogous to the Lorentz mismatch problem associated with CIA [7] which gave
rise to unwarranted complexities [18] in form factors, and necessitated the alternative
CNPA [5] formulation for the orbital matrix elements. In the context of spin matrix
elements this pathology shows up as high powers of k2 in the concerned amplitudes if γ̂µ

is defined as γµ − γ.PPµ/P
2 [7], which is equally unacceptable. On the other hand, the

CNPA [5] offers an alternative solution wherein the transversality is defined w.r.t. the
(more universal) null-plane. The simplest possibility in this regard is to define

γ̄µ = θµνγν ; γ̄∗

µ = θ∗µνγν (3.2)

where

θµν = δµν − nµñν = θνµ∗; (3.3)

θµµ = 3; θµλθ
∗

νλ = θµν

These properties are consistent with those expected of a projection operator. Next, the
SU(6) operator for the baryon e.m. interaction is

Γµ =
3

∑

1

γ(i)
µ

e

2
[λ

(i)
3 +

1√
3
λ

(i)
8 ] (3.4)

The matrix elements of this operator must be taken between the the SU(6) wave functions
[17]

W (P ) =
1√
2
(χ′φ′ + χ′′φ′′) (3.5)
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where the isospin functions φ′, φ′′ have matrix elements expressible in a common (baryon)
basis as [17]

< φ′′ | 1; τ (i) | φ′′ > = [1;−τ/3] (3.6)

< φ′ | 1; τ (i) | φ′ > = [1; τ ]

Using (3.6), the matrix element of (3.4) between nucleon states |N > is expressible as
(c.f. [17]):

< N |Γµ|N > =
∫

dτV ∗

3 V3N
2
B[

e

2
< 1 + 3τz > [< χ′ | γ(3)

µ | χ′ > (3.7)

+
e

2
< 1 − τz >< χ′′ | γ(3)

µ | χ′′ >]

NB is a normalization factor to be defined further below.The two spin matrix elements
are expressible in a factorized form as

< χ′ | γ(3)
µ | χ′ > = T ′ × A′

µ (3.8)

< χ′′ | γ(3)
µ | χ′′ > = T ′′

νν′ × A′′

µνν′ ;

T ′ = Tr[S̃F (p2)
C−1

√
2

γ5SF (p1)γ5
C√
2
] (3.9)

T ′′

νν′ = Tr[S̃F (p2)
C−1

√
6

γ̄ν′SF (p1)γ̄
∗

ν

C√
6
];

A′

µ = Ū(P ′)SF (p′3)iγµSF (p3)U(P ) (3.10)

A′′

µνν′ = Ū(P ′)γ̄∗

ν′γ5SF (p′3)iγµSF (p3)γ̄νγ5U(P )

The symbol
∫

dτ in (3.8) stands for:
∫

dτ ≡
∫

d4q12d
4p̄3 (3.11)

where p̄3 =(p3 + p′3)/2.

3.2 Baryon Normalization

The evaluation of the spin matrix elements (see Appendix) reduces (3.7) to

< N |Γµ|N >=
e

2

∫

dτ ′W ∗

3 W ′

3N
2
B[M ′

µ(1 + 3τz) + M ′′

µ(1 − τz)] (3.12)

where M ′

µ, M
′′

µ are given in eqs.(A.6, A.11) respectively,and W3 is the reduced form of V3,
eq.(2.31) as under:

W3 =
MDφ(ξη)

(π)3/2
(3.13)

Hera (see Appendix for details) the reduced measure dτ ′ is given by (A.7). Repeated use
of Gordon reduction (A.8) leads finally to the ‘Sachs’ form

< N |Γµ|N >= eŪ(P ′)[F (k2)
P̄µ

M
+ G(k2)

σµνkν

2M
]U(P ) (3.14)
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The baryon normalization now comes entirely from the first term in the limit of k = 0. To
fix this quantity,instead of demanding unit charge for the proton, an asymmetric recipe
heavily weighted against the neutron (see Eq.(3.12)), we resort to a more symmetrical
treatment between the two by demanding the conservation of baryon number, via ω-
like coupling [3],which is equivalent to the conservation of isoscalar charge.Thus the
normalization condition boils down to

Pµ

Mi(2π)4
=

N2
B

2

∫

dτ ′[M ′

µ + M ′′

µ ] (3.15)

which is obtained from (3.12) after dropping the isovector parts. For later purposes we
define a parameter λ:

λ =
< η̄2 − 3ξ̄2 >

M2/3 + m2
3 − δm2 < 0 (3.16)

which arises from certain terms of M ′′

µ , eq. (A.11), without a counterpart from M ′

µ,
eq.(A.6). This parameter will play a crucial role in the determination of magnetic moments
(see Section 5).

4 Calculation Of The E.M. Form Factor

The charge and magnetic form factors of the baryon are given by the functions F (k2)
and G(k2) in eq.(3.14) which in this model have identical shapes. Further,eq.(3.15) for
normalization ensures that F (0) ≡ 1, while G(0) gives directly the baryon magnetic
moments in ‘baryon magnetons’(e/2M). The form factor problem is considered in this
Section, followed by magnetic moments in the next Section. To evaluate (3.12) in a closed
form, first write its integration measure in detail as

d2q⊥dq+
dq̄−
2

d4p̄3δ(∆3). (4.1)

In the first step, integrate over dq−/2 to give

∫

dq̄−
2

DD′

∆1∆2
= (2iπ)

p3+

4P̄ 2
+

(D + D′) (4.2)

The next step is to integrate over the factors dp3−δ(∆3)/2 in (4.1) to give 1
2p3+

. Combining

(4.1-2), the net measure becomes:

dτ1 = (2iπ)d2ξ⊥d2η⊥
M2dxdy(D + D′)

8
; x; y =

ξ+; η+

P̄+
(4.3)

Next, define a common basis ξ̄ and η̄ as follows:

η, η′ = η̄ ∓ k/3; ξ = ξ′ = ξ̄, (4.4)

in terms of which the product of the 3D wave functions becomes

φφ′ = exp [−ξ2
⊥

+ η2
⊥

β2
t

− f(x, y)

β2
l

]; (4.5)
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2f(x, y) =
∑

±

[
M2x2

(1 ± k̂/2)2
+

M2(y ∓ k̂/3)2

(1 ± k̂/2)2
] (4.6)

x, y; k̂ =
(ξ̄+, η̄+; k+)

P̄+

Giving the translation

x → x; y → y − 2σk; σk ≡ k̂2/6

1 + k̂2/4
(4.7)

the function f(x, y) reduces to

f(x, y) =
(M2x2 + M2y2)(1 + k̂2/4)

(1 − k̂2/4)2
+ 2M2σk/3 (4.8)

The same translation to the D̄ = (D + D′)/2 function, dropping odd terms, gives

D̄(k2) =
ξ2
⊥

+ η2
⊥

3
+

2

3
m2

q −
2

27
M2 (4.9)

+
(M2 − 3m2

q)

2
[
(x2 + y2)(1 + k̂2/4)

(1 − k̂2/4)2
+ 2σk/3] + “R′′;

“R′′ = −3

2
M2y2 σk

(1 − k̂2/4)2
+ O(k̂4)

The rest of the integration is now routine gaussian for casting the e.m. matrix element in
the form (3.14). Using the basic formulae

∫

d2ξ⊥d2η⊥ exp [−ξ2
⊥

+ η2
⊥

β2
t

] = (πβ2
t )

2; (4.10)

∫

MdxMdy exp [−f(x, y)/β2
l ] = πβ2

l

(1 − k̂2/4)2

1 + k̂2/4
exp [−2M2σk

3β2
l

] (4.11)

and other allied results, all integrations are carried out explicitly, and the form factors
F, G identified a la (3.14). The common form is

F (k2) =
(1 − k̂2/4)2

1 + k̂2/4
exp [−2M2σk

3β2
l

]
D̄(k2)

D̄(0)
(4.12)

4.1 Results on Proton Form Factor

Eq.(4.12) represents our final formula for the proton form factor. Before comparison with
experiment [19] however, we need to invoke the principle of ‘Lorentz completion’ [5] to
give F (k2) an explicitly Lorentz-invariant look. The trick is to consider a collinear frame
so that P⊥ = P ′

⊥
= 0. From this frame it is easy to see that [5]

k̂2 =
4k2

4M2 + k2
; 1 − k̂2/4 =

4M2

4M2 + k2
(4.13)
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Substitution of (4.13) in (4.12) gives an explicitly Lorentz invariant result. Eq.(4.12) then
shows that F (k2) ∼ k−4 for large k2, in conformity with the scaling law [1] for the baryon.

Next we consider the e.m. radius of the proton which is given by the formula

< R2 >= −6∂k2F (k2)|k2=0 (4.14)

Expanding (4.12) up to O(k2) and collecting the coefficients of the indicated derivative
gives

< R2 >= − 6

M2
(−3.39) = 23.14GeV −2 = (0.96fm)2 (4.15)

on substitution of the β2 values from (2.36). These results are in fair accord with the
observed value of ∼ 0.90fm for the proton’s e.m. radius [20], considering the fact that
the parameters are not adjustable but attuned to qqq spectroscopy [10].

5 Baryon Magnetic Moments

Before calculating the magnetic moments (as the coefficients of σµ), we first generalize
the formula (3.12) for the full baryon octet, with the replacements (1 + 3τz) → f ′ and
(1− τz) → f ′′, where the latter are listed in Table 1 below. Although we are now allowed
to set k2 = 0, we must take account of the i) unequal mass kinematics; and ii) the
normalization (3.15) for the general baryon case. Unequal mass kinematics is ensured
simply by the replacement 3 → ∑

123 with an appropriate change of S3 basis by keeping
track of the index #3 in the terms m3 and δm2 appearing in the quantities M ′

µ and µ′′.

Table I: Flavour Factors f ′ and f ′′ for Baryons
Baryon type f ′ f ′′

N e(1+3τz)
4

e(τz−1)(1+λ)
12

Σ e(1+3Tz)
4

e(1−Tz)(1+λ)
12

Λ −e
4

−e(1+λ)
12

Ξ −e
2

τ̄z
−e(1+λ)

6

Λ − Σ e
√

3
4

e
√

3(1+λ)
12

The flavour factors in Table 1 are mostly geometrical [17], except for the (small)
parameter λ which enters the expression for f ′′ in the second column of the table. As
noted at the end of Section 3, the origin of this term may be traced to the last two
terms of M ′′

µ , eq.(A.11), which may be regarded as dynamical corrections to SU(6) that
affect M ′′

µ but not M ′

µ. The parameter λ which represents this effect, is already expressed
by eq.(3.16), where the < ... > sign stands for the effect of integration over the internal
variables a la Section 4. The ratio λ also enters the normalization via the RHS of eq.(3.15),
which contributes a factor (2+λ)−1 to the magnetic moment. Collecting all these results,
the baryon magnetic moments in baryon magneton(B) units are all expressible as

µBm =
a + bλ

2 + λ
(5.1)

where a, b are geometrical numbers given in Table 2 below, along with the results (in
baryon magnetons) of this calculation, experiment [19] and the Schwinger model [2].
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Table 2: a, b values and magnetic moments
Baryon a b µB Expt[19] Sch [2]

p 4 0 +2.710 +2.793 +2.42

n −8/3 −2/3 −1.570 −1.913 −1.62
Λ −4/3 −1/3 −0.741 −0.614 −0.614

Λ − Σ 4/
√

3 1/
√

3 +1.278 1.61 ...
Σ+ 4 0 +2.407 +2.33 +2.36

Σ− −8/3 −2/3 −1.456 −0.89 −0.87
Ξ0 −8/3 −2/3 −1.438 −1.236 −1.356
Ξ− −4/3 +2/3 −0.876 +0.75 −0.55

The results for the magnetic moments are in fair accord with experiment[19] as well
as with the Schwinger model of e.m. substitution [2] in accordance with V MD [3]. The
following symmetry relations, if the results are expressed in baryon magneton units, may
also be noted:

µp = µΣ+; µn = µΣ− = µΞ0 = 2µΛ =
−2√

3
µΛ−Σ0 (5.2)

6. Summary And Conclusion

In this paper, we have attempted to extend the Markov-Yukawa Transversality Principle
[4] on the covariant null-plane from the qq̄ problem [5] to the closely related qqq system,
and given an explicit construction of the corresponding baryon-qqq vertex function.As a
test of this Principle, its applications have been carried out on two allied quantities viz., i)
the e.m. form factor of the proton; and ii) the magnetic moments of the baryon octet. The
calculation of the former has been carried out on the lines of the corresponding work on
the meson e.m. form factor [5], using the method of ‘Lorentz completion’ for obtaining an
explicitly Lorentz-invariant result. Not only is the scaling law [1] reproduced, but also a
value of the proton e.m. radius obtained in fair accord with the data [20], when the infra-
red part of the gluon propagator is attuned to hadron spectroscopy [10]. The application
to the baryon magnetic moments reveals an interesting set of symmetry relations, eq.(5.2),
when expressed in units of ‘baryon magnetons’. The results also show a good pattern of
accord with experiment[19] as well as with the Schwinger model [2]. These results may be
regarded more by way of ‘calibration’ of a relatively new principle,(the MY TP [4]), than
any attempt at exploring newer aspects of these familiar quantities, such as the gluonic
radius of the proton [21], higher order e.m. effects on the proton radius [22], strangeness
effects [23], etc, for which the interested reader is referred to other publications [24].

One of us (BMS) is grateful to Prof.R.K.Shivpuri for the hospitality of the High Energy
Lab of Delhi Univ.

Appendix A: Evaluation Of Spin Matrix Elements

We indicate here the main steps for evaluating the spin matrix elements in the factorized
forms (3.8-10), leading to the form (3.12). Consider first the T ′ and A′

µ terms. Taking
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the traces, T ′ simplifies to

T ′ = 2
m1m2 − p1.p2

∆1∆2
=

∆1 + ∆2 − P 2
12 − δm2

∆1∆2
⇒ −P 2

12 − δm2

∆1∆2

where P12 = p1 + p2, and we have used the result that in the null-plane formalism, the
poles in the ∆1, 2 propagators are on opposite sides of the q− plane [12], so that the
‘virtualities’ ∆1,2 in the numerator effectively drop out. A further simplification arises
from the result

P 2
12 = (P̄ − p̄3)

2 ⇒ M2 − 2m̂3M
2/3 + m2

3

where m̂3 ≈ 1/3 is the fraction of momentum carried by the spectator, and some odd
powers in η3 have been dropped. Thus

T ′ =
M2/3 + m2

3

∆1∆2
(A.1)

The multiplying factor A′

µ, eq.(3.10), may be written as

A′

µ = Ū ′(P ′)
(m3 − iγ.p′3)iγµ(m3 − iγ.p3)

∆3∆′
3

U(P )

For further processing, we collect together the singular factors (S.F.) involving ∆3, ∆
′

3 in
A′

µ as well as the vertex functions V3, V
′

3 , eq.2.31), in the form

S.F. ≡
√

∆3δ(∆3)
√

∆′
3δ(∆

′
3)

∆3∆′
3

(A.2)

Since this singular function is non-vanishing only at a couple of points it can be bounded
by making use of the inequalities

h.m. < g.m. < a.m.

in a compensatory manner :
√

∆3∆′
3 ≥

2∆3∆
′

3

∆3 + ∆′
3

;

√

δ(∆3)δ(∆′
3) ≤ [δ(∆3) + δ(∆′

3)]/2

Multiplying these two factors together and substituting in (A.2) we finally obtain the
result

S.F. ≈ δ(∆3) + δ(∆′

3)

∆3 + ∆′
3

⇒ δ(∆3) − δ(∆′

3)

∆3 − ∆′
3

(A.3)

where the last step has made repeated use of the vanishing property of the argument of
a δ-function. The last expression in turn is expressible as a derivative:

δ(∆3) − δ(∆′

3)

∆3 − ∆′
3

≈ −∂∆̄3
δ(∆̄3) = −∂m2

3
δ(∆̄3) (A.4)

where ∆̄3 ≈ m2
3 + p̄2

3. The trick is now to transfer the burden of differentiation from the
δ-function to the rest of the integrand in the sense of integration by parts. Then the
differentiation w.r.t. m2

3 boils down to the expression

+∂m2
3
Ū(P ′)(m3 − iγ.p′3)iγµ(m3 − iγ.p3)U(P ) ⇒ Ū(P ′)[iγµ(1 +

M

3m3
)U(P )
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on making use of the Dirac equation, and dropping a small η)3 term. Collecting all these
results we have

A′

µ → Ū(P ′)iγµ(1 +
M

3m3
)U(P )δ(∆̄3) (A.5)

This quantity is multiplied by T ′, eq.(A.1), and the product of (A.1) and (A.5) represents
one of the dual spin-matrix elements:

M ′

µ = (1 +
M

3m3

)
M2/3 + m2

3

∆1∆2

Ū(P ′)[
P̄µ

M
+ σµ]U(P ) (A.6)

where the δ-function on the RHS of (A.5) is absorbed in the integration measure (3.11)
which is now redefined as ∫

dτ ′ ≡
∫

d4q12d
4p̄3δ(∆3) (A.7)

and the Dirac matrix γµ has been be Gordon-reduced as [14]

iγµ → P̄µ

M
+ σµ; σµ ≡ iσµνkν

2M
(A.8)

This Gordon reduction at the quark level determines the relative strengths of the charge
and magnetic form factors in eq.(3.14) of text, in the Sachs convention.

In a similar way the pair T ′′ and A′′

µ can be simplified, except for a bit heavier algebra
stemming from the extra tensor indices involved in each, as well as the presence of γ̄ν and
its covariant conjugate γ̄∗

ν which are defined via eqs.(3.2-3). Using the properties (3.3) of
the projection operators θµν , it is not difficult to show that

T ′′

νν′ =
θ∗νλθν′λ′

3∆1∆2
[(M2/3 + m2

3)δλλ′ + η̄λη̄λ′ − 3ξ̄λξ̄λ′] (A.9)

where the ‘bar’ symbols are as defined in (3.2). The bar symbols also include the effect
of averaging over the ξ, η values for the initial and final baryons. Similarly, the quantity
A′′

µνν′ is treated exactly as in (A.5) to give

A′′

µνν′ = θνρθ
∗

ν′ρ′(1 +
M

3m3

)Ū(P ′)γρ′iγµγρU(P )δ(∆̄3) (A.10)

Thus the product of (A.9) and (A.10) defines the dual quantity to M ′

µ of (A.6), which on
contracting over some tensor indices gives

M ′′

µ =
(1 + M

3m3
)

∆1∆2
Ū(P ′)[(

P̄µ

M
− σµ

3
)(M2/3 + m2

3) − (η̄2/3 − ξ̄2)σµ]U(P ) (A.11)

where again the δ-function in A′′

µνν′ of (A.10) hhas been absorbed in the new integration
measure (A.7). The final formula for the spin matrix element in terms of M ′

µ, M
′′

µ is given
in eq.(3.12) of text.

REFERENCES

[1] V.A.Matveev et al, Lett. Nuovo Cim,7, 712 (1972);
S.Brodsky and G.Farrar, Phys.Rev.Lett.31, 1153 (1973).

15



[2] J.Schwinger, Phys.Rev.Lett.18, 923 (1967).

[3] J.J.Sakurai, Ann.Phys.(N.Y.)11, 1 (1961)

[4] M.A.Markov, Sov. J. Phys.3, 452 (1940);
H.Yukawa, Phys.Rev.77, 219 (1950).

[5] A.N.Mitra, Phys. Lett.B463, 293 (1999).

[6] A.N.Mitra and B.M.Sodermark, hep-ph/0103111.

[7] A.N.Mitra and S.Bhatnagar, Intl J Mod Phys.A7, 121 (1992).

[8] A.N.Mitra, Intl J Mod PhysA14, 4781 (1999).

[9] A.N.Mitra and B.M.Sodermark, Intl J Mod Phys.A9, 915 (1994).

[10] A.Sharma et al, Phys.Rev.D50, 454 (1994).

[11] J. Kogut and D.E.Soper, Phys.Rev.D1, 2901 (1970); S.Brodsky et al, Phys.Rev.D8,
4574 (1973); G.t’Hooft, Nucl.Phys.72, 461 (1974).

[12] Review: S.Chakrabarty et al, Prog.Part.Nucl.Phys.22, 143-180 (1989).

[13] H.Leutwyler and J.Stern, Ann.Phys.(N.Y.)112, 94 (1978);
J.Carbonell et al, Phys.Lett.400B, 1 (1998)

[14] A.N.Mitra, Zeits f Phys.C8, 25 (1981)

[15] A.N.Mitra and I Santhanam, Few-Body Syst.12, 41 (1992).

[16] R.Blankenbecler et al, Nucl Phys.12, 629 (1959).

[17] A.N.Mitra and A.Mittal, Phys Rev D29, 1399 (1984)

[18] I.Santhanam et al, Intl J Mod Phys.E2, 219 (1993)

[19] Particle Data Group, Phys.Rev.D58, Part I Aug (1996).

[20] R.K.Bhaduri, Models of the Nucleon, Addison-Wesley Pub Co, MA 1988

[21] M.Kawasaki et al, Phys.Rev.D57,1822 (1998).

[22] M.Bawin et al, nucl-th/0101005.

[23] J.Napolitano, Phys. Rev.C43, 1473 (1991).

[24] S.G.Karshenboin et al, Can. J Phys.77, 241 (1999).

16

http://arXiv.org/abs/hep-ph/0103111
http://arXiv.org/abs/nucl-th/0101005

