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Abstract

The baryon-qqq vertex function governed by the Markov-Yukawa Transversality
Principle (MY TP), is formulated via the Covariant Null-Plane Ansatz (CNPA) as
a 3-body generalization of the corresponding ¢q problem, and employed to calculate
the proton e.m. form factor and baryon octet magnetic moments.The e.m. coupling
scheme is specified by letting the e.m. field interact by turn with the ‘spectator’
while the two interacting quarks fold back into the baryon. The S3 symmetry of the
matrix element is preserved in all d.o.f.’s together. The C'N P A formulation ensures,
as in the ¢g case, that the loop integral is free from the Lorentz mismatch disease of
covariant instantaneity (C'IA), while the simple trick of ‘Lorentz completion’ensures
a Lorentz invariant structure. The k=% scaling behaviour at large k2 is reproduced.
And with the infrared structure of the gluonic propagator attuned to spectroscopy,
the charge radius of the proton comes out at 0.96fm. The magnetic moments of
the baryon octet, also in good accord with data, are expressible as (a4 b\)/(24 A),
where a, b are purely geometrical numbers and A a dynamics-dependent quantity.
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1 Introduction

There is a close connection between the physics of ¢¢ mesons and that of ggq baryons
since in many ways a diquark behaves like a color 3* antiquark. Therefore the dynamics
of both systems should be alike, so that it is fair to expect that a theory which is pre-
tested for one should also work for the other, except for external characteristics like the
number of degrees of freedom. Some important tests for any new form of dynamics are the
scaling behaviour [1] of hadronic form factors, as well as the structure of baryon magnetic
moments, the latter believed to be governed by chiral SU(3) x SU(3) symmetry [2] on the
one hand, and vector meson dominance (VA D) [3] on the other. The form of dynamics we
wish to consider here is the Markov-Yukawa Transversality Principle (MY T P) [4] via the
covariant null plane ansatz (C'NPA) [5], which is applicable to all Salpeter-like equations
[6]. It was recently applied to the e.m. form factor of the pion [5], showing the expected
scaling behaviour (~ k72). With this check on the validity of MYTP under CNPA
conditions [5], we now wish to extend the same from the ¢g [5,6] to the ¢gq dynamics.

In Section 2 we derive the baryon-qqq vertex function under MY T P on the covariant
null-plane (CNPA), on closely parallel lines to its Covariant Instantaneity (C1A) for-
mulation [7,8], in the same notation [8] except when new features arise. Section 3 gives
the matrix element for the baryon e.m. coupling wherein the spectator interacts with the
external photon, and the two interacting quarks fold back into the baryon. Section 4 gives
the results for the e.m. form factor of the proton which confirm its k=% behaviour at large
k%, and gives a value of the charge radius at 0.96 fm, with the infrared part of the gluon
propagator [9] attuned to baryon spectroscopy [10]. Section 5 gives the corresponding
results on the magnetic moments of the baryon octet within the same framework. Section
6 concludes with a summary.

2 Derivation Of Baryon-gqq Vertex Function

To formulate the baryon-qgq vertex function under MY TP, we proceed as in ref.[8] for
the 2- and 3-body kinematics, except for a generalization from covariant instantaneity
(CTA) [7,8] to the covariant null-plane ansatz (CNPA) [5,6]. In this Section we consider
spinless quarks [8] using the method of Green’s functions, to be followed by the more
realistic case of fermion quarks at the end of the Section. Now since the momentum
kinematics for ¢g under CNPA [5,6] turn out to be formally identical to those under
the standard null-plane formalism [11,12] (which is easier to use), the latter notation (+)
[11-12] may be profitably employed instead of the n, dependent notation [5,6]. Now the
essential point of the CNPA formalism [5,6] is that the longitudinal (z) and scalar (0)
components of a 4-momentum p;, for quark #7 in a hadron of mass M and 4-momentum
P, are [5,6]:
Mpiy Mp;—
P, 7 2P
The former, along with the transverse components p;;, obeys the ‘angular condition’
[13,12] which effectively defines a 3-vector p; = {pi1, pi. }, a key ingredient for the MYT P
formulation to follow.

Diz; Dio = (2.1)



2.1 3D-4D Interlinkage for qq Green’s Fns

We first derive the 3D-4D interlinkage for the ggq system by the method of Green’s func-
tions, as a prototype for the ggq system to follow. The Green’s function under MY TP
satisfies the BSE [8]:

(2m)"iG(q,q's P) =

1 4 1 N "o,
A& [V @dGW"P) (2.2

Now define the 3D Green’s function [§]

C(d.4) = [ daodaGla, ' P) (23

where the time-like components are defined a la (2.1). Integrating both sides of (2.2) gives
via (2.3) the 3D BSE for a bound state which does not need an inhomogeneous term:

N

Cr*D@G. 1) = [ d9'V(@,d)C("d) (2.4)

where the 3D denominator function D(q) is defined as

24T dqo

T 2.5
D(q) ArA, (25)
leading (for general unequal mass kinematics) to [12]
M ~ ~2 )‘(M2>m%>m%)
D(q) = P_+D+( q); Dy(q) =2P ¢ — AN2 ] (2.6)

where (2.1) defines the 3-vector ¢ and A is the triangle function of its arguments. Now
define the hybrid Green’s functions [8]:

G(3,q) Z/dqu(q,q’;P); G(q /qu (4,4 P) (2.7)

Using (2.7) on the RHS of (2.2) gives

(27T)4iG(q,q’;P): AllAz/d:aq//V( A//>é<w ) (2.8)

Integrating (2.2) w.r.t. dgj only, and using (2.7) again, gives

(2m)'iG(g,d') =

1 3 Al AT A A// ~1
Aa; | POVE@dNGa"a) (2.9

Eqs.(2.9) together with the 3D equation (2.4) for G gives a connection between the hybrid
G and the 3D G-

% 4 D) . .
N = —H— ! 2.1
Gla:q) = 57 5,00 0) (2.10)
Interchanging ¢ and ¢’ in the last equation gives the dual result
s D) A .
N = — ! 2.11
G(4,9) 2mA’1A'2G(q’ q) (2.11)
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Substituting these results in (2.8) gives the desired 3D-4D interconnection

D(@) s oy D)

G(q,q;P) = Simi, 8,0 U P g ARy (2.12)

Now making spectral representations for the 4D and 3D Green’s functions on both sides
of eq.(2.12) in the standard manner [8], viz.,

G(q, ¢ P) Z‘P q; P)®*(¢'; P)/(P? + M?); (2.13)

q,4q) qun )/ (P% 4 M?) (2.14)

where ®,, and ¢, are 4D and 3D wave functions respectively, one can directly read off
from (2.12) their interconnection, valid near a bound state pole (dropping the suffix n for
simplicity):

D(q)¢(q)

[(q) = A1Ax®(q; P) = % (2.15)

which tells us that the vertex function I' under CNPA is again a function of ¢ only [8],
except for its definition (2.1) under CNPA. This derivation is a prototype for the gqq
case to follow.

2.2 3D Reduction for Scalar qqq BSE

For the qqq problem, we have a pair of internal variables which may be chosen in one of
3 distinct ways. With index #3 as basis, the pair &, 73 may be defined as [§]

V3 =p1—pa; 33 =—2p3+p1+ps P=pi+patps (2.16)

The space-like and time-like parts of £, 7 are defined as in (2.1), so that, e.g.,

ME o ME
P_|_ ) 03 P

523 =

and similarly for . We shall also use the &+ notation in parallel with the 3-vector notation
in the following.

The Green’s function, after taking out an overall - function for the c.m. motion,
may be written as G(£n; £'n') at the 4D level, while the fully 3D Green’s function may be
defined as [§]

~

G(én &) = [ déodnodgydnG(ens ) (2.17)

Both G and G are S; symmatric, since the measure déydng is Ss-invariant. In addition,
two hybrid Green’s functions are [§]:

Ci(Eom E4h) = [ dand€hoGEm €);  Ciag(Eui &4i) = [ dmsodipoG(€ms€); (218)

where the suffixes 3¢,3n signify that G is not S; symmetric since the integration now
involves only one of the two £,n variables. Now the 4D ¢gq BSE under MYTP is [8]:

4 d4§” " ’ 7
i2m) G €)= X [ 1oV (G G Ems; ) (2.19)
123



where the factor 9/16=[v/3/2]* stems from the relation 2¢;5 = v/3¢3, and the association
of n3 with & in the Green’s function signifies that the spectator #3 remains unaffected
by the interaction in the (12) pair, and so on by turns cyclically. The 3D reduction is
achieved by integrating (2.19) via (2.17) which gives, as in the CIA derivation [8]:

rP G &) =3 pIpA VS [ B, NG Eb) (2.20)

where, as in (2.6), Dy = MID)i“, with

Digy = 2w; poy + 2w3 Py — 2Pio_pripas (2.21)

and w? = m? + p?,; Py = p1 + p2. Now making use of the on-shellness (A3 = 0) of the
spectator (#3), we have P, = P_p3 = P_w? /ps,, whose substitution in (2.21) gives
rise to the S5 symmetric result:

P3+Diay = Dy =2 Zp2+P3+W%L — 2p14 P24 pat P- (2.22)
123

Substitution of this result in (2.20) gives rise to the requisite 3D BSE in which the denom-
inator function may be identified with D, in an exact fashion. This is a much neater
result than under C'I A [7] where a corresponding denominator function could be obtained
only through an approximate treatment [10]. Since this quantity will play a crucial role in
this study, we recast it in terms of the &, n variables by first redifining it as D, = P?D,
and D = Dy + 6D, where

oS my e 4y Zm2 13— M2/9) (2.23)

2 123 123

1
= g(fi +1) +
with (&, m) = M(&+,n4+)/ Py and

5D = [ — 3¢7) -

Wi PEL + & (2.24)

2M 2[
Note that this null plane description gives different scales for the longitudinal and trans-
verse components of the £, n variables.

The D-function is the driving term for the 3D eq.(2.20) which in turn is the right
vehicle for spectroscopy [10], and is the source of the 3D wave function ¢ via the spectral
representation (2.14). In this respect, the main role is played by the Dy function, while
0D is a correction term.

2.3 Reconstruction of 4D Vertex Function

We now indicate the steps for reconstruction of G in terms of 3D ingredients. First, the
hybrid function G, eq.(2.18), is expressed in terms of fully 3D quantity G exactly as in
eq.(2.11) for the two-body problem:

P.D &
2Z7Tp3+A Ag

Al p P.D
~EI Al +



In a similar way the fully 4D G function is expressible in terms of the hybrid function égg

as
SN P+D P—i-D/
G(Slrla 6 n ) - Z 27;7Tp3+A1A G3f(€37737 53773) 3+A/ A/ (226)

123

At this stage we need an ansatz [8] on the G function which, as in the CTA case [8], is
not determined from MY TP gqq dynamics:

635(53773; géﬁé) = G(éﬁ, élﬁ,)F(ps,pé) (2.27)
where we have incorporated the S3 symmetry of G and taken the balance of the D3

(spectator) dependence in the (unknown) F' function. This is subject to an explicit self-
consistency check for the ansatz (2.27) which may be found by integrating both sides

w.r.t. dps_dp;_.to give
M?dps_dpy_
| [ e F ) =1

This condition is satisfied by the ansatz [8]:

_ As Mps Mpy
F N E—) — 2.28
if Az is determined by the equation
Mdp;-— —1
2P_Aj
which gives
2M w3
Ay =By, L
im Py P+
After a little simplification, we have finally:
6(As)
F(p37p3) 4p3l ZWA (229)

which finally defines the 4D G function in terms of G via the sequence (2.27) and (2.26).
Finally the spectral representations (2.13-14) near a bound state pole give the connection
between the #3 part ®3 of the 4D wave function and the 3D wave function ¢:

9MD 3(2)

Oy = ———— — 2.30
3 227TA1A2¢(€77) 'éﬂ'Ag ( )

whence the baryon-qgq vertex function V3 is inferred via

V3
by = ———
T A
~ MD 0(A
i i

For explanation on the appearance of the J-function under radicals in eq.(2.31), see
ref.[8] where it has been shown that this has nothing to do with any lack of connectedness
in a 3-body amplitude.



2.4 Baryon-qqq Vertex with Fermion Quarks

For the more realistic case of fermion quarks, we employ the method of Gordon reduction
[14-15] whose logic and advantages have been described elsewhere in the context of the ¢
problem [5,6]. To extend the same to the 3-body case, define a (fictitious) scalar function
¢ which is related to the actual BS wave function ¥ by [15]

U = L2357 (—pi) @ (pipaps) (2.32)

with an explicit indexing w.r.t. the individual quarks, which however can be subsumed
in a common Dirac matrix space a la Blankenbecler et al [16], as illustrated in the next
Section. The connection with sect.2.3 is now established by identifying ® of (2.32) with
the sum ®; + ®3 + &3 where @3 is given by (2.30). Therefore the form (2.31) for V3
continues to be valid, except that its relation to W is

U = I11935F;i(pi) [Vi + Vo + V3] (2.33)

We end this Section with a listing of the (gaussian) structure of the 3D wave function ¢ as
a solution of the fermionic counterpart of eqs.(2.20-24). Since this paper is not concerned
with baryon spectroscopy (see [10] for details),we list merely the gaussian form of ¢:
§h+nt M2+ M2y
¢ =exp|— — 2.34
o T 230
where the transverse and longitudinal scale parameters follow from the structure of the
D function (2.23), by proceeding as in [12,10]:

. 8M , 3Cw?

= 22 n/a— 99 2.
SM 3Cow?,  3m?
4 2 . qq q
B = gl 1/2 OMw2 e

where the input parameters w,, etc are listed in [10,12]. The numerical values of the 2
parameters for the full baryon octet in GeV? units are

B2(N) = 0.068; BF(N) = 0.054; (2.36)
B2(X) = 0.080; BH(3)=0.062;
B2(A) = 0.076; BF(A) =0.061;
BHE) = 0.079; BE)=0.063.

3 E.M. Coupling Of qqq Baryon

The e.m. coupling of the ggq baryon is given by fig.1 plus two more obtained by cyclic
permutations of the indices. It shows that the spectator (#3) scatters against the (space-
like) photon before being re-absorbed into the baryon, while the two interacting quarks
(1,2) fold back into the baryon.Fig.1 is in keeping with the standard additivity principle
(the hallmark of the quark model) for single quark transitions. On the other hand the
(complementary) diquark-photon diagram [17], which does not show a similar property,
will be presumed to be dynamically suppressed, hence left out of further consideration in
this paper.
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Figure 1: Triangle loop for baryon e.m. vertex

3.1 Structure of E.M. Matrix Element

The imbedding of the indices 123 in a common Dirac matrix space may be done a la
ref.[16], after taking account of the S5 symmetry a la ref.[17]. In a [2, 1] representation of
S3 symmetry, the two spin functions x’, x” are expressible as [16,17]

> = m%]wmw) (3.1)

> = [zﬁu%]ag ® [15Y.U(P)]4

| x

"

| X

where 4, would naively be expected to be transverse to P,, but one must again anticipate a
problem analogous to the Lorentz mismatch problem associated with C'IA [7] which gave
rise to unwarranted complexities [18] in form factors, and necessitated the alternative
CNPA [5] formulation for the orbital matrix elements. In the context of spin matrix
elements this pathology shows up as high powers of k2 in the concerned amplitudes if 4,
is defined as v, — v.PP,/P? [7], which is equally unacceptable. On the other hand, the
CNPA [5] offers an alternative solution wherein the transversality is defined w.r.t. the
(more universal) null-plane. The simplest possibility in this regard is to define

*

Yo = Ouwr; 75 =00, (3.2)
where
O = Opv—nyn, = 0,,%; (3.3)
O = 3i Oy =06

These properties are consistent with those expected of a projection operator. Next, the
SU(6) operator for the baryon e.m. interaction is

1
V3

The matrix elements of this operator must be taken between the the SU(6) wave functions
[17]

3
)€y G i
Lu= 270508 + =2 (3.4)
1

W(P)=—=('¢'+x"¢") (3.5)
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where the isospin functions ¢’, ¢” have matrix elements expressible in a common (baryon)
basis as [17]
<" |57 ¢" > = [1;-7/3] (3.6)
<@L ¢ > = [1;7]

Using (3.6), the matrix element of (3.4) between nucleon states |N > is expressible as
(c.f. [17)):

% e
< NTLN > = /dﬂg VaN3[s < 143m > [< X' [ 4 |} > (3.7)
e
+5 <1-7.>< X' A8 x>

Np is a normalization factor to be defined further below.The two spin matrix elements
are expressible in a factorized form as

<X WX > = T'x A, (3.8)

"o
(1% %8]

<X [P IX'> = T, x A

-1

T = TT[SF(M)W%SF(M)%\%] (3.9)
Tl = Trle(o) i Seln)7 )
A, = U(P")Se(ps)inuSe(ps)U(P) (3.10)
Al U(P") 7,755 r(P5)i7,Se(p3) 775U (P)

The symbol [ dr in (3.8) stands for:
/dT = /d4qlgd4]53 (311)

where p3 =(ps + p3)/2.

3.2 Baryon Normalization

The evaluation of the spin matrix elements (see Appendix) reduces (3.7) to
< N|D,N >= g/drfwgngg[M;u +3m) + M!(1 - 7.)] (3.12)

where M, M|/ are given in eqs.(A.6, A.11) respectively,and Wj is the reduced form of V3,
eq.(2.31) as under:

_ MD¢(¢n)
"= e

Hera (see Appendix for details) the reduced measure d7’ is given by (A.7). Repeated use
of Gordon reduction (A.8) leads finally to the ‘Sachs’ form

(3.13)

+ G 2R py (3.14)

< N|TWIN >= eU(P)[F (k) o

K
M



The baryon normalization now comes entirely from the first term in the limit of £ = 0. To
fix this quantity,instead of demanding unit charge for the proton, an asymmetric recipe
heavily weighted against the neutron (see Eq.(3.12)), we resort to a more symmetrical
treatment between the two by demanding the conservation of baryon number, via w-
like coupling [3],which is equivalent to the conservation of isoscalar charge.Thus the
normalization condition boils down to
P N2

=Tt [ arng + M) (3.15)
which is obtained from (3.12) after dropping the isovector parts. For later purposes we
define a parameter A:
<P -38 >
- M2/34+m3 - om®

which arises from certain terms of M}, eq. (A.11), without a counterpart from My,
eq.(A.6). This parameter will play a crucial role in the determination of magnetic moments
(see Section 5).

A

<0 (3.16)

4 Calculation Of The E.M. Form Factor

The charge and magnetic form factors of the baryon are given by the functions F'(k?)
and G(k?) in eq.(3.14) which in this model have identical shapes. Further,eq.(3.15) for
normalization ensures that F'(0) = 1, while G(0) gives directly the baryon magnetic
moments in ‘baryon magnetons’(e/2M). The form factor problem is considered in this
Section, followed by magnetic moments in the next Section. To evaluate (3.12) in a closed
form, first write its integration measure in detail as

dg_
dququr%d“pgd(Ag). (4.1)

In the first step, integrate over dgq_ /2 to give

/ dqg_ DD’

.\ P3+ /
o AN, (2im)—=5(D+ D) (4.2)

4P?
The next step is to integrate over the factors dps—9d(Az)/2 in (4.1) to give ﬁ. Combining
(4.1-2), the net measure becomes:

M?dxdy(D + D) &eins

dry = (2im)d*¢, d*n, 2 T P,

(4.3)

Next, define a common basis ¢ and 7 as follows:
n =0Fk[3 E=¢=¢ (4.4)

in terms of which the product of the 3D wave functions becomes

2 2
68 = exp [_ﬁ;tzm B f(;l;y)]

10

; (4.5)



M?2a? M2(y T k/3)?

2f(x, = - = 4.6
faw) = Sl e e (4.6)
o (e
z,Y; k - p+
Giving the translation
k%6
r—x; Yy —y— 20 akzﬁ (4.7)
the function f(z,y) reduces to
(M222 + M?y?)(1 + k?/4)
Fla,y) = TR +2M?0,/3 (4.8)
The same translation to the D = (D + D’)/2 function, dropping odd terms, gives
_ e +nr 2 2
M? = 3m2) (22 +y?)(1 + k% /4
2 (1—k2/4)?
3 (% ~
ccR/l — __M2 2 . +O ]{?4
MY T e (k%)

The rest of the integration is now routine gaussian for casting the e.m. matrix element in
the form (3.14). Using the basic formulae

/dQSLdQnL exp [—ﬁ;t;ﬁ] = (wﬁf)z; (4.10)
1— k2/4)2 2M?
[ amrtayesp 1) ) = mip S e T )

and other allied results, all integrations are carried out explicitly, and the form factors
F, G identified a la (3.14). The common form is

oy _ (L=k2/9?  2MPoy D(k?)
P =" 57 1D (#.12)

4.1 Results on Proton Form Factor

Eq.(4.12) represents our final formula for the proton form factor. Before comparison with
experiment [19] however, we need to invoke the principle of ‘Lorentz completion’ [5] to
give F'(k?) an explicitly Lorentz-invariant look. The trick is to consider a collinear frame
so that P, = P| = 0. From this frame it is easy to see that [5]

4M>
AM? + k2

- 45

— . 1.2 —
“npse LTRAS

(4.13)
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Substitution of (4.13) in (4.12) gives an explicitly Lorentz invariant result. Eq.(4.12) then
shows that F(k?) ~ k=* for large k2, in conformity with the scaling law [1] for the baryon.
Next we consider the e.m. radius of the proton which is given by the formula

< R? >= —6012F(k?)|s2—0 (4.14)

Expanding (4.12) up to O(k?) and collecting the coefficients of the indicated derivative
gives

6
< R*>= —W(—?,.:ag) = 23.14GeV % = (0.96 fm)? (4.15)

on substitution of the 32 values from (2.36). These results are in fair accord with the
observed value of ~ 0.90fm for the proton’s e.m. radius [20], considering the fact that
the parameters are not adjustable but attuned to ggq spectroscopy [10].

5 Baryon Magnetic Moments

Before calculating the magnetic moments (as the coefficients of 0,), we first generalize
the formula (3.12) for the full baryon octet, with the replacements (1 4 37,) — f’ and
(1—7,) — f”, where the latter are listed in Table 1 below. Although we are now allowed
to set k? = 0, we must take account of the i) unequal mass kinematics; and ii) the
normalization (3.15) for the general baryon case. Unequal mass kinematics is ensured
simply by the replacement 3 — 3,53 with an appropriate change of S3 basis by keeping
track of the index #3 in the terms mg and dm? appearing in the quantities M, ., and .

Table I: Flavour Factors ' and f” for Baryons

Baryon type | f’ 1"
N e(1+37,) | e(.—1)(1+N)

4 12
e(143T.) | e(1-T.)(14))

2 4 12

A —Te —6(112—11—)\)

= —76 7 —e(6+/\)
a-z|op | s

The flavour factors in Table 1 are mostly geometrical [17], except for the (small)
parameter A which enters the expression for f” in the second column of the table. As
noted at the end of Section 3, the origin of this term may be traced to the last two
terms of M}/, eq.(A.11), which may be regarded as dynamical corrections to SU(6) that
affect M ;L’ but not M L The parameter \ which represents this effect, is already expressed
by eq.(3.16), where the < ... > sign stands for the effect of integration over the internal
variables a la Section 4. The ratio A also enters the normalization via the RHS of eq.(3.15),
which contributes a factor (2+X)~" to the magnetic moment. Collecting all these results,
the baryon magnetic moments in baryon magneton(B) units are all expressible as

a+ bA

= 1
#B 21\ (5-1)

where a,b are geometrical numbers given in Table 2 below, along with the results (in
baryon magnetons) of this calculation, experiment [19] and the Schwinger model [2].

12



Table 2: a,b values and magnetic moments
Baryon | a b pp | Expt[19] | Sch [2]
pl|4 0 +2.710 | +2.793 | +2.42
n|—8/3|-2/3|-1.570 | —1.913 | —1.62
A|—4/3|-1/3|-0.741| —0.614 | —0.614
A=Y [4/V3[1/V/3 | +1.278| 1.61
Yt 4 0 +2.407 | +2.33 | +2.36
7| —8/3|—-2/3|—-1456| —0.89 | —0.87
01 —-8/3 | —-2/3| —1.438| —1.236 | —1.356
- | —4/3| +2/3|-0.876| +0.75 | —0.55

(1]

(1]

The results for the magnetic moments are in fair accord with experiment[19] as well
as with the Schwinger model of e.m. substitution [2] in accordance with VM D [3]. The
following symmetry relations, ¢ f the results are expressed in baryon magneton units, may
also be noted:

—2
fp = Hs+;  fin = flg- = pz0 = 2 = Jghae (5.2)

6. Summary And Conclusion

In this paper, we have attempted to extend the Markov-Yukawa Transversality Principle
[4] on the covariant null-plane from the ¢g problem [5] to the closely related gqq system,
and given an explicit construction of the corresponding baryon-ggq vertex function.As a
test of this Principle, its applications have been carried out on two allied quantities viz., i)
the e.m. form factor of the proton; and ii) the magnetic moments of the baryon octet. The
calculation of the former has been carried out on the lines of the corresponding work on
the meson e.m. form factor [5], using the method of ‘Lorentz completion’ for obtaining an
explicitly Lorentz-invariant result. Not only is the scaling law [1] reproduced, but also a
value of the proton e.m. radius obtained in fair accord with the data [20], when the infra-
red part of the gluon propagator is attuned to hadron spectroscopy [10]. The application
to the baryon magnetic moments reveals an interesting set of symmetry relations, eq.(5.2),
when expressed in units of ‘baryon magnetons’. The results also show a good pattern of
accord with experiment[19] as well as with the Schwinger model [2]. These results may be
regarded more by way of ‘calibration’ of a relatively new principle,(the MY TP [4]), than
any attempt at exploring newer aspects of these familiar quantities, such as the gluonic
radius of the proton [21], higher order e.m. effects on the proton radius [22], strangeness
effects [23], etc, for which the interested reader is referred to other publications [24].

One of us (BMS) is grateful to Prof.R.K.Shivpuri for the hospitality of the High Energy
Lab of Delhi Univ.

Appendix A: Evaluation Of Spin Matrix Elements

We indicate here the main steps for evaluating the spin matrix elements in the factorized
forms (3.8-10), leading to the form (3.12). Consider first the 7" and A, terms. Taking
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the traces, T" simplifies to

mimg —p1.pa  Ar 4 Ay — P — om’ - — P, — om’
INV.VEE AAy AA,

where Pjs = p; + po, and we have used the result that in the null-plane formalism, the
poles in the Al,2 propagators are on opposite sides of the ¢_ plane [12], so that the
‘virtualities” A; o in the numerator effectively drop out. A further simplification arises
from the result

T =2

Py = (P —p3)* = M? — 2mzM?*/3 + mj
where 13 ~ 1/3 is the fraction of momentum carried by the spectator, and some odd
powers in n3 have been dropped. Thus
T M?/3 +m?
AAy
The multiplying factor A/, eq.(3.10), may be written as

(A.1)

! 77! / (m3 - i7~pg)i7u(m3 - Zbf}/~p3)
AL =T'(P) AL U(P)

For further processing, we collect together the singular factors (S.F.) involving Ag, A% in
Aj, as well as the vertex functions V3, V3, eq.2.31), in the form

A3z0(Asz) /ALY (AL
S.F. = VR0(A3) A05(A%) (A.2)
A3Af
Since this singular function is non-vanishing only at a couple of points it can be bounded
by making use of the inequalities

hom. < gm. <am.

2A3 A
VAzAL > 28
0(A3)d(A3) < [0(As) +6(A3)]/2

Multiplying these two factors together and substituting in (A.2) we finally obtain the
result

in a compensatory manner :

0(A3) +0(43) _, 9(As) — 3(A3)

As 4+ Af Az — Af
where the last step has made repeated use of the vanishing property of the argument of
a O-function. The last expression in turn is expressible as a derivative:

3(Ag) — 8(A3)
A; — A,

S.F. ~ (A.3)

~ —03,0(A3) = —0,,20(As) (A.4)

where Az ~ m2 + p2. The trick is now to transfer the burden of differentiation from the
o-function to the rest of the integrand in the sense of integration by parts. Then the
differentiation w.r.t. m2 boils down to the expression

—I—@mgU(P')(mg — i7y.p4) iy (ms — iy.p3)U(P) = U(P")[iy,(1 + 3—]\ni)U(P)
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on making use of the Dirac equation, and dropping a small n); term. Collecting all these
results we have M
AL — U(P)iry,(1+ %)U(P)é(ﬁg) (A.5)
3
This quantity is multiplied by 7", eq.(A.1), and the product of (A.1) and (A.5) represents
one of the dual spin-matrix elements:

B gk + U (P) (A6

M, = (1+ i

3m3

where the d-function on the RHS of (A.5) is absorbed in the integration measure (3.11)
which is now redefined as

/ dr' = / A quad*Psd (D) (A7)

and the Dirac matrix v, has been be Gordon-reduced as [14]

10k,
2M

(A.8)

1Yy, — M“—I—UM; o, =
This Gordon reduction at the quark level determines the relative strengths of the charge
and magnetic form factors in eq.(3.14) of text, in the Sachs convention.

In a similar way the pair 7" and A can be simplified, except for a bit heavier algebra
stemming from the extra tensor indices involved in each, as well as the presence of 7, and
its covariant conjugate 7;; which are defined via eqs.(3.2-3). Using the properties (3.3) of
the projection operators 6, it is not difficult to show that

o Oy
v 3A 1A,

[(M2/3 + m%)ém + ATy — 35)\5)\/] (Ag)

where the ‘bar’ symbols are as defined in (3.2). The bar symbols also include the effect
of averaging over the &, n values for the initial and final baryons. Similarly, the quantity
A" is treated exactly as in (A.5) to give

(17%%

! * M [ .
AL = 0,05 (1 + 3—%)U(P’)7p/wwpU(P)5(A3) (A.10)

Thus the product of (A.9) and (A.10) defines the dual quantity to M}, of (A.6), which on
contracting over some tensor indices gives

Amz%gg%ww%—%wwmw@—wm—ﬁmwm (A11)

where again the d-function in A}, , of (A.10) hhas been absorbed in the new integration

measure (A.7). The final formula for the spin matrix element in terms of M, M}/ is given
in eq.(3.12) of text.
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