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This article aims at an integrated formulation of BSE’s for 2- and 3-quark hadrons under the Markow-Yukawa
Transversality Principle (MYTP) which provides a deep interconnection between the 3D and 4D BSE forms, and hence
offers a unified treatment of 3D spectroscopy with 4D quark-loop integrals for hadronic transitions. For the actual
dynamics, an NJL-type realization of DBXS is achieved via the interplay of Bethe-Salpeter (BSE) and Schwinger-
Dyson (SDE) equations, which are simultanelously derivable from a chiral Lagrangian with a gluonic (Vector-
exchange) 4-fermion interaction of ‘current’ uds quarks, specifically addressing the non-perturbative regime. A prior
critique of the literature on various aspects of the non-perturbative QCD problem, on the basis of some standard
criteria, helps converge on a BSE-SDE framework with a 3D-4D interconnection based on MYTP. This framework is
then employed for a systematic self-contained presentation of 2- and 3-quark dynamics on the lines of MYTP-governed
DBXS, with enough calculational details illustrating the techniques involved. Specific topics include: 3D-4D
interconnection of ¢ q¢ and q g g wave functions by Green’s Function methods; pion form factor; 3-hadron form
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1 Introduction: QCD-Type Confinement Models

One of the biggest challenges in physics to-day is a
viable theory of strong interactions for which QCD
is the leading candidate. Unfortunately, despite
many of its extremely attractive features, this
theory is not yet available in a sufficiently tractable
form so as to appeal instantly to all its practitioners
in as universal a manner as, e.g. in QED. The bone
of contention in this regard is the non-perturbative
sector of QCD which shows up as the phenomenon
of ‘confinement’ at low and moderate energies: As
yet there is no visible evidence of a sort of
minimum consensus on a common dynamical
framework to incorporate this physical effect in
QCD applications in the strong interaction sector in
a sufficiently convincing yet doable manner. As a
result, there exist a multiplicity of approaches
which, while incorporating the QCD ideas in
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varying degrees of sophistication, nevertheless
often need to resort to additional parametric
assumptions to calculate various low energy
hadronic properties. Some of the principal
approaches are:

Bag models'; QCD-sum rules’; later adap-
tation's3 of the Nambu-Jona-lasino model’; QCD
bosonization approaches’; Instanton methods®;
Vacuum self-dual gluon fields’; Quark confine-
ment models®; Schwinger-Dyson and Bethe-
Salpeter models’; adaptation of BSE-SDE to a 3D-
4D hybrid form''"' in a ‘two-tier’ fashion (to
incorporate the spectroscopy sector). To this list
one should also add QCD-motivated ‘quarkonia’
models which is one of the oldest types in
existence, and those state of the art may be found
in a fairly recent collection'?. Last not least, one
must pay homage to “Lattice QCD” which
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addresses confinement at a more fundamental
level, and has grown into a self-contained field of
study by itself. However its philosophy and
methodology have so little in common with the less
ambitious approaches listed above' %, that it does
not fall within the scope of the present study.

1.1 A Short Critique of Models""

If the pretence of implementing confinement
through an exact solution of the QCD equations of
motion is given up in favour of an “effective
confinement’ programme, the central issue boils
down to the extent to which the same can be
formulated in a manner which is both physically
convinving as well as mathematically tractable
enough to warrant wide-ranging applications, all
the way from the low-energy spectroscopy'’ to
deep inelastic processes amenable to perturbative
QCD?. Such a philosophy is reminiscent of Bethe’s
“Second Principle Theory” for effective nucleon-
nucleon interactions, now reborn at the level of
quark-quark interactions, with confinement
addressed in a semi-empirical manner which
incorporates the main features of QCD structure.
Unlike Lattice-QCD, such programmes are not
meant to address confinement directly, but rather to
take its role more or less for granted in anticipation
of future developments. It is from this angle that
most of the approaches listed above may be
viewed, from putting in the QCD feature by
hand"*"> to a conscious, effort to ‘derive’ its
content more explicitly>’. Of the last group, the
model that comes closest to tackling confinement is
perhaps ref. [7], but its methodology has
understandably more limitations for wider
applicational purposes. A complementary role is
that of ref. [S] which is characterized by a ‘chiral
perturbation’ approach to the mechanism of
formation of hadronic states in QCD, and in the
process gives rise to an effective chiral Lagrangian
for low energy hadron physics. However the
perturbative expansion in the momenta, deemed
small in the low momentum limit, robs such a
Lagrangian of a vital property: its capacity to
predict the bound (confined) states of hadrons in
the low momentum regime, due to the lack of a
‘closed form’ approach. (A closed form approach is
best exhibited by some sort of form factors
characterized by a confinement scale, a feature that
gets lost in any expansion in the momenta).

. three
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A ‘two-tier’ 3D-4D BSE approach like ref.
[10,11] is meant for a ‘more conscious’
incorporation of the spectroscopy sector, i.e., an
explicit recognition of the fact, often ignored in the
more usual formulations of BSE-cum-SDE
methods’, that the observed hadronic spectra are
O(3)-like ref. [13], while a literal BSE formulation
in euclidean form, with a standard 4D support to
the kernel leads to O(4)-like spectra'. In this
respect, the two-tier strategy'' invokes the Markov-
Yukawa Transversality Principle (MYTP)"
wherein the quark-quark interaction is in a
hyperplane which is transverse to the 4-momentum
P, of the composite hadron, so that the modified
BSE has a (covariant) 3D support to its kernel. This
feature in turn leads to an exact 3D reduction of the
BSE from its 4D form, and an equally exact
reconstruction of the 4D wave function in terms of
3D ingredients'®, thus implying an exact
interconnection between the 3D and 4D BSE
forms'®. (A parallel formulation of MYTP" by the
Pervushin group'” gave rise to the 3D reduction
from the 4D BSE form, but the inverse connection
(from 3D to 4D) was missing in their paper'’. The
3D BSE form makes contact with the observed
O(3)-like spectra’, while the reconstructed 4D
BSE form provides a natural language for
evaluating transition amplitudes via quark

loopsl6,l 1 ]

A 3D BSE form has its own logical basis which
receives support from several independent angles
in view of its crucial role in the understanding of
physical processes in general and the theme of the
present article in particular (see below). We list
supporting themes which have been
developed over the decades from entirely different

premises, all converging to a basically 3D picture
for the effective g g/q q interaction:

i) It gives a physical meaning to the interaction
of the quark constituents in their respective mass
shells, consistently with the tenets of local field
theoryls; i) It arises from the concept of
instantaneous interaction'”'® among the quark
constituents in accordance with the Markov-
Yukawa picture'’ of transversality to the composite
4-momentum P,; iii) It is the only structure of the
BSE kernel which makes this equation compatible
with a pair of Dirac equations for two particles
under their mutual interaction'.
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1.2 Bethe’s ‘Second Principle’ Criteria for Model

Selection

Next we consider certain guiding principles
(criteria) which form the basis of this study, before
identifying the specific model/models for a more
detailed and self-contained exposure. A clue is
provided by the observation that most of these
approaches' ‘2, irrespective of their individual
theoretical premises, have a common characteristic:
Applicability to hadronic processes viewed as
quark composites, limited only by their individual
predictive powers, while a deeper understanding of
the underlying models themselves is best left to
future investigations. Perhaps the painfully slow
progress of Lattice QCD results gives an inkling of
this scenario: The formidable dimensions of the
quark-gluon strong interaction physics leaves little
alternative to the respective practitioners of QCD
but to settle for a less ambitious approach to the
problem. Thus the different models”"? are best
regarded as alternative strategies, each with its own
methodology and parametric limitations, aimed at
selected sectors of hadron physics that are suited to
their structural budgets before the ‘final’ theory
unfolds itself, leaving their successes or otherwise
to be judged in the interim by the depth and range
of their respective predictions vis-g-vis the data.
This is once again Bethe’s ‘second principle’
philosophy in retrospect, which would presumably
continue to operate perhaps as long as QCD
remains a partially solved theory. Within this
restricted philosophy, some obvious criteria for
theme selection from among the available
candidates'™"? could be the folowing partial
shopping list (not mutually exclusive):

A) Maximum number of mutually compatible as
well as time-tested ideas that can be extracted from
out of ref. [4-12] in the sense of an “HCF”; B)
Close proximity to QCD as the ideal theory which
stands on the three pillars of Lorentz-, Gauge- and
Chiral- invariance; C) Formal capacity to address
several sectors of physics simultaneously, all the
way from hadron spectroscopy to quark loop
integrals for different types of transition amplitudes
within a common dynamical framework; D)
Sufficient flexibility of the core dynamical
framework to permit smooth on-line incorporation
of mutually compatlble ideas, like Markov-Yukawa
transversality MYTPY, and Dynamlcal Breaking of
Chiral Symmetry (DBXS) and other similar
principles if need be, without causing any structural
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(or parametric) damage to the basic framework
itself; E) Natural capacity of the conceptual
premises to include both 2- and 3-quark hadrons
within a common dynamical framework, to give
concrete shape to the (widely accepted) principle of
meson-baryon duality; F) A built-in microcausality
in the dynamical framework which takes in its
stride sensitive items like the structure of the
vacuum in strong interaction physics, without the
need for fresh ansatze/parametrizations.

Although these criteria are neither exhaustive
nor mutually exclusive, their collective effect is
nevertheless focussed enough to eliminate many
prospective candidates in favour of a chosen few
that would survive the tests (A)«(F) for a
reasonably self-contained account of strong
interaction physics within the tenets of the ‘Second
Principle’ philosophy. Thus the too simplistic
premises of Quarkonia models'' which played a
crucial role in the early stages of QCD-motivated
investigations, would not stand the tests of (B), (C)
and (D). Bag models [1] which had also played a
similar role in the early phases, would not qualify
under (B), (C) and (F). QCD sum rules’ represent
perhaps one of the most successful applications of
perturbative QCD by relating the high energy
quark-gluon sector to the low energy hadron sector
through the principle of an FESR-like duality
discovered in the Sixties”. Even to-day it is
extensively used for many hadronic investigations.
Yet it fails on count (C) mainly because of its
failure to satisfy (F): The lack of microcausality in
this model can be traced to the ‘matching
condition’ between the quark-level and hadron-
level amplitudes whose solution is far from unique.
Indeed, while the borelisation technique suffices
for the prediction of ground state hadron masses,
that very mechanism also causes it to lose
information on the spectra of the excited states,
thus reducing its predictability on this vital (low
energy) front.

As for models™®, the Quark Confinement model®
lacks enough microcausality — condition (F) —
which shows up through a relatively poor
satisfaction of (C), since the spectroscopy sector is
badly neglected. QCD bosonization methods® have
made very impressive strides in respect of
transition amplitudes through the powerful
technique of construction of effective Lagrangians
in terms of the hadronic fields, which make them
ideally suited for ‘tree-diagrams’. However such
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structures hide from view the composite character
of the hadrons in the ‘soft’” QCD regime, which is
best exhibited in ‘closed’ form via quark-hadron
form factors — the vehicle for sensitivity to various
non-perturbative features of the theory. For the
baryon dynamics too, the inadequacy of the
formalism® to depict correctly the 3-quark form
factors shows up through its excessive dependence
on the quark-diquark description with a rigid
diquark structure which results in an inevitable loss
of information on the true 3-quark content of the
baryon. Finally, while ref. [6-7] satisfy the
conditions (B), (C), (F) on separate counts, there is
not enough published evidence of support from the
other quarters (A), (D), (E). Hence while their
comparison with others is useful for a comparative
discussion of different models, their claims to a
primary ‘theme’ status fall rather short of a good
starting point. This leaves the BSE-SDE
framework”!! for a more detailed scrutiny to
follow.

1.3 BSE-SDE Framework: DBXS and ‘Soft’-QCD

The last group’'' is characterized by an
interplay of BSE and SDE, both derivable from a
suitably chosen 4-fermion Lagrangian as input. It
has a very wide canvas and is fully attuned to
Bethe’s Second Principle Theory (BSPT for short).
Its general framework equips it with arms to meet
most of the conditions (A)-(F), ranging from
flexibility to wide-ranging predictivity, thus
lending it some credibility within the broad
premises of ‘BSPT’. In particular, its natural roots
in field theory endow it with standard features like
dynamical breaking of chiral symmetry (DBXS) via
the non-trivial solution of the SDE, thus giving it
the powers to subsume the contents of the NJL-
model®. Indeed, soon after the discovery of the NJL
model’, a field-theoretic understanding of its
underlying idea was achieved in the form of a
generalized DBXS in the QED domain via the non-
trivial solution of the SDE*'. And after the advent
of QCD?, the same feature showed up through the
solution of the BSE for ¢qgq interaction via one-

gluon-exchange’. This is a typical non-perturbative
effect, although it does not cover all its aspects.

Subsequently the concept of DBXS was
generalized to show that this feature is shared by
any extended vector-type 4-fermion coupling®**

which preserves the chiral symmetry of the
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‘Lagrangian but the same gets broken dynamically

through the non-trivial solution of the SDE,
derivable from such a Lagrangian. Indeed the sheer
generality of a Lagrangian-based BSE-cum-SDE
framework, by virtue of its firm roots in field
theory, gives it a strong mandate, in terms of both
predictivity and flexibility, to accommodate
additional  principles like  Markov-Yukawa
Transversality'> (MYTP) while staying within a
basically Lagrangian framework, so that criteria
(A)-(F) are stil satisfied.

In particular, a basic proximity to QCD is
ensured throu§h a vector-type interaction
(condition (B))'**, which while maintaining the
correct o.g.e. structure in the perturbative region,
may be fine-tuned to give any desired structure in
the infrared domain as well. The latter part is
admittedly empirical, but captures a good deal of
physics in the non-perturbative domain while
retaining a broad QCD orientation, and hence does
not rule out a deeper understanding of the infrared
part of the gluon propagator within the same
framework. More importantly, the non-trivial
solution of the SDE corresponding to this
generalized gluon propagator'' gives rise to a
dynamical mass function m(p)'' as a result of
DBXS, even while the input Lagrangian has chiral
invariance due to the vector-type 4-fermion
interaction”?* between almost massless u-d quarks.
These considerations further strengthen the case of
a Lagrangian-based BSE-SDE framework for a
theme choice.

1.4 3D-4D BSE: From Spectra To Loop Integrals

Now the canvas of a (second-principle) BSE-
SDE framework is broad enough to accommodate a
whole class of approaches, and facilitates further
fine-tuning in response to the needs of major
experimental findings such as the observed O(3)-
like spectra”®, which essentially amounts to treating
the time-like momenta separately from the space-
like ones, as has long been known since the classic
work of Feynman et al.”>. In this regard, the MYTP
constraint'’ seems to fit this bill, by imparting a 3D
support to the pairwise BSE kernel'>"’, an ansatz
which can be motivated from several different
angles'®'*"”. As to the ‘soft’ non-perturbative part
of the gluonic propagator, it still remains empirical
since orthodox QCD theory does not yet provide a
closed form representation out of the infinite chain
of equations that connect the successively higher
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order Green’s functions in the standard fashion®,
thus necessitating parametric representations’’.
Parametrization is also compatible with MYPT"’ In
ref. [11] wherein the key constants are attuned to
the hadron spectra of both 2-?® and 3-body® types,
within a common framework. The 3D support
ansatze of MYTP" in turn gives a characteristic
‘two-tier’'® structure to the entire BSE formalism,
wherein the first stage (3D BSE) addresses the
meson”® and baryon spectra”, while the
reconstructed 4D wave (vertex) functions'® fit in
naturally with the Feynman language of 4D quark
loop diagrams for various types of transition
amplitudes'' " in a unified fashion.

A BSE-SDE formulation’ represents a 4D field-
theoretic generalization of ‘potential models’'%, and
is thus equipped to deal with a wider network of
processes (e.g., high energy processes) not
accessible to potential models'”. In this way, the
BSE-SDE approach occupies an intermediate
position, sharing the off-shell feature with potential
models'?., as well as the high energy flavour of
QCD-SR?, but its dynamical spirit is much nearer
to ref. [12] than to ref. [2]. Indeed the role of the
‘potential’'? is played by the generalized 4-fermion
kernel”® (which is a paraphrase for the non-
perturbative gluon propagator''). The 4D feature of
BSE-SDE gives this framwork a ready access to
high energy amPlitudes, as in QCD-SR” as well as
in other models™*, while its ‘off-shell’ feature gives
it a natural access to hadronic spectra”, in
company with (potential oriented) quarkonia
models'’. (In contrast, certain models>*™® do not
have a basic infrastructure to  address
spectroscopy). Now withn this twin feature of off-
shellness and Lorentz-covariance, the BSE-SDE
framework formally overcomes the shortcomings

of ‘potential’ models” in obtaining numerically
‘correct’ values for the various condensates which
are employed as inputs in QCD-SR calculations’.
This was indeed confirmed by a later derivation of
similar results” in terms of a Lorentz-covariant
formulation'' of the BSE-SDE framework, which
showed that vacuum condensates are calculable
within a spectroscopy-rooted?®? framework.

1.5 Off-Shellness in BSE: Parametric Links with
QCD-SR
The calculations in ref. [23, 30] raise the
interesting question of the possibility of a basic
connection among the input parameters of different
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models, although conceived within very different
premises. Thus in QCD-SR?, the ‘free’ parameters
of the theory are the condensates themselves as
input, while in the BSE-cum-SDE methods™'", the
corresponding parameters are contained in the
input structure of the infrared part of the gluon
propagator' . Now since the condensate parameters
of QCD-SR? are explicitly calculable in BSE-SDE
models by quark loop techniques™™’, using the
gluonic parameters'* this result at least settles the
issue of a one-way connection: from BSE'' to
QCD-SR’.

To pursue this question a bit further, let us
compare the features of potential models (of which
BSE is a 4D generalization) with those of QCD-
SR: Potential models are characterized by ‘off-
shell’ features, whose parameters (corresponding to
given ‘potential’ forms) are primarily attuned to
low energy spectroscopy, so that their predictions
tend to work upwards on the energy scale, starting
from the low energy end. QCD sum rules on the
other hand are attuned to the perturbative QCD
regime, so that their predictions tend to work
downwards on the energy scale, starting from the
high energy end. The ‘softness’ aspects of QCD-
SR are typically simulated via the Wilson OPE
expansion in inverse powers of 4-momentum (Q°
where the ‘twist’ terms of successively higher
dimensions are symbolized by the corresponding
‘vacuum condensates’ which are thus the free
parameters of the theory. Therefore prima facie it
appears that the two methods are largely
complementary to each other. The former,by virtue
of its low energy/off —shell emphasis, is
particularly successful on the spectroscopic front,
but its techniques do not find easy access to
transition amplitudes due to inadequate treatment

of the high energy front (lack of covariance). The
latter (QCD-SR) on the other hand, is ideally suited
to the high energy regime, but does not find ready
access to areas involving soft QCD physics,
especially the spectroscopic regime. This is at least
partly attributable to the methodology of QCD-SR?
which makes use of the quark-hadron duality’ for
‘matching’ the respective amplitudes®”®. Because
of the relatively ‘macroscopic’ nature of the
‘matching’ which is effected with a ‘Borelization’
technique’, the predictions are reliable only for the
hadronic ground states, but do not readily extend to
the spectra of excited states.
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Due to the complementary nature of the two
descriptions, it is not generally easy to relate the
parameters of one to those of the other. However,
the off-shellness feature of potential models gives
it access to information on the interaction of the
quark pair with vacuum in the form of ‘vacuum
condensates’. That the vacuum condensates of
QCD-SR? can be expressed in terms of potential”
and BSE* models is a reflection of their crucial
‘off-shellness’ property. As to the converse
question, there is no published evidence of a
corresponding exercise in the opposite direction
viz., a derivation of the parameters of the BSE
kemel/gluon propagator in terms of the various
vacuum condensates that characterize QCD-SR”. A
possible reason may lie in the role of
microcausality (condition (F)) which is well
satisfied by potential models, but perhaps not by
QCD-SR>. Thus it would appear that
‘microcausality’ which underlies the ‘off-shellness’
feature of the ‘potential models’ enhances their
predictive powers vis-a-vis those which do not
possess this crucial-property.

Now the off-shell structures of all ‘potential-
oriented” models”'? have a fairly direct connection
with the ‘spectral’ predictions, unlike other types of
confinement models™®, which do not permit such
predictions in an equally natural way. And for 3-
quark states”, the dichotomy seems to be even
sharper, inasmuch as there is a strong tendency in
the literature to snmpllfy the 3-quark systems as
quark-dlquark systems™*®, thus partly “freezing”
some genuine 3-body d.o. f s and causing a loss of
information on the spectra of L-excited states.

The off-shell characteristics of the BSE-SDE
framework®'? are perhaps the most important
single feature responsible for extending their
predictive powers all the way. from 3D spectra to

4D transition amplitudes (of diverse types) via 4D
quark loop integrals, under one broad canvas. The
key to this capacity lies in the vehicle of the BS
wave (vertex) function which has at its command
the entire ‘off-shell’ information noted above. Here
it is important to stress that this wave function is a
genuine solution of the BS dynamics'', so that it
leaves no scope for any free parametrization
beyond what is already contained in the (input)
gluon propagator. (Potential models'? also have this
capacity in principle, but their 3D structure does
not allow full play to the ‘loop’ aspect).
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1.6 Markov-Yukawa Transversality on the Null
Plane

Covariant Instaneity Ansatz (CIA) on the BSE'
is not the only form of invoking MYTP to achieve
an exact interconnection between the 3D and 4D
structures of BSE. As will be found later (see Sec.
4 for details), the CIA which makes use of the local
cm. frame of the gg composite, has a

disadvantage: The 4D loop integrals are ill-defined
due to the presence of time-like momentum
components in the exponential/gaussian factors
(associated with the vertex functions) caused by a
‘Lorentz-mismatch’ among the rest-frames of the
participating hadrons. This is especially so for
triangle loops and above, such as the pion form
factor, while 2-quark loops just escape this
pathology. This problem is probably absent if the
null-plane ansatz (NPA) is invoked, as found in an
earlier study of 4D triangle loop mtegrals except
for poss:ble problems of covariance® The CIA
approach1 which makes use of the TP'S, was an
attempt to rectify the Lorentz covariance defect,
but the presence of time-like components in the
gaussian factors inside triangle loop integrals®'
impeded further progress on CIA lines.

Is it possible to enjoy the best of both the
worlds, i.e., ensure a formal covariance without
having to encounter the time-like components in
the gaussian wave functions inside the 4D loop
integrals? Indeed the problem boils down to a
covariant formulation of the null-plane approach.
Now the null-plane approach (NPA) itself has a
long history®’, and it is not in the scope of this
article to dwell on this vast subject as such. Instead
our concern is limited to the covariance aspects of
NPA, a subject which is of relatively recent
ongm]8 #%3% However in all these approaches®®, the
primary concern has been with the NP- dynamlcs in

3D form only, as in the other familiar 3D BSE
approaches™ over the decades. On the other hand,
the aspect of NPA which is of primary concern for
this article, is on the possibility of invoking MYTP
for achlevmg a 3D-4D BSE interconnection on the
covariant Null Plane, on similar lines to Covariant
Instantaneity (CIA) for the pairwise interaction'®.
Now it seems that a certain practical form of the
null-plane formalism™® had all along enjoyed both
3D-4D interconnection and a sort of ‘pedagogical
covariance’ (albeit implictly)*. This basic feature
can be given a formal shape by merely extending
the Transversality Principle’” from the covariant
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rest frame of the (hadron) composite'®, to a
covariantly defined null-plane (NP)"'. Because of
its obvious relevance, the subject of 3D-4D
interlinkage on the covariant Null-Plane*' will be
covered in Sec.4.2, with a parallel CIA treatment in
Sec4.1.

1.7 Scope of the Article: Outline of Contents

" We now focus on a BSE-cum-SDE form of
dynamics derivable from a chirally invariant
Lagrangian with an effective gluon-¢xchange-like
interaction (Pairwise), as the central theme of this
study for a reasonably self-contained presentation,
under the further constraint of Markov-Yukawa
Transversality Principle (MYTP). The emphasis is
on a pedagogical perspective on the problem of
effective color confinement, converging on a
vector exchange mediated Lagrangian whose chiral
symmetry gets broken dynamically, after giving a
bird’s eye view of the main approaches to effective
confinement'''. Indeed the (DBXS) theme,
although originating from the NJL-model* for
‘contact pairwise interaction, admits a simple
generalization to a (space-time extended) vector
exchange gg/qq interaction which exhibit chiral
symmetry at the input Lagrangian level, but get
broken dynamically via the solution of the
Schwinger-Dyson Equation (SDE)*?. A more
explicit QCD motivation must be achieved by
hand, e.g., identification of the pairwise interaction
with the entire gluon propagator (perturbative and
non-peturbative’™) which in turn has several
desirable consequences, such as the color effect
which ensures that the strength of the gq force is
half that of g g, within a common parametrization.

The second item of emphasis concerns the
remarkable facility of an exact interconnection
between the 3D and 4D BSE forms'®, that is
providled by MYTP, a facility that other 3D
approaches to BSE®, or (basically 3D) Null-Plane
approaches’®, do nmot seem to possess. This
property allows the exposition of the BSE-cum-
SDE techniques in a very simple way, so as to
provide the reader with a quick working knowledge
of their applications to a wide class of problems
which may be broadly classified in a two-tier form:
A) Mass spectra; B) Quark-Loop diagrams. Such a
division is natural since investigations of types (A)
and (B) are mainly governed by the 3D and 4D
aspects of the BSE respectively. Therefore after an
introductory phase on the general BSE-SDE
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formulation, an early specialization to its MYTP-
governed 3D-4D form (from Sec.4 onwards) will
form the basis for this (application oriented) article.

A third item of emphasis is on the second stage
of the 3D-4D BSE framework, viz., techniques of
4D quark-loop amplitudes, with a comparative
study of CIA' vs CNPA* to bring out their
relative (strong/weak) features.

This article has been built on the infrastructure
of one with a similar theme® written about a
decade ago; it incorporates major advances through
the present decade on the 3D-4D BSE front®, viz.,
the Covariant Instaneity Ansatz (CIA) and its more
recent Null-Plane counterpart (CNPA)*', both
under the umbrella of MYTP". The background of
ref. [40] will be freely used, but the details on (3D)
spectra on which CIA® and CNP*' have similar
predictions, will now be omitted, except for
drawing attention to their structural similarities.
Instead more attention will be paid to the structure
of 4D quark loop integrals of selected types to
bring out the applicational potential of this MYTP-
governed formalism*. These types include (i)
certain hadronic form factors built out of triangle
loops; (ii) typical self-energy problems dealing
with SU(2)-mass splittings among hadrons; (iii)
vacuum condensates which are inputs in QCD-SR?,
but calculable in the 3D-4D BSE-SDE formalism™.

While giving the details of this article, we repeat
at the outset that, except for the contents of
Sections 1-3, it is not intended as a conventional
‘review’ of the BSE-SDE framework such as ref.
[9]. Nor are conventional 3D BSE approaches”, or
the conventional NPA formalisms®™* the subjects
of our detailed description. Aspects of contact
NJL-type 4- and 6-fermion couplings (often
employed in the ‘nuclear’ field), are also not of
interest here.

As to the actual details, the Table of contents,
preceding the Introduction (Section 1) gives a fair
cross section of the included items: Sect.2 gives a
panoramic view of the NJL-Model' and its
aftermath. Sect.3 gives a general derivation of BSE
and SDE in an intelinked fashion, with a gluon-like
(Vector-exchange) propagator whose mass function
m(p) stems via DBXS from a spatially extended 4-
fermion interaction in the input Lagrangian. With
this general background of SDE-BSE as well as of
DBXS, the rest (Sect. 4-11) deals with different
facets of the 3D-4D. BSE-SDE framework under
the Markov-Yukawa Transversality Principle’ at
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two distinct levels of operation, viz., CIA'®"” which
has been around for some time, and CNPA*' which
is formally a new proposal, althou in effective
(practical) use for quite some time™

Of the subsequent Sections, Sect.4 collects the
background for interlinked 3D-4D BSE techniques
for gq hadrons. For the fermionic BSE, we have

preferred to - stick to its
version'™® adapted to the off-shell constituents
This is a conscious departure'® from the standard
BSE-form®® to make the BSE more tractable for
wider applications, as in other BSE approaches'*™,
and does not violate the ‘Bethe Second Principle’
spirit, since the input 4-fermion coupling is an
effective description of the pairwise interaction).

‘Gordon-reduced’
IOa

Sect.(5-8) deal with some selected applications
of triangle loops (form factors), two-loops (self-
energy), and one-loop (vacuum condensates)
techniques respectively. These include, among
other things, a technique to include QED gauge
insertions in arbitrary momentum-dependent vertex
functions for the e.m. self energy and form factors.
Whereever possible, a parallel treatment is
provided for CIA and CNPA for a comparative
view of the two distinct MYTP-governed BSE
formalisms, but some technical problems with
CIA'® often lead to a preference for CNPA. Some
calculational details on the form factor plus
normalization are given in Appendix A.

Sect. 6 gives a general method for triangular
quark-loop integrals applicable to a large class of
transition amplitudes for 3-hadron coupling’, to
bring out a major simplifying feature of the
resulting structure arising out of a ‘cancellation’
mechanism between the 4D quark propagators and
the 3D D-functions in the hadron-quark vertices of
the two-tier BS formalism'®. This prevents free
propagation of quarks by eliminating the Landau-
Cutkowsky (overlapping) singularities'®".

Sects. 7,8 give results for self-energy diagrams™

and of vacuum condensates''”°, requiring two and
one Si-functions respectively. The self-energy
calculations in Sect. 7 are illustrated with SU(2)
mass splittings of the pseudoscalar mesons™ A
general method to deal with QED gauge
corrections to the e.m. mass differences is outlined
in Appendix B. For the vacuum condensates'',
Sect. 8 offers a new gauge invariant technique for
loop integrations, on the lines of Schwinger®. We
reiterate that such predictions are intimately linked
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with spectroscopy via the infrared structure of the
gluon propagator' .,

The third part Sects. 9-11 deals with the BSE
formalism for a 3-quark baryon, with emphasis on
the ggq structure taking into view that m most
approaches, including other BSE models™, the
dynamical treatment has often relied heavily on the
quark-diquark approximation™ 89011 which
amounts to a “freezing” of the 3-body degrees of
freedom. It has also been recognized in the
literature that with a 3-body BSE treatment to the
baryon, there are some technical problems
associated with the status of the spectator*. In the
Two-tier BSE model this problem has been
regularly addressed at various stages of its
developmentm’m’zg. The 3-quark dynamics is
described in three Sections as follows:

Sect. 9: A panoramic view of the baryon
dynamics as a general 3 body problem with full
permutation symmetries*’ in all the relevant d.o.f.’s
incorporated; a detailed correspondence with the
quark-diquark model; Complex HO techniques for
the ggg problem*; problems of 3D reduction and
4D reconstruction for ggg BSE"’; and fermionic
BSE with gluonic interactions in pairs %,

Sect.10: Green’s function techniques for 3D
reduction of the BSE, and reconstruction of the 4D
qqq wave function”’: see Table of Contents.

Sect. 11: A summary of the relativistic
fermionic ¢gqq BSE with the same gluonic
propagator as employed for the gq problem: the
3D reduction” of the ggq BSE is on closely
parallel lines to the two-body case®. The derivation
of an explicit mass formula is greatly facilitated by
taking a complex HO basis*®. However loop
techniques for baryonic amplitudes are not
included for explicit presentation.

2 NJL Model: Recent Developments (Nanibu)

The precursor of the NJL-model’ was the ‘“Nambu-
Goldstone’ picture of the pion as a zero mass
particle arising from the chiral non-invariance of
the vacuum®. This view of the pion received
quantitative shape at the hands of Gell-Mann and
Levy'® who started with a SUQ) x SUQ)
symmetry of the Lagranjian (termed SU(2) o-
model) involving an /=1 pseudoscalar © and an / =
0 scalar o field. Due to spontaneous symmetry
breaking of the vacuum, the o-field shifts to a
minimum < ¢ > = —f; # 0, while the pion field
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remains unshifted (< 7 > = 0) and stays at zero
mass.

The Gell-Mann Levy o~model set the stage for
modern chiral theories, stimulated by an important
paper due to Skyrme*”, to describe pseudoscalar
mesons and baryons through a solitonic picture
wherein baryons are generated as bound states of
weakly interacting mesons. These models were
developed in the QCD context wherein, in the large
N limit, QCD becomes equivalent to a non-linear
meson theory. The underlying logic is that although
the QCD Lagrangian has chiral symmetry for
massless quarks, this symmetry is spontaneously
broken, giving rise to massless pions, etc. These
methods give rise to effective Lagrangian
descriptions at the tree level’, but will not concern
us any further in this article.

The NJL-model* on the other hand, which is the
very raison d’etre of this article, is characterized by
chiral symmetry breaking in a dynamical fashion,
and alows a formally composite structure of the
pion, in company with other hadrons. This is a
distinct advance over the elementary field picture
of the pion“"w, and facilitates a more natural
understanding of many of its observational
properties (form factor, L-excited states, etc.). A
short summary of the NJL model follows.

2.1 Outline of NJL Model
The NJL Lagrangian® may be written in two
different ways:

Ly =Ly+Li=(Ly+L)+(L=L)=Lg+L};...(1)

where Lo= —y .0y and L; (see below) are chirally
invariant, but L=-myy which stands for the

observed fermion, is not, and represents the
symmetry breaking effect. The interaction term L,
is given by

L =g (@)’ - @ysw)'1=—g [Wiy,y)*

. V)
~(Fiy,vsw)’1/2

The rearrangement in eq. (1) is meant to diagonalizg :

Ly, and treat L as a perturbation; this implies a
redefinition of the vacuum by introducing a
complete set of ‘quasi-particle’ states which are
eigen states of Lg. The L, is now determined from
the requirement that L shall not yield additional
self-energy effects. This gives the standard
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Schwinger-Dyson Equation (SDE) for m in terms
of the loop self energy

F(p. A)
m?+p?—ie
.. 3
where F(p, A) is a cut-off factor. The trivial
solution m=0 corresponds to the usual chiral
invariant vacuum characteristic of perturbation

theory. The non-trivial solution m=my;; is found
from

m= 2 (i74p+m=0)=—8img0 f(2ﬂ)'4d4p

(2m)* ==8ig, [d*p(m’ +p* =ie)" F{p, A)...(4)

in terms of go and A. It is also called the ‘gap’
equation, and is based on a shifted vacuum Q,
which is chiral non-invariant. With a fixed Lorentz-
invariant cut-off A in Euclidean space (and F=1),
eq. (4) reduces to

2nt /gy = A —m* In(A2/m® +1);

0<2rm’gy' <1

The two vacuua £, (chiral invariant) and £2,, (non-
invariant) are fully orthogonal to each other , and
correspond to two different worlds. £2,, , with the
lower energy, is the true ground state. The chirality
operator defined as y=/{y,wd>x commutes with
the original hamiltonian H, with vacuum £2,, but
not with H,, with vacuum £2,.. However y has no
matrix elements connecting the two worlds. £, and
£, a sort of superselection rule. Now the
following paradox arises: The y-conservation in the

£ basis implies the existence of a conserved
current

juS =il-i/_')/# 'YSVI; a,ujps =0

...(5)

. (6)

On the other hand, for a massive Dirac particle in
the €2, basis

O, WY, Ys¥W)=2myysy #0 - (D
To reconcile these two statements, ;he x-current
operator between physical states suffers radiative

corrections w.r.t. the simple term iy, ¥ so that, on
grounds of Lorentz invariance

[ 2mysk
<pbwb>=Fw5uunPnn+ k;"]ﬂpx

(k‘:p—p’) . (8)
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Thus the real fermion (quark) is not a point particle
since its y-current has an anomalous % term. This
in turn implies a pole at k>=0 for the 75 term,
corresponding to a zero mass pseudoscalar, whose
natural identification is the pion.

The pion which arises here as the lowest gg

bound state, has clearly the nature of a collective
excitation, thus also implying the existence of
higher excitations in the same package, something
which the elementary field model could not
provide. Indeed®™ the BS amplitude ¥ for the
bound state composite is

¥ (x,y) =< O[T (¥ ())¥ ())| B> C)

which is related to the vertex function I in
momentum space as

Y (P, P)=Se(q+P/2)I'(q,P)Sc(q—P/2)

... (10
where the individual quark momenta p;,=P/2 t g
in terms of the total (P) and relative (gq) 4-
momenta. For the pseudoscalar state in question,
the BSE for I (py, p2), viz.,

(27r)41“(q,P)=2ig0y5 Id“ q'Tr[ySSF(q’-;. P/2)
I'(q’, P)S:(g'—P12)]
.. (11

which for P,=0, has a self-consistent solution
I'=Cv, C being a constant, provided g, satisfies eq.
(4), which is just the ‘gap’ equation (SDE) for the
mass m.

This crucial result of the NJL model, which
shows that in the chiral limit P,=0, the BSE and the
SDE are identical, is a direct consequence of the -
invariance of the input Lagrangian. It also tells us
that in the P,=0 limit, the gg vertex function and

the quark mass function m have the same (constant)
structure. The constancy of each is of course a
consequence of the contact interaction, but the
basic equality of these two quantities is also valid
for an extended 4-fermion chirally invariant
Lagrangian such as a vector mediated one®.

The true significance of NJL was realized in the
QCD context”, through the study of non-
perturbative solutions of SDE as a DBxS
mechanism for more general 4-fermion
couplings*®****, including reformulations of the
bag model®, and renormalization  group
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equations”®. And it was eventually subsumed in
the generalized BSE-SDE formalism®"', which is
of course the subject of this review.

2.2 BCS Mechanism, Mass Relations, SYSY, etc.

During the last decade, Nambu™ has abstracted
the findings of a new symmetry from BCS-type
theories of dynamical symmetry breaking (due to
short-range attraction), resulting in a new vacuum
state. The residual symmetry in question is a
remarkably simple relation among the fermion
mass m, and the composite boson (7, 0) masses as
low energy modes in the new vacuum, viz.,

Mz:mp:Mg=0:1:2). In more complex
formulations the fermion mass m; and the
(composite)  boson mass (M;, M;) obey the

generalized relation M +M =4m}. The low
energy properties of the system can be represented
by an effective Hamiltonian like in the o-model*®
where the coupling constants are so related as to
yield such mass relations automatically.

Coming to the SUSY aspects, the essential thrust
of Nambu’s discovery™™ is a hidden SUSY in the
BCS mechanism, manifesting via two physical
scenarios: 1) a cascading chain of symmetry
breaking (tumbling); ii) a bootstrap mechanism in
which the symmetry sustains itself among a set of
effective fields without the need to refer to a
substructure. The main ideas are the following.

A BCS mechanism has two energy scales: 1) The
high energy scale corresponds to the force
responsible for the formation of Cooper pairs; its
analogue in particle physics is the pion decay
constant f;. ii) The low energy scale is the pairing
energy, and one of its manifestations is the quasi-
fermion mass m, which corresponds to the
constituent quark mass m,=my,.. More explicitly,
there are both fermionic and bosonic excitations in
the low energy scale: the quasi-fermion (my), the
Goldstone boson (pion) and the Higgs (sigma)
boson. In the simplest BCS (NJL) mechanism, their
masses are in the ratio m; : my: mg=1:0:2. This
low energy picture can also be articulated by an
effective  Ginzburg-Landau-Gell = Mann-Levy
Hamiltonian involving these fermion and boson
fields with Yukawa couplings and a Higgs
potential. Their characteristic parameters are the
‘high-energy’ sigma-condensate ¢ ~f; and the
‘low-energy’ dimenstonless Yukawa coupling
constant G=mg/c. To satisfy the mass ratio
constraints, the Higgs self-coupling must be equal
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to G The non-relativistic analogue of the

condensate ¢ is YN /2 where N is the density of

states of the constituents at the fermi surface. The
origin of the mass scales is a more dynamical
question depending on the SUSY Hamiltonian
structure, for a derivation of which the interested
reader is referred to>™*.,

The physical scenario envisaged by Nambu for
this broken SUSY structure is two-fold. The first is
a cascading hierarchy of symmetry breaking
(‘tumbling’) which in particle physics®® means
something like the following. Suppose a symmetry
breaking at a high energy level gives rise to a &
boson at the low energy scale. The latter, being a
scalar, will induce attraction between the quasi-
fermions, which in turn may generate a second
generation symmetry-breaking, and so on.
According to Nambu, a similar example of
tumbling also exists in nuclear physics. Thus the o-
boson, which is a fall-out of chiral symmetry
breaking and quark-mass generation in the bulk of
nuclear binding, also causes nuclear pairing which
can be estimated quite accurately’™.

The second scenario®™ is the theoretical
possibility of a (Chew-like) bootstrap, not at the
hadron, but at the quark-lepton level, on the
assumption that the t'Hooft self-consistency
condition’'” is satisfied between these two levels.
This leads to the following bounds on the r-quark
and Higgs masses: m,>120 GeV; m;>200 GeV.
This and other details may be found in ref. [50e].

3 Gauge Theoretic Formulation of SDE-BSE

As seen in Sec. 2, the simple NJL-model*
succinctly articulates the DByS mechanism which
gives rise to dynamical quark-mass generation on
the one hand, and a Nambu-Goldstone*® realization
of the massless pion on the other. Another result is
the formal identity of the mass-gap equation (SDE)
with the homogeneous BSE for the vertex function
for a massless pseudoscalar gg composite. We are

now in a position to pursue the same logic to give a
formal theoretical basis to a gluon-exchange
(vector)-like 4-fermion interaction (to simulate
QCD effects) in the input Lagrangian by deriving
frm it an interlinked BSE-SDE framework™'
which is the backbone of this article. In this
respect, we shall skip an alternative non-
perturbative treatment of the BCS-NIL pairin
mechanism by the Bogoliubov-Valatin method™

AN MITRA

which is not easy to adapt to.a Lorentz-invariant
formulation.

3.1 Minimal Effective Action: SDE & BSE

We outline a treatment due to Munczek®? on the
derivation of the equations of motion for composite
fields. Consider an action functional

S = [dx[§ (-y.9— M)y +PA(x) +hcl

|
—.EJ.J.dXdyZ\G\ (X - y) JA\- (X) Js(y)

.. (12)
where A(x) is an external source, G, is the
propagator of the exchanged boson, and J(x) =
¥ (x) I'; w(x) is the current function. This form is
approximately derivable from the standard
generating function for non-abelian QCD with
EziyyﬁJZ, when G, becomes the gluon propagator.
The NIJL-type contact interaction corresponds to
G.=6"(x—y), but the treatment is more generally
valid for non-local interactions too. The standard
approach is to introduce bilocal boson fields>
which for several types of spin excitations has the
form®

nx, =X T yx)Iy(y) G (x—y) .. (13)

where nhas a 4x4 matrix form. With a second

auxiliary field B (x, y)*>, one gets the following

generating functional

Z= N"' [ DyDYDNDB expliS (v, ¥, B,1)
+i [dx(FA+ A )]

$=[dx@(-y.0~M)y ~Tr [drdyn(x,y)

_ 1

x[B(y,x)—ur(y)w(x>]+5Trﬂdxdy ... (15)
2.G,(x~y)B(x~y) T, B(y, 0T,

... (14)

When the functional integration is carried out over
n (x, y), it gives a &-function §B(y, x)~w(y) 7 (x)].
Subsequent integratioin over B gives eq. (12). After
this check, the order of integration may be reversed
so as to integrate out over ¥ and ¥ , and yield the

effective action

S =Tr[-iln(~yd~n)-nB+BB/2];

— ... (16)
B(x,y)=Z.G (x-y)[ B(x, y)I;
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Here 1, B, (y.0+M), are matrices in spinor, internal
symmetry, and configuration space indices, so that

1B = [dzn(x, 2)B(z, y) =< xfnB|y >

.. (1D
Tr{nB)=Tr [dx < xjnB|x >
Varying S w.r.t. B and 7] gives
n(xy)=Bx,y) B=it-yd-M-m" o

=i(-y9~-M-B)™

Replacing B in (18) by the vacuum expectation
value <B>=iSy, gives the SDE

Sp=(-yd-M—iSg)"
=3.G (x- NI Sp(x=I;

.. (19)

whose detailed form is

(~yd-M)Sp(x—y)—i[deZ G, (x~2) 20
xI.Sp(x—)T,Sp(z=y)=8*(x-y)

Next, for the quantum corrections to B, write

B(x,y) =iSp(x=y)+$(x,y) .. @)

and obtain the homogeneous equation

inf

i Y Sp(@Sp)" =iS;@Ss +Sp9;
1
¢ (x,y)=2,G (x=9x, NI

.. (22)

If the non-linear term in ¢ in (22) is neglected, the
result is the homogeneous BSE

¢(x,y)=i[[dedtS e (x~2)Z,G(z-DT9(z~1)
XI'Set—y)

... (23)
which must be solved along with the SDE (19) for
the propagator. Note that the kernel of the BSE is
G,, i.e., the same form factor as appears in the input
Lagrangian itself. This is the basic logic of the
interplay of the SDE with the BSE.. Next we
describe this interplay in momentum space for the
case I, =iy, A,/2, to bring out the Nambu-

Goldstone nature of a pseudoscalar state (¢
proportional to %), one in which the Ward identity
plays a crucial role.
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3.2 Self-Energy vs Vertex Fn in Chiral Limit

The formal equivalence of the mass-gap
equation (SDE) and the BSE for a pseudoscalar
meson in the chiral limit* will now be
demonstrated for an arbitrary confining form D(k)
(not just the perturbative form k™%). Denoting the
mass operator by X(p) and the vertex function by

TI'y;, the SDE after replacing the color factor A,.4,/4
by its Casimir value 4/3, reads as

ﬂp)%i(zn)““ [d*kD,, k)Y, S5 (p-K)7, ;

D,,(k)=(8,, —k,k, 1k*)D(k) .. (24)

Syis the full propagator related to the mass
operator X (p) by

Z(p)+iy.p=S:(p)= A(pH)liy.p+m(p*)]
...(25)

thus defining the mass function m(p®) in the chiral

limit m.=0. In the same way the vertex function

I'i{q, P) for a gg hadron (H) of 4-momentum P,

made up of quark 4-momenta p, ,=P/2 * q satisfies
the BSE

I'y(q.P) =—§i @n)™* [d*q'D,,(q-4")7,S¢
X(q'+PI2DIy(q, P)Se(q'— P12y,
... (26)
The complete equivalence of (24) and (26) for the
pion case in the chiral limit P, — 0 is easily
established. Indeed, with the self-consistent ansatz
I'y=vs1q), eq. (26) simplifies to

F(@)=5i@n)™ [d%y,S; k-9l =k

X S;’ (q - k)Yv
.. (27
where the replacement g'=g— has been made.
Substitution for S’ from (25) in (27) gives

Ir'(p) =—%i(27t)" [d*k
Dk)I'(p—k)
x 2 2 2 2
A*(p=k)Ym“((p-k))+(p—k)")

... (28)

where we have relabelled .q — p. On the other hand
substituting for S (25) in (24) gives for the mass
term of X' (p) the result
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AP Im(p) == Si@m) [d'

D(k) A(g)m(q"*)
A @(m* (g +4?)

... (29)

where ¢'=p—%. A comparison of (28) and (29)
shows their equivalence with the identification
r (q)=A(q)m(q2), i.e. the identity of the vertex and
mass functions in the chiral limit provided A=1.
This last is a consequence of the Landau gauge for
Dy, in eq. (24), since in this gauge, the function
A(p) does not undergo renormalization™, so that it
may be set equal to unity. Note that this result is
more general than in the contact type NJL model,
since both quantities are now functions of
momentum due to the extended nature of the 4-
fermion coupling caused by the gluonic propagator
D(k).

3.3 X(p) vs I' (g, P) via Ward Identities

The connection between £ (p) and I (g, P) away
from the chiral limit (P,=0) is achieved via a
systematic use of the Ward identities for vector and
axial vector types. The following derivation due to
ref. [24a] may be instructive for applications.
Consider some approximation scheme (based on a
BSE with a specified kernel) to determine X (p) via
eq. (24), so as to obey the Ward-Takahashi
identities. e.g., the quark-gluon vertex function I
satisfies the inhomogeneous equation

- 4 . - ’, ’ ’
L=V —5iem “[d*q'y,Sr(q’+PI2)
xI,S;(q¢'~P12)y,D,,(q-4)

.. (30)

Multiplying (30) by P; and using the WT-identity

P.I',(q,P)=S;"'(g+P/2)-S;"' (g-P/2)

... 31
gives the result

L1 p kigdd
S.(PI2+q) S,(g-P/2) '~ 37@n)?*
XDyv(q—q,)YV [SF(q’_P/Z)_SF(q’+P/2)]yy

... 32
which is entirely consistent with (24) when one
uses the definition (25) for X (p). In a similar way,
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for the axial vector I's, the corresponding BSE
obeying chiral symmetry is

. 4 _ , ’
Fis (g, Py=iv,y5-5i2m) *[d*qD,,(q-9)

xY,Sp(q + P/2)I]5(q',P)SF(q'—P/Z)}/# ... (33)

It is again consistent with eq. (26) and the
definition (25) for X (p) if one uses the axial WT
identity

—iPiT;5(q.P)= 55" (q+PI2)ys +YsS5 ' (g—P/2)

... (34)
The LHS of (34) must now be identified with the
pseudoscalar vertex function I's (p . P), so that the
corresponding RHS gives its full structure that is
consistent with gauge invariance, viz.,

T, (q.P)ys =iy.(g+ PI2)A(g+P/2)~iy.(q—P/2)
x A(g—P/2)+B(g+PI2)+B(g—P/2);

B(p)=A(p)m(p*) ... (35)

This equation checks with (29), in the Landau
gauge (A=1), in the chiral limit P,=0, but now
provides the corrections for P, # 0 as well. In the
Landau gauge (35) simplifies to
Iys=iy.P+m(g+P/2)+m(g—P/2) ... (36)
In recent years, the determination of vertex
functions via WT identities has become a fairly
standard practice, although it is not always the
most convenient method in practice for
incorporating gauge-invariance within a given
(semi-phenomenological) framework. For the
present report, we shall have occasion to
incorporate QED gauge invariance in arbitrary
momentum-dependent form factors, and the
method will be explained in Sec. 5, and in more
detail in Appendix B, in connection with the P-
meson e.m. self-energy calculations to be given in
Sec. 7.

4 3D-4D SDE-BSE Formalism Under MYTP

As per the programme outlined in Sect. 1, we shall
from now on specialize to a more practical form of
SDE-BSE framework born out of 3D support
(defined covariantly) to a vector-exchange
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mediated 4-fermion coupling at the input
Lagrangian level with ‘current’ (almost massless)
quarks. The vector exchange simulates the effect of
a gluonic propagator, encompassing both the
perturbative and non-perturbative regimes, and thus
preserves the chiral character of the input coupling.
The derived SDE and BSE, at Sec. 3, automatically
incorporates DByS and hence generates the
dynamical mass function m(p) whose low
momentum limit m(0) gives the bulk contribution
to the it constituent mass m,,,,, while the current
mass m.,,, for uds quarks (that enter the input
Lagrangian) gives a small effect. This last is in
keeping with Politzer’s Additivity principle®, viz.
M. ons=m ,+m(0), providing a rationale for the
quark masses usually employed in potential
models'>.

Now to implement the covariant 3D constraint of
MYTP" on the BSE kernel (which stems from one
on the input Lagrangian), we shall consider two
methods in parallel for a direct comparison: i)
Covariant Instantaneity Ansatz (CIAY'®Y i)
Covariant Null-Plane Ansatz (CNPA)*. The
latter®' gives a formal ‘covariance structure’ to an
earlier pragmatic formulation with essentially the
same content'’, while the former'® is already
covariant as it is. We shall now outline a connected
account of the 3D BSE reduction for both CIA and
CNPA types (with scalar followed by fermion
quarks), to bring out the structural identity of the
resulting BSE’s for a qg system. This will be
followed by a reconstruction of the 4D BS vertex
functions for both types'® which will serve as the
basic framework for 4D quark loop calculations in
the subsequent chapters.

4.1 3D-4D BSE Under CIA: Spinless Quarks

To keep the contents fairly self-contained, we
start with a few definitions for unequal mass
kinematics in the notation of ref. [16, 10b]. Let the
quark constituents of masses m;, and 4-momenta
D12 interact to produce a composite hadron of mass
M and 4-momentum P,. The internal 4-momentum
q, is related to these by

Py =ty ,Ptq; PP =-M?

.. (37
2m,, =1£(m} —m})/M?

These Wightman-Garding deﬁnit:ions56 of the
fractional momenta r, , ensure that g.P=0 on the
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mass shells m” + p2 =0 of the constituents, though
not off-sheil. Now define §=gq, —q.PF, / P? as the

relative momentum transverse to the hadron 4-
momentum P, which automatically gives §.P=0,

for all values of , . If the BSE kernel K=K (4,4") ,
this is called the “Cov. Inst. Ansatz (CIA)”'® which

accords with MYTP"’. For two scalar quarks with

inverse propagators 4., .this ansatz gives rise to
the following BSE for the wave fn ®(g, P)'*'®.

i(2m)* A4,4,®(q,P) = [d*q’K(3.§")P(q’, P);

2 2
A,=m,+p, ... (3%)
The quantities m,, are the ‘constituent’ masses
which are strictly momentum dependent since they
contain the mass function m(p)”, but may be
regarded as almost constant for low energy

phenomena m(p) =m(0). Further, under CIA,
m(p)=m(p), a momentum-dependence which is
governed by the DBYS condition* (see below).

To make a 3D reduction of eq. (38), define the
3D wave function ¢(g) in terms of the longitudinal

momentum Mo as

(= jMdO'di'(q, P); Mo =Mq.P/ P? ... 39
using which, eq. (38) may be recast as

. 4 _ 3 Az A AP AL

i(2m)* AAP(q. P) = [d°§TK (4,49 - @0)

d*q’'=d’§ Mdo’

Next, divide out by A4,4; in (40) and use once again
(39) to reduce the 4D BSE form (40) to the 3D
form

@2r)’D(@)9(@) = [d’TK (3.4

2in _ Mdo . (4D)
D) ' A4,
Here D(gq) is the 3D denominator function

associated with the like wave function ¢(g). The

integration over do is carried out by noting pole
positions of A, ; in the o-plane, where

Al,2.=w12,2 “Mz(';ll,z to)% w12,2 = m12.2 +§*... (42)
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The pole positions are given for 4, ;=0 respectively
by

M (o +my) =t Fie; M (o -m,) =10, Fie

... (43)
where the () indices refer to the lower/upper
halves of the o-plane. The final result for D(g) is

expressible symmetrically's.

. A, 2 o my
=M _D,(§); —=—++—% . (44
D(q)=M ,Dy(g) M, o o 44
1 .~ a2 /'L(m,z, m%, M2)
3 Do@=4 4M? ... (45)

A=M*=2M*(m} +m})+(m} —m>)*

The crucial thing for the MYTP is now to observe
the equality of the RHS of eqs (40) and (41), thus
leading to an exact interconnection between the 3D
and 4D BS wave functions:

)= AAD(q, p):ﬂg(i) ... (46)

Eq. (46) determines the hadron-quark vertex
function I{g) as a product D¢ of the 3D

denominator and wave functions, satisfying a
relativistic 3D Schroedinger-like equation (41).
Some comments on the entire BSE structure are
now in order. The °‘two-tier’ character of the
formalism is seen from the simultaneous
appearance of the 3D form (41) and the 4D form
(40), leading to their interconnection (46). The 3D
form (41) gives the basis for making contact with
the 3D spectra'”, while the reconstructed 4D wave
(vertex) function (46) in terms of 3D ingredients D
and ¢ enables the evaluation of 4D quark-loop
integrals in the standard Feynman fashion®’. Note
that the vertex function I'=D¢/ (2ix) has quite a
general structure, and independent of the details of
the input kernel K. Further, the D-function, eq.
(44), is universal and well-defined off the mass
shell of either quark. The 3D wave function ¢ is
admittedly model-dependent, but together with
D(g), it controls the 3D spectra via (41), so as to

offer a direct experimental check on its structure.
Both functions depend on the single 3D Lorentz-

covariant quantity §> whose most important

property is its positive definiteness for time-like
hadron momenta (M 2>0).
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4.2 CNPA for 3D-4D BSE: Spinless Quarks

As a preliminary to defining a 3D support to the
BS kernel on the null-plane (NP), on the lines of
CIA", a covariant NP orientation* may be

represented by the 4-vector n,, as well as its dual

2

i, obeying the normalizations n’=#’=0 and

u’
n,n =1. In the standard NP scheme (in euclidean
notation), these quantities are n=(001; —z')/\/E and
n=(00L;i)/ V2, while the two other perpendicular
directions are collectively denoted by the subscript
1 on the concerned momenta. We shall try to
maintain the n-dependence of various momenta to
ensure explicit covariance; and to keep track of the
old NP notation p. = py * ps, our covariant notation

is normalized to the latter as p,=np V2 ;
p-=-—n. p\[2_ , while the perpendicular components
continue to be denoted by p, in both notations.

In the same notation as for CIA'®, the 4%
component of the relative  momentum
q=m,p, —mp,, that should be eliminated for
obtaining a 3D equation, is now proportional to
g.=F.q, as the NP analogue” of P.gP/P’ in
CIA'S, where P=p;+p;, is the total 4-momentum of
the hadron. However the quantity g-q,n is still only
q., since its square is g>-2n.q7.q, as befits g}
(readily checked against the ‘special’ NP frame).
We still need a third component g3, for which a
first guess is zP, where z=nqg/n.P. And for
calculational convenience we shall need to
(temporarily) invoke the ‘collinear frame’
which amounts to P, . g,=0, a restriction which
will be removed later by a simple prescription of
‘Lorentz completion’. Unfortunately the definition
4, =(q,,,zP,) does not quite fit the bill for a

covariant 3-vector, since a short calculation shows
again that §°=q>. The correct definition is seen
as  gy=7Puny P,=P.n, giving
G*=¢> +7°M?, as required. We now collect the

where

following definitions/results:

q9,=9-q,n,4=q, +xPn; x=q.n/ P.n;P* =—-M?;
4,.F,=n.(q,P);g.n=q.n; §.n=0; P_.q, =0;
P.gq=Pq.n+P.nq,; P.Gg=Pgq.n; §*=q> +M?*2*
... (47
Now in analogy to CIA, the reduced 3D BSE
(wave-fn @) may be derived from the 4D BSE (38)
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for spinless quarks (wave-fn @) when its kemnel K
is decreed to be independent of the component g,
ie., K=K (4,9, with §=(q,,P,n), in accordance
with the TP'® condition imposed on the null-plane
(NP), so that d*q=d?q,dg,dgq,. Now define a 3D

wave-fn  ¢(q) =] dq,®(q), as the CNPA
counterpart of the CIA definition (39) and use this
result on the RHS of (38) to give
iQr)'®(q)= 47" A3 [4§K(§.§)9(@G) ... 48)
which is formally the same as eq. (40) for CIA
above. Now integrate both sides of eq. (48) w.r.t.
dg, to give a 3D BSE in the variable g:

(2n)' D,(9) $(4)=[d’q dqgs K(§,3)9(q) ...(49)

which again corresponds to the CIA eq. (41),
except that the function D, (¢) is now defined by

[dq, AT AZ'=2riD;' (§) ... (50)
and may be obtained by standard NP techniques®
(Chaps 5-7) as follows. In the g, plane, the poles of
A, > lie on opposite sides of the real axis, so that
only one pole will contribute at a time. Taking the
Ay-pole, which gives

5y =Mt = mP)’

.. (81
myP.n—q.n G

2q, =

the residue of A; works out, after a routine
simplification, to just 2P.q=2P.nq,+2P.q.n, after
using the collinearity condition P, .q, =0 from
(47). And when the value (51) of g, is substituted
in (50), one obtains (with P,P . n=—-M %2):

. o AMEm? m?)
D (§)=2P.n|g* - 212727
. (9) n( I

c}zzqi+M22 ;2=q.n/P.n ... (52)

Now a comparison of (48) with (49) relates the 4D -

and 3D wave-fns:
2id(q)=D,(§) A7 A3 ¢(G) ... (53)

as the CIA counterpart of (46) which is valid near
the bound state pole. The BS vertex function now
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becomes I' =D,x¢/(2xi). This result, though
dependent on the NP orientation, is nevertheless
formally covariant, and closely corresponds to the
pedagogical result of the old NPA formulation®,

with D, & D, .

A 3D equation similar to the covariant eq. (49)
above, also obtains in alternative NP formulations
such as in Kadychevsky-Karmanov®® (see their eq.
(3.48)). Both are ‘covariantly’ dependent on the
orientation n, of the NP, ie. have certain n-
dependent 3-scalars, in addition to genuine 4-

scalars. However, the independent 4-vector n,

which has a dual interplay with n, in the above
CNPA formulation, does not seem to have a
counterpart in ref. [38]. Secondly this manifestly
covariant 4D formulation needs no 3-vector like n,
or explicit Lorentz transformations, as in such
alternative NP formulations®. As to the ‘angular
condition’, a question first raised by Leutwyler-
Stern®®, no special effect has been made to satisfy
this requirement, since the very appearance of the
‘effective’ 3-vector g, in the 3D BSE in a

rotationally invariant manner is an automatic
guarantee (in the sense of a ‘proof of the j)udding’)
of the satisfaction of this condition’™ without
further assumptions.

A second aspect of the above 3D-4D BSE under
CNPA (which allows for off-shell momenta) is that
it has no further need for ‘spurions’® (to make up
for energy-momentum balance due to on-shellness
of the momenta in such formulations®®, so that
normal 4D Feynman techniques suffice, as in the
old-fashioned NPA formulation®*. However, to
rid the physical amplitudes of n,dependent terms
in the external (hadron) momenta, after integration
over the internal loop momenta, one still needs to
employ a simple technique of ‘Lorentz-completion’
(to be illustrated in Sec. 5 for the pion form factor
calculation) as an alternative to other NP
prescriptions’** to remove n-dependent terms.

A more succint comparison with other null-plane
approaches concerns the inverse process of
reconstruction of the 4D hadron-quark vertex, eq.
(53), which has no counterpart in them’®, as these
are basically 3D oriented. Thus in ref. [38], the
nearest analogue is to express the 3D NP wave .
function in terms of the 4D BS wave function (see
eq. (3.58)38), but not vice versa. This problem of
‘loss of Hilbert space information’ inherent in such
a process of reconstruction, has been discussed
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recently in the context of the ggq problem®’; (see
Sec. 10 for details).

4.3 Fermion Quarks with QCD-Motivated BSE

We are now in a position to give a corresponding
description of the 3D4D BSE for fermion quarks,
for both CIA and CNPA cases taken together, just
as for spinless quarks above. The 4D BSE for
fermion quarks under a gluonic (vector-type)
interaction kernel with 3D support has the
form'™®;

i)Y (P,q) = Sp\(P)SF2(P)) [d* K Q.G W (P.q);

K=F,iyyiy>?V(4.9) .. (54)
where Fj, is the color factor A, .A,/4 and the V-
function expresses the scalar structure of the gluon
propagator in the perturbative (o.g.e.) plus non-
perturbative regimes. The “hat’ notation on the
momenta covers both CIA and CNPA cases
simultaneously, where the longitudinal component
g, is defined for the CNPA case as g3, =zF,n,,

with P, =P.7. The full structure of V (used in
actual calculations®®*’) is collected as under, using

the simplified notations k for g—’, and V (k) for
the V fn:

. .3 o )
V(k)=4no /k* +Z(ﬂ);(7 de[’2(1+4Aomlm2M>2r2) 12

~Cylagle™*™; ... (55)
wjﬂ = 4M>’;11’;’2wgax M2);
@ (0= — _in(M, /A" - (96)
33-2n,
iy, =[x (ml —my)I M*1/2;
M, =Max(M,m, + m,);
Co=0.27; A;=0.0283 o (57)

And the values of the basic constants (all in MeV)

28,
are 40

w, =158; m,, =265; m =415; (58)
m, =1530; m, = 4900.

The BSE form (54) is however not the most
convenient one for wider applications in practice,
since the Dirac matrices entail several coupled

integral equations. Indeed, as noted long ago'™®, a
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considerable  simplification is effected by
expressing them in ‘Gordon-reduced’ form,
(permissible on the quark mass shells, or better on
the surface P.q=0), a step which may be regarded
as a fresh starting point of our dynamics, in the
sense of an ‘analytic continuation’ of the ymatrices
to ‘off-shell’ regions (i.e., away from the surface
P.g=0). Admittedly this constitutes a -conscious
departure from the original BSE structure (54), but
such technical modifications are not unknown in
the BS literature'™ in the interest of greater
manoeuvreability, without giving up the essentials,
in view of the “effective” nature of the BS kernel
(see Subsection 1.6).

’ll(;hs ‘Gordon-reduced’ BSE form of (54) is given
by ™

A A, (P, q)=~i2m) " Fy[d*q V"V

xV(§.§) P (P, q');
... (59)
where the connection between the Y¥- and &-
functions is

Y(P,q) = (m —iy®.p)(m, +iy®. p,) ®(P,q);

2=, Ptq
... (60)
VD =m0 @
V;Ei) = Piu + pxly +io-;(li3 (piv - p:’v)
Now to implement the Transversality

Condition" for the entire kernel of eq. (59), all
time-like components o, ¢ in the product V.V
must first be replaced by their on-shell values.
Substituting from (61) and simplifying gives

(py+P)-(pr + P =i, P = (G+§)" )
~2(ry, —m,)P.(q+q)+"spin—Terms",

"Spin Terms"=—i(2imP+§+§), 0% k,

+i2m,P-4-q), af}v’lzv +o ol
... (62a)
This is identical to eq. (7.1.9) of ref. [40], via the

correspondence § < q,.4,,4;(=4,/P,), so that

both CIA'® and CNPA*' have formally the same
structures as the ‘old-fashioned’ NPA®, and hence
give identical predictions on the 2-body spectrals.
The 3D reduction of eq. (59) now goes through
exactly as in the spin-O case, eqs. (38-44), so that
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without further ado, the full structure of the 3D
BSE can be literally taken over from ref. [40]-
Chap 7 (derived under old-fashioned NPA). In
particular, for harmonic confinement, obtained by
dropping the Ao term in the ‘potential’ U(r) of (59)
(a very good approximation for light (ud) quarks),
the 3D BSE works out as

D(§)9(g) = w}; D(§)(9); ... (63)

Ay o oa Dy = a
D,(§)¢(§) = —A—J—wj,; D(§) ¢(§); . (64)
for the CIA and CNPA cases respectively, where
D, is given by (52) and D(q) by (44). The other
quantities retain the same meaning for both. Thus

D(§) = 4mpi,M*(V +Cyl 0}) +4G°V? +84.V
+18-8JS+(4C,/w}) >
... (65)
For the spectroscopic predictions on ¢g hadrons,

vis-a-vis data, the reader is referred to ref. [28]. For
algebraic completeness however, the (gaussian)
parameter 3 of the 3D wave function
0(§) =exp(—G*/2B%), which is the solution of

(63-64) for a ground state hadron*** is:

gt =B iy M2 g o (M2)
[1-8Cymyma, (MH]<o >’
<o > =1+24A, (M )* | B?

... (66)

Note that 8 is a 4D invariant quantity, independent
of n,, etc. (For an L-excited hadron wave function,
see ref. [40]). The full 4D BS wave function ¥ (P,
q) in a 4x4 matrix from®™ is then reconstructed
fr_omw ’(65494)—(60) as in the scalar case, eq. (46),
viz.,,

Y (P.q)=Sc(p) T (PYpSr(=py); 67)
C(@=Ny[LP/MID@)¢@/2ix
where 7 is a Dirac matrix which equals % for a P-
meson, Iy, for a V-meson, iy, ¥ for an A-meson,
etc. The factors in square brackets stand for CIA
and CNPA values respectively. Ny represents the
hadron normalization given by (see Appendix A):

Ny =20m) [d'§IM ,;; M19*(§)[(1+6m* I M?)
X (G2 ~AI4M2) + 270, (M * = 6m?)] ...(68)
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where M,, is given in (44) and dm=m;—m,, and
again the factors in square brackets represent
CIA/CNPA values.

4.4 Dynamical Mass As DB)S Solution of SDE

We end this Section with the definition of the
‘dynamical’ mass function of the quark in the
chiral limit (M,=0) of the pion-quark vertex
function I" (§), in the 3D-4D BSE framework''.
The logic of this follows from the BSE-SDE
formalism outlined in Sec. 3, eqgs. (23)-(28), for the
connection between eq. (29) for m(p) and eq. (28)
for I'(q) in the limit of zero mass of the
pseudoscalar. So, setting M=0 in (63)-(64), the
scalar part of the (unnormalized) vertex function
may be identified with the mass function m(p), in
the limit P,=0, where p, is the 4-momentum of
either quark; (note the appearance of the ‘hatted’
momentum). The result is'

L me+ p?
m(p)=[@(D)N2p 1] ——9(p) ... (69)
q
under CIA and CNPA respectively. The

normalization is such that in the low momentum
limit, the constituent ud mass m, is restored under
CIA", while the corresponding  ‘mass’ under
CNPA is p,*™.

A more important aspect of the ‘dynamical’
mass function is its appearance as the non-trivial
solution of the SDE under DByS’**. We now give a
derivation of the 3D-4D counterpart'' of this basic
result’. To that end we start with the non-
perturbative part of the gluon propagator Dy,
(k)=D(k)[8~k,k, /K] for the (harmonic)
interaction of ud quarks (forming the ‘pion
structure), where the scalar factor D(k) has the
form''.

3 A

D(k) =Z(27r)3a)§2mqas (Am)[V: +Cyl 0*18° (k)
... (70)

This form is immediately derivable from the

structure of the ‘potential’ function V(I€ ) of eq.
(55)-(56), with the Aq-term set equal to zero, and

taking M,=2m, for the ‘pion’ case. Note that D(k)
has a directional dependence n,=P,/ P* on the pion
4-momentum P,, so that k*>0 over all 4D space;
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it also possesses a well-defined limit for P, — 0.
This structure may now be substituted in the ‘gap-
equation’ (28)-(29) for a self-consistent solution in
the low momentum limit. This exercise has been
carried out'', wherein the SDE (29) in the Landau
gauge A(p))=1 reduces to the form

3 an .
m(p?) =;’jd3kdk0mqas x[wgV3 +C,16° (k)

m(p”)
(P +m*(p?)

.. (71)
where p’=p—k is 4D, and (k, ky) are (3D, 1D)
respectively. The integration is essentially over the
time-like ko, with the ‘pole’ position at
p’o=m(p’o)=mp,., leading finally to"’

3mo,

6z
[3‘03 - Comim‘]; a
(my,)

*~ 290n(10m,)
. (12)

after substituting the value A = 200 MeV for the
QCD constant. The further identification of m, with
myy, in this equation, yields an independent self-
consistent estimate my;; ~ 300 MeV which may be
compared to the input value 265 MeV, eq. (58),
employed for spectra®®. This analysis so far ignores
the Politzer relation™ My = mq+myy, for the
constituent mass m, away from the chiral limit. The
derivation of the pion and o-meson masses away
from the chiral limit, may be found in ref. [11].

My, = 7

5 CNPA Applications: Gauge-Inv Pion FF

The first example of our applications of the 3D-4D
BSE structure developed in Sec. 4 is to 4D triangle
loop integrals. This example has been chosen to
illustrate the difficulties of CIA (as noted in Sec.
1.4) in tackling their ill-defined nature as a result of
acquiring time-like momentum components in the
exponential/gaussian factors associated with the
vertex functions (46) due to a ‘Lorentz-mismatch’
among the rest-frames of the concerned hadronic
composites, for triangle loops and above, such as
the pion form factor, while 2-quark loops™ just
escape this pathology. This problem was not
explicitly encountered in the old-fashioned NPA
treatment™ of the pion form factor, except for lack
of explicit covariance. The CIA approach'® to
MYTP" enjoys covariance, but its application to
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triangle loop integrals causes other problems such
as complexity of the corresponding amplitudes®’,
apparently without good reason. On the other hand,
the apparent success of the old-fashioned NPA*® in
circumventing this (complexity) problem®, gives
the hope that with its ‘covariant’ formulation®!,
CNPA, the powers of this method should stand a
better chance of testing via the form factor
problem.

To recall a short background, the pion form
factor has through the ages been a good laboratory
for subjecting theoretical models and ideas on
strong interactions to observational test. Among the
crucial parameters are the squared radius

<rl >= 0.43i.0‘14fm2 (ref. 58a), and the scaled

exp
form factor at high &%, viz., K*F(k*) = 0.5+0.1 GeV ?
(ref. 58b) that represent important check points for
theoretical candidates such as QCD-sum rules®,
Finite Energy sum rules>, perturbative QCD®,
covariant null-plane approaches®’*, Euclidean
SDE®, etc. The issue of interface of perturbative
and non-perturbative QCD regimes has been
studied in terms of the relative importance of
longitudinal vs transverse components®, but this is
the subject of a full-fledged dynamical theory (such
as”'?, and not of some intuitive ansatze®’.

To that end, we outline a calculation of the P-
meson form factor for unequal mass kinematics
with full gauge invariance, including correction
terms arising from QED gauge invariance, and
illustrate the techniques of ‘Lorentz-completion’ to
obtain an explicitly Lorentz invariant quantity. As a
check on the consistency of the formalism, the
expected k™ behaviour of the pion form factor at
high & is realized. Some calculational details on
the triangle-loop integral for the P-meson form
factor are given in Appendex A eq. (247).

5.1 P-Meson Form Factor F(K’) for Unequal
Masses

Using the two diagrams (Figs. 1a and 1b) of
ref. [33c], and in the same notation, the Feynman
amplitude for the A—h"+y transition contributed by
Fig. la (quark 2 as spectator is given by**

2P, F(k*)=4Qm)* N, (P)N,,(P")ern, [d*qT"

D, (9@ D, §)¢@)
A4/4,

+1=2);

.. (73)
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AT =Trlys(m, —iy- p))iy, (m —iy- p;)
xys(m2+i}"p2)]; A,~=m,-2+p,.2; ...(74)

Pia=m,Pa pi,=m,P'tq"s p,=py;
P-P'=p,—p =k; 2P=P+P’ ... (75)
After evaluating the traces and simplifying via (74)
(75, T'u becomes

T =(py, —-P)[ém* -M*-4,]

—k*py, 12+(A —A)k, 14 ... (76)

The last term in (76) is non-gauge invariant, but it
does not survive the integration in (73), since the
coefficient of k. viz., 4 — 4/ is antisymmetric in
piand p,, while the rest of the integrand in (73) is

symmetric in these two variables. Next, to bring
out the proportionality of the integral (73) to P, it

is necessary to resolve p, into the mutually
perpendicular components p, ,(p,-k/k*)k and

(P, .P/P?*)P, of which the first two will again
not survive the integration, the first due to the
angular integration, and the second due to the
antisymmetry of k=p,— p| in p; and p;, just as in
the last term of (76). The third term is explicitly

proportional to P,

and is of course gauge
invariant since P-k=0. (This fact had been
anticipated while writing the LHS of (73)). Now

with the help of the results

py P=—=i,M?—A 14-Al14;
2y =1=(m —m3)IM?*; P*=-M?*-k*/4,
(17

it is a simple matter to integrate (73), on the lines
of Sec. 4, noting that terms proportional to 4,4,
and A", A, will give zero, while the non-vanishing
terms will get contributions only from the residues
of the A,-pole, eq. (51). Before collecting the
various pieces, note that the 3D gaussian wave
functions ¢, ¢°, as well as the 3D denominator
functions D,, D",, do not depend on the time-like
components p,,, so that no further pole
contributions accrue from these sources. (It is this
problem of time-like components of the internal 4-
momenta inside the gaussian ¢-functions under the
CIA approach'®, that had plagued a earlier CIA
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study of triangle diagrams®’. To proceed further, it
is now convenient to define the quantity

g-n=p, -n—m,P-n to simplify the ¢- and D,-
functions. To that end define the symbols:

(9.9)=q£tmkl2; z, =q_~n/l—’-n;

k=k-n/P-n; B,.n,)=1xk*/4 ... (18)

and note the following results of pole integration
w.r.t. p,, (see ref. [40]):

1 , ,
ldp,, A—[l/A, 1/ A (A AD)]

2
=[1/D,;1/D.;2p, -n/(D,D,)] ... (79
The details of further calculation of the form factor
are given in Appendix A. An essential result is the
normalizer N,(P) of the hadron, obtained by setting
k=0, and demanding that F(0)=1. The reduced
normalizer N, =N,(P)P-n/M, which is
Lorentz-invariant, is given via eq. (251) by:

NZ2=2MQ2n) [d Ge @ P [(1+6m> IM?)
X(G? —AI4M *)+ 2,5, (M = 6m™)]
... (80)

where the internal momentum g=(q,,Mz,) is
formally a 3-vector, in conformity with the
‘angular condition’™?. The corresponding expres-
sion for the form factor is (see Appendix A):

F(k®)=2MN? (27)* exp[—(Mrn,k1B)*148,)
x(nﬁz)“z"T"m,G(lé)ﬂl:z] .. (81

k

where G(k) is defined by egs. (254, 255) of
Appendix A.

5.2 ‘Lorentz Completion’ for F (k2 )

The expression (81) for F(kz) still depends on
the null-plane orientation n, via the dimensionless
quantity k=k-n/P-n which while having simple
Lorentz transformation properties, is nevertheless
not Lorentz invariant by itself. To make it expli-
citly Lorentz invariant, we shall employ a simple
method of ‘Lorentz completion’ which is merely
an extension of the ‘collinearity trick” employed at
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the quark level, viz., P, -q, =0; see eq. (47). Note
that this collinearity ansatz has already become
reduntant at the level of the Normalizer Ny,
eq. (80), which owes its Lorentz invariance to the
integrating out of the null-plane dependent quantity
22 in (80). This is of course because Ny depends
only on one 4-momentum (that of a single hadron),
so that the collinearity assumption is exactly valid.
However the form factor F(k) depends on two
independent 4-momenta P,P°, for which the
collinearity assumption is non-trivial, since the
existence of the perpendicular components cannot
be wished away! Actually the quark-level assump-
tion P, -q, =0 has, so to say, got transferred, via

the g-integrationin eq. (81), to the hadron level,

as evidenced from the kAdependence of F(k?):
therefore an obvious logical inference is to suppose
this Igdependence to be the result of the colli-
nearity ansatz P, -P/ =0 at the hadron level.
Now, under the collinearity condition, one has

P.P'=P -P/+P-nP-n+P'-nP-i
=P-nP/+P’-nP,; P-n=P,.

n n

... (82)

Therefore ‘Lorentz completion’ (the opposite of
the collinearity ansatz) merely amounts to rever-
sing the direction of the above equation by
supplying the (zero term) P, -P; to a -3-scalar
product to render it a 4-scalar! Indeed the process
is quite unique for 3-point functions such as the
form factor under study, although for more
involved cases (e.g., 4-point functions), further
assumptions may be needed.

In the present case, the prescription of Lorentz
completion is relatively simple, being already

contained in eq. (82). Thus since P,P'=P +k/2,
a simple application of (82) gives

k-nk,=+k’; P-nP,=—M?* —k?*/4;

fro_ 4k

RUIETER

... (83)
This simple prescription for & automatically
ensures the 4D (Lorentz) invariance of F(k?) at

the hadron level. (It may be instructive to compare
this to the Cov. LF prescription®® of ‘recognizing’
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the n-dependent terms (unphysical) of F(k?®) and
then dropping them). For more involved ampli-
tudes (e.g., 4-point functions) too, this prescription
works fairly unambiguously, if their diagrams can
be analyzed in terms of more elementary 3-point
vertices (which is often possible). We hasten to
add however that strictly speaking, a ‘Lorentz
completion’ gopes beyond the original premises of
restricting the (pairwise gq) interaction to the
covariant null-plane (in accordance with MYTPls),
but such ‘analytic continuations’ are not unwar-
ranted, since in Cov. LF theories too>, implemen-
ting the angular condition® involves the introdu-
ction of ‘derivative’ terms, implying a tacit
enlargement of the Hilbert space beyond the null-
plane (see Chap 2 of ref. [38]).

5.3 QED Gauge Corrections to F(k*)
While the ‘kinematic’ gauée invariance of
F(k?) has already been ensured in Sec. 5.1 above,

there are additional contributions to the triangle
loops—Figs. 1a and 1b of ref. [33c]—obtained by
inserting the photon lines at each of the two vertex
blobs instead of on the quark lines themseleves.
These terms arise from the demands of QED gauge
invariance, as pointed out by Kisslinger and Li
(KL)* in the context of two-point functions, and
are simulated by inserting exponential phase
integrals with the e.m. currents. However, this
method (which works ideally for point interac-
tions) is not amenable to extended (mementum-
dependent) vertex functions, and an alternative
strategy is needed, which is described below.

The way to an effective QED gauge invariance
lies in the simple-minded substitution pr—eA(x)) for
each 4-momentum p; (in a mixed P, x representa-
tion) occurring in the structure of the vertex
function. This amounts to replacing each ¢ u

occurring in  I'(§)=D(§)¢(g§), by ‘},u —eq/i#,

where e =m,e ~me,, and keeping only first

order terms in A, after due expansion. Now the
. . A2 . PO ~ A
first order correction to §°is -e,q-A—-e A-q,
which simplifies on substitution from eq. (83) to
—2eq21'-AE—2quu[c}#—c}-nﬁu+P-ﬁé-nn#/P~n]
... (84)
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The net result is a first order correction to I"(g) of
amount e, j(§)- A where

j@), =—4M .G, 9(PU-(G" -A14M *)/2B%)

... (85)
The contribution to the P-meson form factor from
this hadron-quark-photon vertex (4-point) now
. gives the QED gauge correction to the triangle
loops, Figs. (1a, 1b) of ref. [33c], to the main term
F(k?), eq. (73), of an amount which, after a
simple trace evaluation (and anticipating the

vanishing of all A-terms remaining in the trace, as ®

a result of contour integration over g,) simplifies to

(0=¢(9), etc.)

F,(k*)=4Qn)* N} e mM?[d*qM* —6m® )¢’
9 IIJ..q-'P L D.a-P

]+[1=>2]-,

... (86)
In writing down this term, the proportionality of
the current of 27—’; has been incorporated on both
sides, on identical lines to that of (73), using
results from (74)-(79) as well as from Appendix A.
Note that e, is anti;ymmetric in ‘I’ and ‘2’, signi-
fying a change of sign when the second term
[1=2] is added to the first. The term §-P/P?

simplifies to 2q-n(1—l€/ 2)/P-n, after extracting
the proportionality to I?u Next, after the pole

integrations over ¢,, g, in accordance with (79), it
is useful to club together the results of photon
insertions on both blobs for either index (‘1° or
‘2’); this step generates two independent
combinations for the ‘1’ terms (and similarly for
‘2’ terms):

A, =q-n(l-k/2);

B, =q-n(1-k/2)(G* -AlaM })I12B%,  ...(87)

Collecting all these contributions the result of g,-
integration is
Fi(k*)=8Qm)  Nie mM?[d*GM* - 6m>)p¢’
A, +A,-B,-B,
X =
Ny x(P _n)z

]+[1=>2] ... (88)

549

The rest of the calculation is routine and follows
closely the steps of Appendix A for the (main)

F(k%) term, including the translation
2, > 2, +1,k? /26,, and is omitted for brevity.

The final result for F,(k?) is
F,(k?)=—e, i i, (31, +k)

| (M2 =8m®yn, k(M )
8G(0)8,]*B*

+[1=2]

... (89)
where we have dropped some terms which vanish
on including the [1=>2] terms, noting the (1,2)

antisymmetry of e,.

5.4 Large and Small K’ Limits of F(k°)

We close this section with the large and small k*
limits of the form factors F(k?) and F,(kz). For
large K, eq. (83) gives k =2, 6;=2, and M=4M*/K*,
so that
4

2
F(k*)=2MN} 2r)*m, 242 (=B 12)** G(inf)

X exp[—(Mr, | B)* 12]+[1=>2]
where, from egs. (252)-(253).

... (90)

G(inf)=(1+6m> IM*) (B> —A/4M* + M *
+(M?* =6m* ), —2miM? .91

Similarly from eq. (86), the large k* limit of F;(k)
is

Fi(k*)=22M ke i iy, (M2 = 8m?)
2, A ~
o Mt —my) tm ;) .. (92)
B-G(0)
where we have taken account of the (1,2)
antisymmetry of e, in simplifying the effect of the
[1=>2] term on the RHS. As a check, both F(k?)
and F,(kz) are seen to satisfy the ‘scaling’

requirement of a k2 variation for large k*. This
result can be traced to the input dynamics of the
(non-perturbative) gluonic interaction, eq. (55), on
the structure of the vertex function, eq.(67).

Perturbative QCD of course gives a k> beha-
viour”. The covariant NP(LF) approach® also
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gives a similar behaviour, but extracted in a
somewhat different way from the present ‘Lorentz
completion’ treatment. Note that for the pion case

the QED gauge correction term F,(k?) gives zero
contribution in the large k limit.

For small k% on the other hand, we have from
eq. (83)

kP=k*/M?* [6,,n,]=1xk*/4M*> ... (93)

In this limit, the form factor, after substituting for
Ny from (80), and summing over the ‘1’ and ‘2’
terms, works out as

FkHy=(1-3k>/8M?)

Kk k’6m?
x| 1—m,m, ~——
4B* M*>G(0)
C3K3B(U+6m?IM?)
8M 2G(0)

... (9%

where G(0) is formally given by eq. (252), except
for the replacement of g° by 38%2. As a check,
F(k?) is symmetrical in ‘1’ ‘2, as well as
satisfies  the condition F(0)=1.
Similarly the small &* value of F(k?), after taking

account of the (1,2) antisymmetry of e, 1s of
minimum order k*, so that it contributes neither to

the normalization (F,(0)=0), nor to the P-meson
radius.

consistency

For completeness we record some numerical
results for large and small k* limits. For the pion
case, in the large k* limit, egs. (80)-(81) yield after
a little simplification the simple result

F(k*)=C/k%

_ M 3 2 2y -M288?°
c_2ﬁG(0)(/3 +m2)e ... (99)
where m =265 MeV stands for my=m,; and M,
stands for the bigger of m;+m, and M. Substituting
for £°=0.0602GeV* (ref. 32) and G(0)=0.166GeV>,
yields the result C=0.35GeV?, vs the expt value of
0.5040.10°®. For comparison, we also list the
perturbative QCD value® of 8mofr’=0.296GeV?,
with f;=133MeV, and the argument Q2 of «a, taken

as M2,
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For low &%, eqgs. (80)-(81) yield values of the
pion and kaon radii, in accordance with the relation

<R?*>=-V!F(k*) in the k*=0 limit. Substi-
tution of numerical values from (57)-(58) yields

Ry =0.629 fm(vs:0.5— expr™*);

R, =0.661fm(vs:0.656 — expt™*) ... (96)

We end this Section with the remark that a
simple-minded, conventional NP approach®™®* to
BS dynamics had already produced most of the
results of this form factor calculation, but had been
criticized™ on grounds of ‘non-covariance’. The
CNPA with an explicit formulation of the
Transversality Principle (TP) on a covariant
nul]'*® plane (NP), hopefully, keeps both the
advantages, since the 4D loop integrals are now
not only perfectly well-defined, but a major part of
the n, dependence has got eliminated in the
process of ¢ integration, while the remaining NP

orientation dependence has been transferred to the
external (hadron) 4-momenta. In this regard the
present approach is already in the company of a
wider NP (LF) community3 3% which has also to
contend with some n, dependence. The solution
offered here to overcome this problem is a simple
prescription of ‘Lorentz completion’ wherein a
‘collinear frame’ ansatz P, -q, =0 is lifted on the
external hadron momenta P, P’ etc, after doing the
internal ¢ integration, so as to yield an explicitly
Lorentz-invariant result. The prescription, though
different from other LF approaches™, is
nevertheless self-consistent, at least for 3-point
hadron vertices, (and amenable to extension to
higher-point vertices provided the latter can be
expressed as a combination of simpler 3-point
vertices). (It may be added parenthetically that the
old-fashioned NP treatment™ had yielded a
slightly better curve for the pion form factor, but
this was due to the use of the “half-off-sheil” form
of the NP wave function®, which however did not
come out naturally from the present ‘covariant’
treatment).

6 Three-Hadron Couplings Via Triangle-Loops

For a large class of hadronic processes like
H—~H +H"" and H—H’+y, the quark triangle loop™
represents the lowest order “tree” diagram for their
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evaluation. Criss-cross gluonic exchanges inside
the triangle (see Fig. lof ref. [31]) are not
important for this kind of description in which the
hadron-quark vertices, as well as the quark
propagators are both non-perturbative, and thus
take up a lion’s shaie of non-perturbative effects.
This is somewhat similar to the “dynamical
perturbation theory” of Pagels-Stokar® in which
such criss-cross diagrams are neglected.

In this Section, we shall give an outline of the
calculational techniques for such diagrams for the
most general case of unequal mass kinematics
m#mo#ms, but with spinless quarks only, since the
‘spin’  d.o.f. does not introduce any new
singlularities over the spin-0 case. In this we shall
closely follow the method of ref. [31], which is a
3-hadron generalization of Sec. 5 for the e.m. form
factor of a pseudoscalar meson. However, as
already noted therein, the CIA form'® of 3D-4D
BSE is fraught with problems of ill-defined
integrals (and hence complexity of amplitudes) due
to the presence of time-like momentum compo-
nents™ in the (gaussian) wave functions of the
participating hadrons. So we shall work only with
CNPA" structures. as derived in Sec. 4.2.

6.1 Kinematical Preliminaries

According to Fig. 1 of ref. [31], and in the same
notation, the 3 hadrons with all incoming 4-
momenta P,, with masses M,, interact via the quark
triangle loop wherein P, dissociates into the quark
pair with 4-momenta (-p, p;) and masses
(m;, m;) respectively, so that P, =-p, + p;,and

P, +P +P,=0. Thus™:

"'PL-Pf+PjEPij; szz—Mf; sz—'Pij:pj_pi
... 97

where (i, j, k) are cyclic permutations of I, 2, 3).
Similarly the relative 4-momenta qr between
quarks i,j corresponding to the break-up Pi=p;—p,,
and @, between hadrons ij for the break-up
Pi=~P—P; are:

9 =ﬁijpj +ﬁjipi; O =’;1‘-,-Pj —m ;P

~P;=F +P, ... (98)

The fractional momenta A1; at the quark level, and
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m; at the hadron level, are given by the

Wightman-Gaerding™ definitions

) m!-m} M!-M;
20, =1+ ——2L; 2, =1+ ———L . (99)

m
2 ? L) 2
M, M;

The relative sigs are determined by the phase
convention of Fig. 1 of ref. [31].
Now to define the ‘hatted’ relative 3-momenta

g, and Q,, we must follow the CNPA proce-
dure*' instead of CIA™. Further, since the content
of CNPA is for all practical purposes identical with
that of the old-fashioned NPA®, considerable
simplification is achieved by adopting the latter
notation*’, which is what is already done in ref.
[31], albeit with CIA content. Indeed, with the
collinear ansatz (Sec. 4) the NPA values of g, are

simply g;,,q;;, where g;; =M q,, /P, etc*: and
Q=M 0, /P, . However, since the ¢,’s are not
all independent, it is necessary to take a basis
momentum (say p,) in terms of which to express
others. Now in a fixed p, basis, we have

i =Pi+/1,jpk§ q,':P,_.ﬁikP

Ix
qizpi_ﬁjkpj+ﬁkjpk - (100)

For later purposes we shall consider a p, basis, for
which

éz:P:+ﬂ:3P134_x=Pz‘ﬁ21P3 .. (101)

We also record some useful results for the kine-
matics of external particles, if they are on-shell
(Q, P =0), under the collinearity condition®":

P;::i%Qii; M?!=P.F,;
) AM MI M
Qi‘_ Z‘QHQE- = ( ! = 3 ) e (102)

aMm?

which lead to the further symmetry relations

QM =0.M, =0\, =AM M, M})/4

... (1-3)
Further we can define a 3x3 matrix structure n;;,
with n; =P /P,,, which satisfy the relations
... (104)

n.n

ini =l npngng +1 Xon, =0.
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showing a definite phase relation among these
quantities, which are more explicitly expressed by
the matrix structure

[n1=l —m; £0Q, IM y;—m, FQ5 /M, ... (105)
—ryuy FO, /M5 1 —my £0, /M ;.. (106)

—-my, 20, /M, —my, FQ,/M,; 1
... (107)
with a two-fold sign ambiguity expressed by the
statement that only the upper, or only the lower
signs, must be taken. It is easily verified that
eqs. (104) (hence phase relations) are satisfied by
the matrix (105)-(107).

6.2 Structure of HHH Form Factor
The full structure of the 3-hadron amplitude due
to Fig. 1 of ref. [31]is

. r A.
A(3H>=—2’;<2x>*‘Jd“p,‘IIm—ﬁl

\/_ A(py)

exhibiting cyclic symmetry, where the normalized

vertex function I; in CNPA* is given from
Sec. 4-5 as

... (108)

I (3)=N,2m)>"*D,(§;)¢;(d,);

1

aM}

... (109)

AM?E, m?, m?
Di=2Mi[éi2— ( - 2

where we have defined the ‘reduced’ denominator
function D, as D, M, /P, and written the (invari-
ant) normalizer N;; as N,. The color factor and the
effect of reversing the loop direction are given by

2/43, while (2m)® is the overall BS normalizer®.
A=m}+pl=w) -p,p,_. Spin and flavour
d.o.f. will give rise to a standard ‘trace’ factor’
[TR] which is skipped here for simplicity.

To evaluate (106), we first write the cyclically
invariant measure:

1
d4pi =d] Ed(xiz)Miz dy;; x, =pi /Py

yi=pi P ... (110)

The cyclic invariance of this quantity ensures that
1t 1s enough to take any index, say 2, and first do
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the pole integration w.r.t. the y, variable which has
a pole at y, =&, =w}, /(M }x,). The process can
be repeated, by turn, over all the indices and the
results added. Note that the ¢-functions do not
include the time-like y; variables under CNPA*, so
that the residues from the poles arise from only the
propagators. The crucial thing to note is that the
denominator functions D; and D; sitting at the
opposite ends of the p,-line in Fig. 1 of ref. [31]
will cancel out the residues from the complemen-
tary (inverse) propagators A; and A, respectively.
Indeed by substituting the pole value y, =§&,, in
4,5, the corresponding residues in an obvious

notation work out as:

2 2 an 2.
A, =8y My +xn My =20y M 7

Ay, ==EonpMy ~xny M =2a,M7 (111

It is then found, with a short calculation using
(101), that

D.(g D, (g
3(q3)=2M3x2n23; 1(qy)

;2 3,2

=2M x,n,,

... (112)
which shows the precise cancellation mechanism
between the Di-functions and the residues of the
propagators A, at the A, pole. This mechanism
thus eliminates'® the (overlapping) Landau-
Cutkowsky poles that would otherwise have
caused free propagation of quarks in the loops. The
same procedure is then repeated cyclically for the
other two terms arising from the A4,, poles.

Collecting the factors, the result of all the 3
contributions is compactly expressible as (c.f.*"):

2

A(3H) =8 _3‘ 2123 .[J.M2n23n217r2dx2d§2x§

X[TR], D, ()11, M ;N ¢,
where the limits of integration for both variables
are —inf<(&,,x,)<+inf, since these are governed, not
by the on-shell dynamics of standard LF methods
ref. [37-38], but by off-shell 3D-4D BSE. The
difference from ref. [31] (under CIA'®) arises from
using CNPA*' here.

... (113)

6.3 Discussion on Applicability
Eq. (113) is the central result of this Section. Its
general nature stems from the use of unequal mass
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kinematics at both the quark and hadron levels,
which greatly enhances its applicability to a wide
class of problems which involve 3-hadron coup-
lings, either as complete process by themselves
(such as in decay processes) or as part of bigger
diagrams in which 3-hadron couplings serve as
basic building blocks. What makes the formula
particularly useful for general applications is its
explicit Lorentz invariance which has been
achieved through the simple method of ‘Lorentz
Completion’ on the lines of Sec. 5 for the e.m.
form factor of P-mesons (pion).

How much of this derivation is model
independent, except for the use of the MYTP'?
The answer lies in the structure 'y, =DX¢ for the

hadron-quark vertex function, which is a direct
consequence of the 3D support ansatz which in
turn receives support from several angles'”"”,
although this specific form'® does not seem to have
been used elsewhere. Its factorable structure in
which the denominator function D is quite
universal and depends only on kinematics, has
helped reduce the 4D loop-integral to a 3D form,
and in so doing, has succeeded in eliminating the
Landau-Cutkowsky (overlapping) singularities in a
very simple and transparent manner, thus
preventing the free propagation of quarks in the
intermediate (loop) stages. (The only model
dependent entity in the 3D wave function ¢, but it
has been related to the (observable) spectra”.

In the spirit of this generality, this article was
not intended for specific applications per se, but
some possibilities are readily listed. The simplest
class is that of strong decay of a resonance (H))
into two lighter hadrons (H,, H,) under kinemati-
cally allowed conditions (whose signature is
carried by the external variables Q;, M, inside the
integral (113). The amplitude A(3H) can also be
adapted, via Sec. 5, to include e.m. or semi-
leptonic processes, expressed by H;—H.+y, (in
which v is real or virtual), where the signature of
virtuality is carried by M ; =t. Non-leptonic weak
decays (see Fig. 2 of ref. [31]) are also amenable to
this treatment. As an example one may cite the
experimental discrepancy® of the vector form
factors in the semi-leptonic process D — K *ev
with theoretical models that prefer to represent the
intermediate states through effective meson
propagators™. On the other hand, a crucial role of
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the appropriate quark-triangle, with a considerable
effect of the unequal masses of the participating
quarks, seemed to be strongly indicated in
resolving the discrepancy®’. Other applications
include the so-called Sullivan process(’s, details of
which the interested reader may find in ref. [69].

7 Two-Quark Loops: SU(2)-Breaking
Problems

To illustrate other applications of the 3D-4D BSE
formalism, we now turn to the (simpler) problem
of two-quark loops which are useful for estimating
SU(2)-breaking effects in phenomena like i) mass-
splittings in P-mesons'®, and ii) p—® mixing in
meson-exchange forces'™. Simpler 2-quark loops,
such as those involved in the weak and e.m. decay
constants of hadrons, are already available in
previous studies of this formalism*, and will not
be the subject of this semi-review. Further, its
scope does not include detailed analysis of these 2-
loop phenomenam, but only their essential physics,
and a quick derivation of their core structures,
leaving the reader to ref [18] for numerical results
plus more references.

7.1 Strong SU(2)-Breaking in P-meson
Multiplets

To recaptulate the essential physics of hadronic
mass splittings within SU(2) multiplets (/=0.5,
1.0), these were for long thought to be of e.m.
origin, until the advent of QCD¥ when the
possibility of strong breaking of SU(2) due to the
intrinsic u—d mass difference started being taken
seriously. (This was despite the prior existence of
theGMOR-mechanism’ which had sought to relate
the pseudoscalar masses to the current quark
masses and the vacuum condensates). In this
respect the trend was set largely by Weinberg's
analysis”', characterized by the ‘Weinberg ratios’
m,/m, =0.55and m, /m,, =20.1, confirmed by

a recent analysis’>. A conservative estimate to the
u-d mass difference is believed to be d-u=
3-4MeV""". On the other hand the absolute values
of the current masses are not as well known, but
the SU(2) mass splitting" among the known
pseudoascalar multiplets (m, K, D. B) is a useful.
mathematical laboratory to determine the d-u mass
difference from  the corresponding ‘constituent
mass’ difference, via Politzer additivity”. The
issue 1s basically a dynamical one (in view of the
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sensitive nature of this laboratory), necessitating a
high degree of parametric control on the strong
vertex functions involved in the concerned
Feynmam diagrams (Figs. 1(a,b,c) of ref. [18a]).
The problem clearly goes beyond mere additivity
in the quark masses, as the observed pattern of
mass splittings'’ seems to suggest a basically
decreasing trend from the lightest (pion) to the
heaviest (beauty) flavour, tapering off almost to
zero for the B, — B, mass difference.

For the meson self-energy, there are 3 basic
contributions, a la Figs. 1(a,b,c) of (ref. [18a]):
i) In Fig. 1a, a 2-point dm,, vertex inserted at each

propagator by turn represents the principal source
of strong SU(2) breaking; ii) Fig. 1b simulates the
e.m. breaking effect by joining the two quark lines
internally by a photon propagator; iii) Finally
Fig. Ic simulates the effect of the difference of the
quark condensates <uu > and <dd> on the
strong SU(2) breaking of hadron masses.
Figs. 1(a,c) are one loop diagrams, while Fig. 1b
represents a two-loop process, which is moreover
sensitive to QED gauge constraints®’, as in the e.m.
form factor case (see Sec. 5).

Using the dynamical framework collected in
Sec. 4. (2-3), it is fairly straightforward to write
down the integrals accruing from these diagrams.
Both CIA'® and CNPA*' are valid mechanisms for
evaluating these diagrams, but in view of a prior
exposure'™ of CIA for this problem, it may be
instructive to adopt the CNPA alternative here.
Thus Fig. la gives in terms of the results of the
previous sections,

I, (M*)=i2n)" N} [d*qD* (@9* (@ Tr
X[YsSp (i P+q)ysSe(—m,P+q)]

... (114)
where we have used the representation of the
normalized vertex function given in eq. (107), and
D is the reduced denominator fn in CNPA. After
evaluating the traces this expression simplifies to

[1,(M*)==2i2n)"' N}, [d*qD*(§) $*(3)
A +A, +M? —5m?
X
AIAZ

... (115)

where dm=m;—m,, and all kinematical quantities
are as defined in Sec. 4. The integration over the
time-like component q_ is carried out very simply,
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using the result (79). Note that the vertex function
Dx¢ does not involve this variable, and also the D-
fn exactly cancels out the residues arising from the
propagators, as shown generally in Sec. 6. The
resultant 3D integration over d°§ is expressible
simply as

1, M*)=2N} [d*3¢*(§) D)

X[ DG , DD .2 _5m2]
4Mx, 4Mx,

... (116)
where x;, =p, /P, =m; *x for i=1,2 respectively.
The third component g; of CNPA***! is simply Mx,
so that §=gq,,q,. The normalizer Ny is given by
eq. (80). The parallel CIA result is (ref. [18a})

PR rs NP O
M,(M*)=2N} |d q|:D (q)(zw1 +2w2}

+D(§)(M * —dm?) .. (117)

A comparison between the CNPA and CIA
forms of I, is now in order. In CIA, eq. (117), the
D? term is well defined and is amenable to simple
quardature. On the other hand, the CNPA form,
eq. (116), encounters singularities at x;,=0, on
integration w.r.t. x, taking account of the relations

X,,=m,—x, and g2 =g} +M?*x*. The final

results are quite similar for both cases.

The formulae (116)-(117) for I, and (80) for
Ny, show explicit dependence on the masses m; ,,
and facilitate the evaluation of mass splittings
within the SU(2) isospin multiplets as follows: For
the K, D, B mesons, take m, as the mass of the ud-
quark with m;>m,, and while differentiating w.r.t.
m,,-consider the increment . A little reflection
then shows (by virtue of the Politzer” additivity
relation) that this quantity may be directly
identified with the difference m .—m,. between the
current d- and u-masses provided the hadron mass
with the u-quark gets subtracted from that with the
d-quark (e.g., Ko—K_, etc). Of course the normal
rules of differentiation apply, viz., §my)=f"(m,)é,,
where the argument of f'(m,) must use the average
‘constituent mass’ of ud-quark, viz.,265 McV,
eq. (58).
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For the pion case, some extra care is necessary
since both the constituents are now w/d-quarks so
that both m; and m; must be subjected to
differentiation in turn. On the other hand these two
contributions come with just equal but opposite
signs, so that they cancel out exactly, giving a net
vanishing contribution, as seen more directly from
the fact that the Al=land wuii—dd in the
Lagrangian cannot contribute to m,-m anyway. For
the details of numerical results on & IT (M), (see
ref. [18a]).

7.2 E M. Contribution to Self-Energy

The e.m. contribution to the hadron self-energy
is given by 2-loop diagram (Fig. 1b) of ref.[18a]
in a slightly simplified notation as follows:

(M%) = Nicee, [ [d*qaq 202
QrYy'k-
XTr[}’S(SF(pI)i)/uSF(pI,)YSSF(_p;)
XiY, Sp(=py)] ...(118)
where k=g—q’=p,—p =p>—p> is the exchanged
quantum; e; and e, are the charges of the quarks
involved (in units of ¢) and q.q~ are the internal 4-
momenta of the LHS and RHS hadrons
respectively. This integral involves simultaneous
(pole) integrations over the time-like components
of ¢ and ¢’ which do not figure in the respective
vertex functions and therefore can be carried out
exactly. However the rest of the 3D integrations
(twosets) do not quite factor out, so they need
strategy before they can be carried out without
much tears. To that end a simple device that
suggests itself naturally is based on the following
observation: By the very topology of the diagram it
is fairly clear that the time-like components of both
the 4-vectors g and ¢~ are quantitatively similar, so
that their effects largely “cancel out” in the factor
k2 in eq. (118). As a results the quantity k=p—g~
effectively reduces to the space-like quantity

(G—§’)* which can be manipulated to desired
numerical accuracy in the 3D integrations over
(¢ and §’). We list both CIA'® and CNPA (new)
results in the form of 3D integrals in g, ¢”jointly as
follows.

n,(M?) =4N3,e2e2(2n)--’”d%}d‘q'[...]

(I@DOG)

x ...(119
(g-q) (19
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the quantity [...] is first listed for CIA as

follows'®:

Ldon = M2 =8m*)2 =2mymy(M* — m},)

~-ém*(G-4)* +(_1_+_1_]

2m, 2m,

1 l ~ AP
X + D
( o 2, }D(q) (q)

+(M? ——m,2 —2m22 +mm,)D(g)/ 0,

+(M?2=m} =2m} +mm,)D(§)/ w,;

... (120)

The dual quantity [...]Jcyea may be simple
read from the above merely by the replace-
ments @, ,—2(Mx,;, Mx,;) respectively, where
X, =m,tx

To convert the mass shifts from quadratic to
linear, it is of course necessary to divide both I1,,
in the above equations by 2M. In the e.m. case, no
further ‘differentiation’ w.rt. m, is necessary,
since ref. [119] is already of second order in e. As

regards the factor eje, its differential &ejez) is
easily found as +(1/2), —(1/3), +(2/3) and —(1/3)
for the differences m,—m, K. D*-D°, BO—B“) in this
order. It turns out'™ that this alternating sign
pattern is of great help in reinforcing and reducing
the net differences within the K, D, B multiplets
(after taking account of the strong breaking effects,
Figs la and lc). towards a good pattern of
accord™ with the data. (For results, see
ref. [18a]).

We now consider QED gauge corrections® to
the e.m. value, eq. (119), arising from Fig. 1b of
ref. [32a], on the lines of corresponding corrections
to the e.m. form factor derived in Sec. 5. This
correction is sketched in Appendix B for P-mesons,
using diagrams listed in ref. [63], and in their
notation for the contributing figures. The resulting
QED correction for the kaon e.m. mass difference
turns out to be nearly a 60 per cent increase over
the CIA result 1.032 MeV'™ arising from the main
term (119). We omit the corresponding CNPA
treatment for brevity.

7.3 Effect of Quark Condensates
Another source of mass splittings arises from
the difference between w/d-quark condensates, in
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accordance with Fig. (1c) of ref. [18a]. Indeed
some recent calculations via QCD-sum rules have
used this as the principal mechanism’ for the mass
splittings, with much less contribution from
Fig. (1a). Indeed the value of & < gg > in itself has

been subject of separate investigations in chiral
perturbation theory™ as well as in QCD-sum
rules”. On the other hand, the BSE-SDE formation
provides a ‘direct’ ab initio estimate''* of this
condensate (as well as others™).

To recapitulate the logic of the condensate
calculation by the ‘direct’ method'' in terms of the
quark’s non-perturbative mass function, m(p), note
that the latter is the chiral (M,=0) limit of the pion-
quark vertex function I'(g), given by eq. (67), and

must be used in the expression of the full
propagator, SH{p), Sec. 7, which appears in the
formal definition of the condensate as follows'":

iN N
<gg>=—"1Trlld*pS
94>= 5 rlid* ps,(p)]

after doing the pole-integration over the time-like
component of p,. Here N.=3, and N,=1 (since each
separate flavour (w/d) is counted). Now to evaluate
the 3D integral (121) substitute the CIA structure
(70) for m(p),and ¢(p)=exp(—p*/2B%). This
integral formula has an analytic structure in terms
of the constituent mass m, of the w/d-quark, so that
it is now a matter of simple differentiation to give
an explicit form of its increment w.r.t. om, which
equals &,. The final formula is'®*:

..(121)

5<Z}‘q>—

_[ dkk*¢.. (k) (k){l—gk—j!
m

q

x(m* (k)+k2)“"2 .. (122)

Using the inputs from eqs. (55-58) gives
B%=0.0603, and the final results under CIA are

<gq >=—(266MeV)*; 8 < gq >= +0.06645,

.. (123)
These values are fully rooted in spectroscopy but
are otherwise free from adjustable parameters,
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except for the quantity 4. They have a fair overlap
with QCD-SR determinations’®.

For completeness we now give the condensate
results under CNPA, substituting the CNPA mass
function (69) in (121). This gives

A2
p-t{”%}b(i))
m‘l
< qq >=

_ 12iﬁjd3Ad
@en)* pp"m2+'2—2
q p.L p'npn

.(124)
The integration over p, is trivial and yields

~2
<gq>= 3‘/_§ Ja’ ;3[14- l’T}p( ) = —(242McV)?
(2m) m,
.. (125)
Substituting the gaussian form (as above) for ¢ and
integrating, yields an analytic structure useful for
calculating é < ggq >:

<gq>=-3J2(B*/2m)*[1+3B% I m?]

=—(242MeV)} .. (126)
a value which seems to be even closer to the
estimate —(240)3 of QCD—SR2 than the CIA result
—(266)" of (ref. [18a]

As to the contribution of d < gq > to the strong
SU(2) mass splittings, a 1a Fig. 1c of ref. [18a], we
skip the detailed derivation in favour of ref. [18a],
since it turns out to be rather small within this BSE
framework. This in sharp contrast to the QCD-SR
findings” wherein the condensate contribution
seems to dominate. This is not too surprising since
within a BSE-cum-SDE framework, most of the
non-perturbative effects are already contained in
the hadron-quark vertex function, with a
correspondingly smaller role for the condensates.
On the other hand in QCD-SR? these represent
major non-perturbative effects when seen from the
high energy perturbative QCD end.

A few comments on the main results of this
exercise are in order. The e.m. contributions
alternate in sign in the mass splittings between the
charged and neutral components in the sequence 7,
K, D, B. The condensate contribution to strong
SU(2)-breaking being small, the sensitivity to the
d-u mass difference comes almost entirely from
Fig. 1(a) of ref. [18a] Next, the feature of unequal
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mass kinematics has played a big role in the
formalism, being mainly responsible for a
sustematic decrease in mass splittings as one goes
up on the mass scale. This aspect has come about
mainly from the properties of the D-functions
(mostly model independent). The numerical values
show a good overall pattern of agreement with
data", (within less than half MeV), for the
parameter 8.  appears well  within  the
phenomenological ~ limits of  acceptability’.
However, as the results of Appendix B on QED
gauge corrections indicate, inclusion of these tends
of decrease the effective value of 6. Finally the
calculational technique seems to conform to the
spirit of “Dynamical Perturbation Theory’ of
Pagesls-Stoker™ (neglect of “criss-cross’ diagrams)
which must be carefully distinguished from a naive
interpration of perturbative QCD.

7.4 Off-Shell p-w Mixing

Before concluding this Section, we shall briefly
draw attention to a similar SU(2)-breaking
phenomenon which has proved to be of
considerable interest for the understanding of
certain anomalies in nuclear forces’’: off-shell p-@
mixing. Although nuclear topics are not of direct
concern for his article, the basic logic of charge-
symmetry-breaking (CSB) to explain the Nolen-
Schiffer anomally’”’ via p-@ mixing’, stimulated
by new experiment’”’ on polarized n-p scattering,
comes directly under the theme of this Section.
Indeed, the sensitivity of p-w mixing to the d-u
mass difference &, especially off-shell®*'®® is as
strong as that of P-meson masses'™,

To recall the basic logic, the small difference
between the proton vs neutron analyzing powers at
an angle 6, corresponding to the vanishing of the
average analyzing power79, is proportional to the
CSB potential Vs whose contribution from p-@
mixing may be schematically expressed as’™

VE® =< NN|H,,|[NN© > Gy < @H c5a|0® >
XGy < p’NN|H , [NN > +(p° & ©)
...(127)

Here G, is the appropriate V-meson propagator,
and <w|H CSBIPO > gets its dominant theoretical

contribution from the d-u mass difference ., with

557

H g = p.wS’, and a partial contribution from the
em. chain p=>y=w via vector dominance

and/or 2-quark loops. Alternatively, the matrix
element can be estimated from the experimental
e'e =>n'n” amolitude at the w-pole, which gives
the on-shell value 6(M? of the p-@ mixing
amplitude®. On the other hand, it is its off-shell
value 6 (g°) which is relevant to the CSB potential,
eq. (127), for the V-meson exchange in a space-like
region where its effect on Vg has been claimed to
be greatly suppressed’™. This question in turn
requires a theoretical model for the necessary
extrapolation which can be defined in terms of a
dimensionless parameter A as'®

0(g>)=0(M*)[1-(1+q* I M*A] ... (128)
A calculation of this parameter A is the central
issue of any investigation of the CSB effect,
wherein its value has been variously estimated to
be within the (0-1) range™. In particular, the
function of 6 (g’) is also amenable to the 3D-4D
formalism'®, using the self-energy techniques'®®
outlined in this Section. Its on-shell value 8 (M%)
agrees with the data®, while the off-shell
parameter A comes close to unity, signifiying a
change of sign for 6(g°) in the transition region
between the space-like and time-like momenta, in
agreement  with a  ‘nucleonic’  self-energy

.78
calculation™,

18b

8 QCD Parameters from Hadron Spectroscopy

In this Section, we outline a simple method of
calculation™ of QCD condensates in terms of the
(spectroscopy-oriented) parameters of the 3D-4D
BSE framework. These parameters of QCD
simulate non-perturbative effects as coefficients in
Wilson’s, operator product expansions (OPE)*"%.
The method of QCD sum rules represented the first
practical attempt™ to relate these quark-gluon
quantities to hadronic amplitudes by employing a
duality principle® between the quark-gluon and
meson-baryon pictures. Basically the idea is to find
aQ’ region (=1 GeV?) where one may incorporate
non-perturbative physics, generated via OPE®', into
the perturbative QCD treatment of physical
processes involving hadrons. The QCD-SR ansatz’
for the evaluation of a certain correlation function
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II(p), is to replace the free quark (or gluon)
propagator by one more suitable for the nontrivial
vacuum, and on the other hand to express, via
dispersion relations, the same correlation function
in terms of the variables of the meson-baryon
picture. The two results are then equated to yield
sum rules connecting the variables of the two
physical descriptions.

8.1 Field-Theoretic Definition of Condensates
While QCD-SR per se** is not the subject of
this review, its basic building blocks the
condensates, are the main concern of this Section.
These may be defined in terms of quark- and

gluon-fields™ .

<g0,q>= ,,‘\,:, <01:g{ (0)0,45(0):10>

4

=-| (‘2’”?4 TrS(p)O,, ... (129)

where O; is an operator representing the nature of
condensate, the index A represents the effect of a

background field, and S7(p) is the quark

propagator with the perturbative part suitably
subtracted. At this stage, we must distinguish
between the gluonic background field and other
external ones (electromagnetic, axial, etc.): The
latter can be taken perturbatively, but the former,
with its characteristic problem of color gauge
invariance, must be addressed more fully, a subject
on which there exists a vast literature®. However it
is possible to incorporate in practice a major
fraction of this effect through the simple device of
changing the variable of integration in eq (129)

from p, toll, =p, —18,4°G,, where G,, is the

gluon field. This would in general not be possible
if one were to evaluate complicated integrals
involving more propagators and vertex functions,
but since the integral in (129) “sees” only one such
quantity, the trick should work, especially since the
are mainly interested in a constant background

Gu~field, i.e. G;(x)=-1x,G2

> X,G,, . This is basically

a non-abelian adaptation of the famous Schwinger
method* to the present situation but the details of
the available method® are not necessary for
justifying this step. With this understanding, we
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shall not use any additional subscript or superscript
in eq. (129) to specify the gliionic background, but
rather'take the integration variable p, to represent

— 1 a~a
np _‘py ~_fgs)“ Gl'

The principal quark condensate <gg>,

corresponds to O;=1 and A=0. The corresponding
gluon condensate is defined as

<glG*>=Tr(V,V, -6, V)glD, (0), . (130)

where V), is the gauge covariant derivative and
D, (x) is the non-perturbative part'' of the gluon
propagator. These quantities which are free
parameters in QCD-SR, provide access to the non-
perturbative domain of QCD, but except for the

two principal condensates <ggq >, and < gssz >,
which are amenable to cross checks against many

data, the determination of the higher order ones
often leave ambiguities. A partial list is®

<qiY, Y354 >4 <T0,,q>5, <G5A0.Gq >,

GLAG, >, . ... (131)

In the method of QCD-SR**, there is no intrinsic
mechanism to evaluate them from first principles
but only an extrinsic ‘matching’ between the two
sides of the duality relation with the help of
suitable parameters. And for condensates of still
higher dimensions, additional assumptions, such as
factorization, are needed. The BSE-SDE
framework”'> on the other hand, has a more
microscopic structure which gives it simultaneous
access to both high and low energy phenomena
under one umbrella. Thus the condensates (131) as
well as others, are calculable within such a
framework with as much ease as the (low energy)
spectroscopy is accessible to it (See Sec. 1.4 for
discussions thereof). The same facility also holds
for 1ts 3D-4D adaptation which provides a two-tier
structure, with the 3D sector specifically attuned to
spectroscopy, while the 4D structure is good for
loop integrals, thus naturally giving rise to a
spectroscopic linkage between the high and low
energy descriptions of hadrons via QCD. To that
end eqs (23)-(29) of the BSE-SDE interplay®,
adapted to its 3D-4D form'', are collected in Sec.
4.4: i) an explicit expression®” for the mass
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function m(p) derived from the condition that it is
the pion-quark vertex function in the chiral limit of
M.=0; ii) the non-perturbative gluon propagator
D(k), eq. (70); iii) its more general form V(IE), eqs
(55)-(56); iv) and the formula (66) for the inverse
range f3 of the 3d wave function ¢@. These are the

main ingredients needed for the condensate
calculations in this Section.

8.2 The Gluon Condensate in 3D-4D Formalism
We start by rewriting the gluon propagator in a

more general form than (70) by making use of the

more complete V-function, egs (55)-(56), as under:

k ok,
Dﬁ’i.(k)=5"”[5,,v—-7‘:—%]0(k), ... (132)

where a,b are the color indices in the adjoint
representation. The logic of the connection
between the D, ,-fn, and the V-fn Eqs (55), (56)
comes about from its relation with the fermionic
kernel K:

K(q.9)=v,D,,(q-9)7,. ... (133)

where the scalar part D(IE) in the infrared region

may be identified with the confining part of the K-
functicn as''***

3
D(k)= Z(zm*wg 2m o (4m)

vi
J1-Am2V?

using the full q—ijotentialV(lz) which fits the

+ Lo sy,
Wy

X ... (134)

spectroscopy for all flavours (light and heavy)®, but
specialized to the equal mass (m,) case. The

constants Cop, @y, Ap are given by egs (57), (58),
while the QCD coupling constant ¢ is given by*:

4r
11—_%Nf,ln

a, (0= A, =200MeV.

1 .
0’
2
... (135)
The coordinate representation D(ﬁ) of the gluon

propagator (134) is
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DR) =@l 2m a (Q?) &____L__
T Ny ieamii?

... (136)

Note the, in the R — oo limit, D(R) is linear in R
as well as flavor independent (the m,-factor
cancels out), except for the o,(Q”) effect. Thus the
structure (136), despite its empiricity, respects the
standard QCD constraint, but only in the strict
confining region. On the other hand, the smallness
of Ay(=0.0283) ensures that for light flavours its
structure is dominated by the harmonic form,
which amounts to setting Ao=0. This is an excellent
approximation for the pion-vertex function in the
chiral limit (M,=0), and hence for the quark mass
function given by (69)'", and normalized to
m(0)=m, and identified as the constituent mass for
the ud-quarks only (ignoring their small ‘current’
values). The 3D wave function ¢(g) is a gaussian

with inverse range [ given by (66), which for equal
masses simplifies to

2

90(§) =expl-L47/B); B*

_ 2m w50, (4m])
1-2a,(4m})C,

... (137)
For the inputs (57)-(58), 8* works out as (0.060)
GeV”.

We shall use the mass function (69)/(137) in the
next subsection for the quark condensates. Here we
indicate briefly a derivation of the gluon
condensate, eq. (130), by inserting the gluon
propagator (136) in its definition. The Co-term may
be dropped as it will not survive the subsequent
differentiations in eq. (130). For the main term, the
following integral representation is employed:

...(138)
where R’ :kz—R(f (Lorentz-invariant). The 4D
expression D(R) may now be inferred from its
definition in terms of the 3D quantity D(R):

D(R = %:(@) 2my % Y A R®
T 1+AmR

... (139)
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This is as far as.one goes by adopting the 3D form
(136) for D(R). However, it is sufficiently
suggestive of the extrapolation needed to make it
fully covariant, viz. R* = R? in the numerator of
eq. (138) which we adopt in what follows. (On the
other hand, if this replacement it not adopted, then
the resulting gluon condensate will be reduced by a
factor %). The full propagator in the Landau gauge
is (132), where k, is read as k,=-id};. To
evaluate the gluon condensate we first note the
result:

%‘- <G4,Gg, >= [— 205805D4"(R)

+2a§afD;;’,(R)J|R=O, ... (140)
and obtain by straighforward differentiation

< £2G? >= [ A, dmor (4m])(6m,w,)* 177,
... (141)

The remaining question concerns what value of the
quark mass m, ie. what flavor, should be
employed for evaluating the gluon condensate. The
structure 136) does exhibit the desired features of
linear confinement and flavor independence, but
the extrapolation of these features in the opposite
limit (R—0), as demanded by eq. (139), bring in an
“effective flavor dependence” of the final formula
(140). The heavier the flavour, the more important is
the corresponding mass (m,), vis-a-vis the Ao-term
in the gg potential (136). Since, on the other hand,
the full potential (136) fits all the flavor sectors
rather well*®, a simple “weighting” procedure was
chosen in™, involving only the 3 flavor sectors
with a nontrivial flavor mass, viz. s5, c¢¢ and bb

with equal weights (in the sense of a geometric
mean), taking account of the m,dependence

m’a (4m>) of eq. (139). This give the result
q q

<mla,(4m})>13.91{mla, (4m})}, ... (142)

in units of its value in the (ud)-region, and its
substitution in (139) yields the final estimate

< glG?*>=0.502GeV*, versus the value of 0.47
GeV* adopted in the QCD sum rule literature®.
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8.3 <qQ.q > Condensates

We now substitute the mass function m(p?),
eqs (69)/(137) into the general formula (129), to
derive the various condensates for different
choices of O;. As already noted in Sec. 8.1 (in light
of color gauge invariance), the quantity p, in eqs
(69)/(137), and everywhere else in the following,
must be read as Hu“, with appropriate non-abelian
corrections. The formula (129) now reads as
L fatn mDoir
2m) m (IT)+(yIT)

... (143)

qO0;p>,= T"(

in the absence of external fields. Note that the
subtracted part with m(IT)=0 in this equation

gives no effect on tracing in the absence of
external fields. We first express the denominator in
an alternative form:

m> (1) +(y.I1)’ =aA)2—E$. -1} =A-2;
nl:ﬁz_nlz

where JI, is the
n,.d*n=d'ndn,

and the integration must first be carried out over [1,.
Because of the presence of the Z-term in (146),
however, a further “rationalization” of eq. (143) is
necessary according to the identity

o I _A+Z
A-X, & -N}-%, A-3F

longitudinal component  of

... (146)

At this stage it is probably adequate to replace Egz in
the denominator of (146) spin-color averaged value
<Xi>:

Il o<X] >:T]£< £.GG >= ' (=8.48m,)

... (147)

after the necessary substitutions have been made
from (142) and (57)-(58). Thus <X > contains a

strong signature of the gluon condensate whose
large value introduces some bad analyticity
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properties in the denominator of the integrand in
(143) or (146), for purposes of IT-integration,
since the @’-term is numerically much smaller
than 4. It has been emphasized™ that this feature
has nothing to do with the 3D-4D BSE treatment,
since we have not yet passed the barrier of the
orthodox 4D quark propagator in the backgrond of
the gluon field. It is rather a very general
minifestation of the strong spin-color effect of the
quark-quark interaction via the color magnetic
field. The problem is not so serious in QED*
where the smallness of the coupling constant
leaves the counterpart of the u’ term well below
the positivity limit (i.e., @* — u* > 0), but the large
value of ,u2 in the present (QCD) case tends to

invalidate the standard analyticity structure of
(143) for purposes of further integration with

respect to d'IT. This problem could not be solved
in ref. [30], but it seems to deserve more serious
attention from a wider community. (Taken
literally, it would imply the introduction of a phase
in the condensates!) In the meantime, a
. . 30 .
conservative view  was taken that the maximum

allowed value of <Z)?2 > (consistent with the

positivity of the denominator after IT-integration)
should not exceed @®* for all valuesof IT?, i.e.

<XZ!>=0’<m,. ... (148)
Thus eq. (146) should be understood as
1 A+X, 2 A
= ; A= =11 ... (149
A-X, A -¢o? : (149)

8

For the numerator of eq. (149) which still carries
the spin-dependent quantity X,, eq. (145), there is
no restriction of magnitude for one X -factor only,
since it contributes to condensates only after
contracting with another X-factor in eq. (143).
(However, other factors which come from the
rationalization of the denominator with higher
powers of X, must be subject to the same
restriction). With this precaution, eq. (143) serves
to define two condensates simultaneously, viz.,

these with, O;=1 and O, =g (X"'/2)G,,0,,,

the latter is expressible in the notation of Ref. [82]
as

where
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<072z, ql0 >= mj <gq >0. ... (150)

To evaluate the integral over dIT;, we have

1 (an,—2% 1oy 50)], ... (151)

2mi A —-0”

where

1), Jo) =+ ] ] (152)
’ 2| Jar-0 Vo'+o

After collecting the necessary trace factors the
final result for the two condensates is expressible
as a simple quadrature (g=u or d):

3 [y
ﬂzj:n dr1 m(I1)

{l(o);z—%ﬁuc)}. . (153)

<q7 >, [imil=

On insertion of the structure (39)/(137) for the
mass function, and putting the “maximum allowed

value” of o, viz., m; eq. (148), the results under
CIA are in ref. [2a]

< qq >o= (266 MeV)* ml =0.130 GeV ?;
... (154)

these results may be compared with the QCD-SR
(input) value® of (240 MeV)' and 0.8 GeV’
respectively. The corresponding CNPA*' result, as
worked out in Sec. 7.3 with m(p) obtained from
Sec. 4.4 is (242 MeV)' for the first item.

We next calculate three induced condensates
X, K, and £, due to a constant external e.m. field
F, ., which are defined as®:

<go,q>y=ee,xF, <gq>0; ... (155)
g, <qX'12)G} g>=eeKF, <qq>y;
... (156)
8 < C_I(k’ /2)6;1\'()([36(:[1(] >F= equ va < qq >0
...(157)

In these equations the relative phases of the
induced condensates are defined with respect to the
main condensate <gq>,, in accordance with

(143) and this feature must be kept systematic
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track of. Like the two condensates (153), the
quantities y and x are in a sense dual to each other,
and are best described together. The e.m. field is
introduced through the substitution
(m+iy.]—[m+iy,(I1, —eA))] ... (158)
in the propagator, eq. (129), and keeping only the
first order term in A,. Thus we have to calculate

[1rsc(myiey HS (Do, 1 262,) . (159)

This is facilitated, for a constant e.m. field, by the
representation

A =-

J
u 2%y

b X, =i . ... (160)
H H anu

The substitution in eq. (153) and subsequent trace
evaluation is routine but lengthy. However certain
precautions are necessary in the matter of
extraction of two groups of terms, proportional to
o,, and G,, respectively, before the trace
evaluation, which will survive contraction with the

external e.m. field F,,. Thus,

¥¥, =i0,,. ...(161)

n,ui,= '5 g, L2,G4 ;
In terms like ioJ1311,, additional survivors come
from the symmetrized product {I1; Il,} for which
we make the standard isotropy ansatz. In this
respect, their association with (space-like)
magnetic effects makes it more meaningful
to do an effectively 3D averaging, viz. I1.J/1=
%ﬁz(éuv—ﬁuﬁ") where 7, is a unit vector
whose direction need not be specified too
precisely. After this step, the tracing process is
straightforward, and we omit the details. But a
useful formula is

T AGL 8, 5,0,5Fip |21 < 82G* > F,.
... (162)

The results for the three quantities X &k {are™:

X =-356GeV™; k=-0.11; { =+0.06GeV2;

... (163)

where the QCD-SR value for y is [(6+2)GeV ¥
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8.4 Axial Condensates
So far there has been no explicit need to subtract
the perturbative contribution (m=0) to the

condensates calculated above, since their traces are
zero. We now consider the axial condensate
(O;=i y,%) in a constant external axial field A,
where an explicit subtraction is necessary to ensure
convergence of the integral. This condensate is
connected with the axial isoscalar coupling which
enters the Bjorken sum rule® for DIS of polarized
electrons on a polarized proton®. It is defined
through the relation

<GiY,¥sq > 4= AA, ...(164)

: .85 2 2
and its value was calculated in*® as fo =fz,on

the assumption that the axial field interacts with
the 8" component (isoscalar) of the unitary octet
current. In the present treatment it does not need
any such extra assumption but can be simply
calculated from eq. (129) with (O, =i y,)), and
introducing the axial field by the gauge
substitution I, — IT,.~ysA, in the propagator,

and keeping only the first order term in the
expansion. The result is expressed by

Y= P Trjd4H[SF (IDiy.AysSy (H)i}’#h]

[a=0]

AA

RS

... (165)

where the term under quotes is the value of the
main term for m=0. Evaluating the trace and

using the isotropy conditioin <IT,II >= 5#vH2/4

we obtain
-3 W -I* 2+ %
A =—errfatn| " M
(1) (A-%,)
2 —
S22 Eg} ... (166)
(1*-x,)

In this case however it is perhaps not as
meaningful to keep track of the X-terms for
numerical purposes as for the e.m. case; we shall
drop them at this stage. Then with a simple
rearrangement m’ —IT1%/2=31T%/2-A/2, the
A/2 term can be combined with the last term



QCD-MOTIVATED BSE-SDE FRAMEWORK FOR QUARK-DYNAMICS

through a Feynman variable (0 <u <1) and the
pole integration carried out. The final result is

3
- T
A ==z [n2ar [ awi) ")

T Anty 0 + 1

which yields 0.021 GeV? to be compared with
f,,2 =0.018, or perhaps better with f,,2 which is
the relevant isoscalar quantity® having a larger

value" than f.

For a discussion of these results vis-s-vis QCD-
SR, see ref. [30]. Since the spectroscopic linkage of
the QCD condensates has been main theme of this
Section, we should like to end it with the remark
that the (MYTP-governed'®) CIA'® by itself does
not carry information on the dynamics of
spectroscopy which must be governed by other
considerations (non-perturbative QCD simulated
by DByS**, but it certainly offers a broad enough
framework to accommodate such dynamics,
without having to look elsewhere. Of course, the
importance of spectroscopy as an integral part of
any ‘dynamical equation based’ approach merely
reiterates a philosophy initiated long ago by
Feynman et al.”

9 qqq Dynamics: General Aspects

The dynamics of baryons as gqgq systems
represents the third stage of the three-body
problem in its journey from the atomic through
nuclear to the hadronic level of compositeness.
The first (atomic) stage had been relatively free of
theoretical ambiguities due to its strong QED
foundations in the domain of non-relativistic
quantum mechanics. In contrast, the second
(nuclear) stage, although providing the initial
stimulus for few-body dynamics, has from the
outset remained bogged down in a continual
empiricity in the theoretical foundations of strong
interaction dynamics. Indeed by the time the meson
exchange picture started being taken seriously for a
parallel treatment of meson-nucleon system on the
lines of electron-photon systems, the carpet got
quietly removed from under its feet, through the
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slow but sure realization of its tenuous character
born out of the quark compositeness of the
underlying (meson) fields. Indeed the quark-gluon
picture which had taken firm shape by the end of
the Seventies, told in no uncertain terms the futility
of understanding the inter-hadronic forces directly
in terms of their it own species, as if they were
elementary fields! On the other hand, the
emergence of nuclear three-body techniques in the
Sixties had an instant impact on the quark-level 3-
body problem, thus providing a big boost to its
development in a language strongly remainiscient
of the nuclear 3-body problem, on the lines of
Bethe’s Second Principle Theory (see Sec. 1),
except for the realization of its relativistic
character which demands the input dynamics to be
Bethe-Salpeter-like (albeit with wide variations),
rather than Schroedinger-like. In this Section we
shall give a panoramic view of three general
aspects governing the dynamics of ggq baryons: 1)
classification of baryonic state®®; ii) problem of
connectedness in 3-body dynamics®’; iii) BS-
dynamics for fermionic gqq systems under
DBxS™, in parallel with g, Sec. 4.3. The details
of topics (ii) and (iti) are taken up in Sections 10
are 11 respectively.

Yet another type of approach to the gqq
problem, as available in the literature, concerns
parametric representations attuned to effective
Lagrangians  for  hadronic  transitions to
“constituent” quarks, with ad hoc assumptions on
the hadron-ggq form factor®™, similar (parametric)

ansatze for the hadron-quark-dipquark form
factor™, or more often direct gaussian
parametrizations for the gqq wave functions as the
starting point of the investigation®. Such

approaches are often quite effective for the
investigation of some well-defined sectors of
hadron physics with quark degrees of freedom, but
are in general much less predictive than dynamical-
equation-based methods like NJL-Faddeev® or
BSE-SDE framework”"?, when extended beyond
their immediate domains of applicability.

9.1 SU(6) & O(3) Classification

The initial gqq formulation was provided by a
non-relativistic form of dynamics, and the first
systematic classification®®® of qqq states proved
remarkably successful for the understanding of
many details of hadronic spectra. On the other
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hand, the high degree of degeneracy of the h.o.
model®® caused problems on the details of
observed states, such as the absence of (the
relatively low-lying) 20 states, in favour of more
restricted types which, in a broad SU(6)xO(3)
classification, are all ‘natural parity’ states®®

[56,(even)*], [70,(0dd)]; [70,(even)*],[56,(0dd)7]

...(168)
while the (complementary) ‘unnatural parity’ states
like 20" seemed to be missing from the data'’. The
natural parity baryons in turn are amenable to a
simple quark-diquark pictureg(’d, with diquarks of
the types ‘scalar-isoscalar’ D, and ‘(axial) vector-

isovector’ D¢, as well as

” b
diquarks of the types (pseudo) vector-isoscalar D,
90a

(complementary)

and scalar-isovector [D;]™", all of which go to

make up the list'® above. On the other hand the
‘unnatural’ parity baryons require diquark
ingredients of opposite parity to above, viz.,
pseudoscalar-isoscalar, vector-isovector, vector-
isoscalar, and pseudoscalar-isovector, respectively,
to make up a complementary list of SU(6)xO(3)
baryons™®

[20,(even)™], [70,(even)]; [70,(0dd)*],[56,(even)]
... (169)

which have not yet been observed'**”.

Despite the compactness and elegance of the
quark-diquark description, a certain amount of
dynamical 3-body information gets lost due to the
‘freezing’ of a quark d.o.f. in the (rigid) diquark
structure. While a good part of the S; (permutation)
symmetry can be recovered by appropriate SU(6)
classification, the dynamical information in the full
3-body structure is not entirely retrievable,
showing up. e.g., in the k*-dependence of the e.m.
form factor of the gqq baryon. To see more clearly
the interconnection between the two descriptions,
let us write down the baryon wave function, with
proper S;-symmetry, in both the ggq and g—d,
notations. To that end, its full wave function y
with S;-symmetry for 3 identical quarks, may be
analyzed into its orbital Y~ spin 3’ and isospin ¢"
components, where @ f, y superscripts stand for
the Si;-symmetry type525'45, which, in the Verde
notation™’, are (s; m’, m”’: a) for symmetric, mixed-
symmetric, and antisymmetric respectively. Since
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only color singlet states are being considered, we
suppress the (antisymmetric) color wave function
C* for brevity, so that the ‘active’ part of the wave
function is symmetricm’. The full structures of y
for 56 and 70 states are’®

Nis = (X9 +x'9"w" 142

Nio = @y o'y 1V2;

Nio = (09" +2" 0 W' +(X'¢'=x"¢" W'V 2;
AZ(.) — X\(P\W\’ Af7[0 - (Z'W""X"W")(f)x[ﬁ;

... (170)
where the superscripts d and g stand for spin-
doublet and spin-quartet respectively, and the
product of the orbital (y) and spin (x) functions for
higher L-states must be read in the standard sense
of adding angular momenta in terms of C.G
coefficients. For strange baryon (A, X) states, the
symmetry is reduced to S;, due to the higher mass

mass of the s-quark, and the corresponding states
have the following representations%

A=t X w12 ; A=’ (X W X" W)I2
Z=¢" Y v IN2 D= W W2 .. (171)
A= WY Zo=¢" W'y

To relate these structures to the quark (g)-
diquark (D) description, the gD contents of these
wave functions in a lorentz-invariant form may be
read off from the following correspondence’™

X0’ =D x 9" eiyy DT,
X¥eD, ey, x'¢"e Dit%; ... (172)
Zy¢,@Dp Gp; X"‘P'@ IYSYHD;N

X¢"=D,1, €,

Here for simplicity, a basis spinor symbol y on the
RHS has been suppressed for all (baryon) states.
However, the additional (Rarita-Schwinger) spin
and isospin symbols needed for several such states
to make up the full baryon structure have been

supplied via the unit vectors EZ and €, where

necessary. (Of course orbital functions y are
needed to make up the spatial overlap for the ¢gD-
pair). This correspondence may be faithfully
substituted in the set (170) to give the precise gD
content in SU(6)-form to give the different cases
with correct normalizations. The dynamical effects
are now entirely contained in the orbital wave
function y.
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9.2 Connectedness in a 3-Body Amplitude

The problem of connectedness® in a 3-particle
amplitude has been in the forefront of few-body
dynamics since Faddeev’s classic paper®”® showed
the proper perspective, by emphasizing the role of
the 2-body T-matrix as a powerful tool for
achieving the goal. The initial stimulus in this
regard came from the separable assumption due to
Mitra®” which provided a very simple realization
of such connectedness via Faddeev’s T-matrix
structure, a result that was given a firmer basis by
Lovelace. An alternative  strategy®”  for
connectedness in a more general n-body amplitude
was provided by Weinberg®® through graphical
equations which brought out the relative roles of
the 7- and V-matrices in a more transparent
manner. (In particular Weinberg showed that the 7-
matrix was not the only way to achieve
connectedness). It was emphasized by both
Weinberg and Lovelace that an important signal
for connectedness in the 3-body (or n-body)
amplitude is the absence of any &-function in its
structure, either explicitly or through its defining
equation. This signal is valid irrespective of
whether or not the V- or the T-matrix is employed
for the said dynamical equation.

The above equations were found for a non-
relativistic n-body problem within a basically 3D
framework™ whose prototype dynamics is the
Schroedinger equation. For the corresponding
relativistic problem whose typical dynamics may
be taken as the Bethe-Salpeter Equation (BSE)
with pairwise kernels within a 4D framework, it
should be possible in principle to follow a logic
similar to Weinberg's, using the language of
Green'’s functions with corresponding
diagrammatic  representations®’,  leading to
equations free from d-functions. However there are
other physical issues associated with a 4D support
to the BSE kernel of a confining type, such as
contradxcuons of the spectral predictions'* with
data"’. Indeed, this very issue has been discussed in
detail in Section 1, culminating in the ‘two-tier’
3D-4D BSE approach as the central theme of this
article, under the name of Covariant Instantaneity'®
for 3D support to the BSE kernel »which receives
formal justification from the MYTP principle".
The principal result of this ansatz is the exact
interconnection between the 3D and 4D forms of
the BSE, at least for the 4D two-body problem'ﬁ.
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One may now ask: Does a similar
interconnection exist in the corresponding BS
amplitudes for a three-body system under the same
conditions of 3D support for the pairwise BS
kernel? The question is of great practical value
since the 3D reduction of the 4D BSE already
provides a fully connected integral equatlon29b
leading to an approximate analytic solution (in
gaussian form)™ for the corresponding 3D wave
function, as a byproduct of its success on the
baryon spectra'’. Therefore a reconstruction of the
4D g¢qq wave function in terms of the
corresponding 3D quantities should open up a vista
of applications to various types of transition
amplitudes involving gqq baryons, just as in the
two-body case outlined in Section 4. This exercise
is carried out in Section 10, using Green’s function
techniques for both the 2- and 3-body systems (the
former for checking against the known results of
Section 4). There is however a big difference
between the two systems, born out of the
‘truncation’ of the Hilbert space due to the 3D
support ansatz for the pairwise BSE kernel. Such
truncation, while still allowing an unambiguous
reduction of the BSE from the 4D to the 3D level,
nevertheles leaves an ‘undermined element’ in the
reverse direction, viz., from 3D to 4D. This
limitation for the reverse direction is quite general
for any n-body system with n>2; the only
exception is the case of n=2 where both transitions
are reversible without extra assumptions (a sort of
degenerate situation). As will be shown in Sec. 10,
the extra assumption (in its simplest form) needed
to complete the reverse transition is facilitated by
some 1D &-function whnch however has nothing to
do with connectedness®’

9.3 Fermionic qqq BSE with DBXS

We now outline the essntial logic of a BSE
treatment for a fermionic ggq system, for pairwise
kernels with covariant 3D support, under
conditions of BBXS, on closely parallel lines to the
qq case (Section 4). In Section 3, the derivation®’
of the equation of motion from an input
Lagrangian for extended 4-fermion coupling shows
that the BSE structure (38) emerges in the linear
approximation to the ¢-field. This immediately
suggests that the BSE for a ggq system in the same
(linear) approximation must be one with a linear
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sum over all the three pairs of interaction, which
for spinless quarks reads as'®

i27)* P(p,p,p3)
= ZAF, 4y, Jdlqu(‘hzq'lz )P PPy

123

(173)

where Ap=—iA", etc. Under CIA'6, the relative
momenta g; are ‘hatted’, i.e., they are orthogonal
to the total momenta P;; of the i pairs, as explained
in Sec. 4. It is however more convenient for
calculational purposes to take all these relative
‘hatted’ momenta g, to be perpendicular to a

common 4-momentum P=p;+p,+p;, instead of the-

individual pairs. Technically this amounts to the
introduction of 3-body forces at the quark level.
However the difference turns out to be small'® that
the 3-body forces are (expectedly) small. Having
thus checked this (small) 3-body effect, we shall
from now on consider a common ‘hat’ symbol for
all the three pairs, i.e., §,,=q;—q; PPJP*. It is
this version for hatted symbols for the ggq problem
that we consider in the next two sections.

10 Interlinking 3D and 4D gqq Vertex Fns

In this Section, we outline a fairly detailed (self-
contained) method of Green’s functions for 2- and
3-particle scattering near the bound state pole, for
the 3D-4D interconnection between the

corresponding wave functions. For simplicity we -

consider identical spinless bosons, with pairwise
BS kernels under CIA conditions'®, first for the 2-
body case for calibration, (see Sects. 4.1-2), and
then for the corresponding 3-body case, on the
basis of the Green’s Fn counterpart of the general
structure, eq. (173).

10.1 Two-Quark Green’s Function Under CIA

In the notation and phase convention of Section
4, the 4D ¢q Green’s fn G(p\py; p,p,) near a
bound state satisfies a 4D BSE (no inhomogeneous
term):
i(2m) G(p,py; piP5)
= &4 [dplpiK (pp2; PIPIG(PIP": PP

... (174)

wheres
A=pi+m;, . (175)
and m, is the mass of each quark. Now using the
relative 4-momentum g=(p;—p;)/2 and total 4-
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momentum P=(p,+p,) and total 4-momentum
P=p\+p, (similarly for the other sets), and
removing a &-function for overall 4-momentum
conservation, from each of the G- and K-functions,
eq. (174) reduces to the simpler form

i2m°G(q.9)=4"'4 j dg"Mdo"K (4, §")G(q".q')
. (176)

4, =4, -0P,, o=(q.P)/IP?, s
effectively 3D in content (being orthogonal to P,).
Here we have incorporated the ansatz of a 3D
support for the kernel K (independent of ¢ and ¢,
and broken up the 4D measure dq” arising from
(174) into the product dg"Mdo" of a 3D and a 1D
measure respectively. We have also suppressed the
4-momentum P, label, with (P2=—M2 ), in the
notation for G(q.q").

Now define the fully 3D Green’s function
G(é g') as (47)

where . with

G(3.4) —fszdadcr G(g.9") . (177
and two (hybrid) 3D-4D Green’s functions
G(4.9"), G(4.q') as
G(4.q) = | MdoG(q.9);

J . (178)

G(g.4) = [Mdo'G(a,q);
Next, use (178) in (176) to give
i27)*G(9,4) = &' &' [dg" K(3.4"C "4

. (179)
Now integrate both sides of (176) w.r.t. Mdo and
use the result

[MdoA &' = 2mD™ (4); D(G) = 40(@

0 =m? +3

-M?/4);
. (180)

to give a 3D BSE w.r.t. the variable g, while

keeping the other variable ¢’ in a 4D form:

(21)'G(4.4) =D [dd"K(4.9)G@".q

. (181)

A comparison of (176) with (181) gives the desired
connection between the full 4D G-function and the

hybrid G(4,¢' Hunction :
2miG(g.q") = D@A'4'G(§.9) . (182)

Again, the symmetry of the left hand side of (182)
w.r.t. g and g’ allows rewriting the right hand side
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with the roles of g and ¢’ interchanged. This gives
the dual form

2mG(q.4) = D(§)4'4,'G(9.9") .. (183)
which on integrating both sides w.r.t. Mdo gives

21iG(G.9) = D@4 4,'6(3.9). .. (184)
Substitution of (184) in (182) then gives the
symmetrical form
(2m)G(g,9") = D@4 '£'G(G,§)D@GH 4" 4.

... (185)
Finally, integrating both sides of (181) wur.t.
Mdo”, we obtain a fully reduced 3D BSE for the
3D Green’s function:
(21)'G(§.4) = D"'4[dq"K(4,4)G@".3).

... (186)
Eq. (185) which is valid near the bound state pole,
expresses the desired connection between the 3D
and 4D forms of the Green’s functions; and eq.
(186) is the determining equation for the 3D form.
A spectral analysis can now be made for either of
the 3D or 4D Green’s functions in the standard
manner, Viz.,

G(g.9) = Y. ®,(q: P)D, (g P)I(P* + M?)
’ .. (187)
where @ is the 4D BS wave function. A similar

expansion holds for the 3D G-function G in terms
of ¢,(4). Substituting these expansions in (185)

one immediately sees the connection between the
3D and 4D wave functions in the form:

2mid(q.P) = A'4'D(§¢(Q) .. (188)
whence the BS vertex function becomes
I'=Ax¢/(27i) as found in'®. We shall make free use
of these results, taken as gq subsystems, for our
study of the ggqq G-functions in Subsections
2 and 3.

10.2 3D BSE Reduction for qqq G-fn

As in the two-body case, and in an obvious
notation for various 4-momenta (without the Greek
suffixes), we consider the most general Green’s
function G(p,p,ps; pyp2p;) for 3-quark scattering
near the bound state pole (for simplicity) which
allows us to drop the various inhomogeneous terms
from the beginning. Again we take out an overall
delta function 6(p +p,+p:—P) from the G-function
and work with two internal 4-momenta for each of
the initial and final states defined as follows'®
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... (189)
... (190)

\[553=P1—P2§3773=_2P3+PQ+P2
P=p+p,+p=p+p,+ps

and two other sets &, 1, and &,, 7, defined by
cyclic permutations from '(189). Further, as we shall
consider pairwise kernels with 3D support, we
define the effectively 3D momenta p,, as well as

three (cyclic) sets of internal momenta
&, (i=1,2,3) by'™.
ﬁ/=p,‘_viP;£i:§i—siP;ﬁi_tiP ... (191)
Vv, =(P.p)/ P s, =(PE)I P, = (Pn.)l P2

.o (192)
\/§s3 =V =V 3 ==2vi v, 4V, . (193)

(+cyclicpermutations)
The space-like momenta p, and the time-like ones

v, satisfy'®

Pt D+ Pi=0vi+v,+v, =1 .. (194)

Strictly speaking, in the spirit of covariant
instantaneity, we should have taken the relative 3D
momenta &', 1" to be in the instantaneous frames
of the concerned pairs, i.e. w.r.t. the rest frames of
P;=p;+p;; however the difference between the rest
frames of P and P; is small and calculable, while
the use of a common 3-body rest frame (P=0) lends
considerable simplicity and elegance to the
formalism.

We may now use the foregoing considerations
to write down the BSE for the 6-point Green’s
function in terms of relative momenta, on closely
parallel lines to the 2-body case. To that end note
that the 2-body relative momenta are
qi=pi—pj)2= \/5(‘,‘,( /2, where (ijk} are cyclic
permutations of (123). Then for the reduced qqq
Green’s function, when the last interaction was in
the (ij) pair, we many use the notation
G(&ne: E4m'y), together with “hat’ notations on
these 4-momenta when the corresponding time-like
components are integrated out. Further, since the
pair &1, is permutation invariant as a whole, we
may choose to drop the index notation from the
complete G-function to emphasize this symmetry
as and when needed. The G-function for the gqq
systemn satisfies, in the neighbourhood of the bound
state pole, the following (homogeneous) 4D BSE
for pairwise gq kernels with 3D support:
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i2m)* GEmen) =
Y A4 [dgf,Mdo T, K (G, 47)GEMS: E3m3)
123

... (195)
where we have employed a mixed notation (g,
versus &;) to stress the two-body nature of the
interaction with one spectator at a time, in a
normalization directly comparable with eq. (176)
for the corresponding two-body problem. Note also
the connections
Op = \Esz 12, g, = \/553/2? 1y = = ps, etc.

... (196)
the next task is to reduce the 4D BSE (195) to a
fully 3D form through a sequence of integrations
w.r.t. the time-like momenta s; t; applied to the
different terms on the right hand side, provided
both variables are simultaneously permuted. We
now define the following fully 3D as well as mixed
(hybrid) 3D-4D G-functions according as one or
more of the time-like & 7 variables are integrated
out:

G(én; &y = 11 I(dsdrds dr GEn; Em')

. (197)
which is §;-symmetric.
Gy EREN) = [l(drdtiGENEm); ... (198)
G €&y =[ldsds\GERED);, ... (199)

The last two equations are however not symmetric
w.r.t. the permutation group S; since both the
variables £ 7 are not simultaneously transformed;
this fact has been indicated in egs. (198)-(199) by
the suffix “3” on the corresponding (hybrid) G-
functions, to emphasize that the “asymmetry’ is
w.r.t. the index “3”. We shall term such quantities
“Si:-indexed”, to distinguish them from S;-
symmetric quantities as in eq. (197). The full 3D
BSE for the G-function is obtained by integrating
out both sides of (195) w.r.t. the st-pair variables
ds,.ds'l.dt,.dt; (giving rise to an S;-symmetrtic
quantity), and using (197) together with (196) as
follows:

2y GEh: £ =

Y D) [ 'K G, dICE R €M)

. .. (200)
This integral equation for G which is the 3-body

counterpart of (186) for a gq system in the
neighbourhood of the bound state pole, is the
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desired 3D BSE for the gqq system in a fully
connected form, i.e., free from delta functions.

Now using a spectral decomposition for G
GEM €M) =Y 9,(En; Py (Ei's PYI(P* +M?)

... (201)
on both sides of(200) and equating the residues
near a given pole P’=-M? gives the desired
equation for the 3D wave function ¢ for the bound
state in the connected form:

(21)'¢(&1; P) =
S D) [ di,K (G )0 E s P)

- .. (202)
Now the Si-symmetry of ¢ in the ((&,, 7,) pair is a
very useful result for both the solution of (202) and
for the reconstruction of the 4D BS wave function
in terms of the 3D wave (202), as is done in the
subseciion below.

10.3 Reconstruction of 4D qqq Wave Function
We now attempt to re-express the 4D G-
function given by (195) in terms of the 3D G-
function given by (200), as the ggq counterpart of
the gq results (185)-(186). To that end we adapt
the result (185) to the hybrid Green’s function of
the (12) sub-system given by G, eq. (198) in
which the 3-momenta 7,7, play a parametric
role reflecting the spectator status of quark # 3,
while the active roles are played by g.q, =

V3(&,. £,)/2, for which the analysis of subsec.
10.1 applies directly. This gives

(zm)2G3n (SUMSUNE

D(§)4' 4G EMDD@]) &7 4,
where on the right hand side, the ‘hatted’ G-
function has full S;-symmetry, although for
purposes of book-keeping) we have not shown this
fact explicitly by deleting the suffix ‘3’ from its
arguments. A second relation of this kind maybe
obtained from (195) by noting that the 3 terms of the
right hand side maybe expressed in terms of the

hybrid G, functions vide their definitions (197),

... (203)

together with the 2-body interconnection between
((&;, &) and (&5, &) expressed once again via

(203) but without the ‘hats’ on 7, and 7] . This
gives
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(3m) Gy Em?)

= (3m)’G(¢En; &)

= Y &8 m3) [ dii,Mdo]K (4. 1)
123

X G(&ms; Em3)

= ZD(‘?H)A;]A?GK (53773; 6;1);)4".112‘_1

123

... (204)
where the second form exploits the symmetry
between &, nand £ 1".

At this stage, unlike the 2-body case, the
reconstruction of the 4D Green’s function is not
yet complete for the 3-body case, as eq. (204)
clearly shows. This is due to the truncation of
Hilbert space implied in the ansatz of 3D support
to the pairwise BSE kemel K which, while
facilitating a 4D to 3D BSE reduction without
extra charge, does not have the complete
information to permit the reverse transition (3D to
4D) without additional assumptions. The physical
reasons for the 3D ansatz for the BSE kernel have
been discussed in detail elsewhere®, vis-a-vis
contemporary approaches. Here we look upon this
‘inverse’ problem as a purely mathematical one.

We must now look for a suitable ansatz for 535
on the right hand side of eq. (204) in terms of

known quantities, so that the reconstructed 4D G-
function satisfies the 3D equation (200) exactly, as

a ‘check-point’” for the entire exercise. We
therefore seek a structure of the form
53@ (53773? fzn;) = é(ézﬁa? E.;ﬁ;)XF(Ps’ py)

... (205)

where the unknown function F must involve only
the momentum of the spectator quark # 3. A part
of the 75, 7n; dependence has been absorbed in the

G function on the right, so as to satisfy the
requirements of Si-symmetry for this 3D
quantity®’.

As to the remaining factor F, it is necessary to
choose its form in a careful manner so as to
conform to the conservation of 4-momentum for
the free propagation of the spectator between two
neighbouring vertices, consistently with the
symmetry between p; and p;. A possible choice

consistent with these conditions is the form:
F(py, p3) = Ci&'8(v;—V?) .. (206)
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Here A;' represents the “free” propagation of
quark # 3 between successive vertices, while C3
represents some residual effects which may at most
depend on the 3-momentum p,, but must satisfy
the main constraint that the 3D BSE, (200), be
explicitly satisfied.

To check the self-consistency of the ansatz
(206), integrate both sides of eq. (204) wur.t.
ds,dsdt,dr; to recover the 3D Sj-invariant G-
function on the left hand side. Next, in the first
form on the right hand side, integrate w.r.t.
ds.ds; on the G-function which alone involves

these variables. This yields the quantity 535. At

this stage, employ the ansatz (206) to integrate
over dt,dt;. Consistency with the 3D BSE, eq.

(200), now demands.
C_.‘”dv_zdv;Aglﬁ(v3 -v3) =1; (since: dt=dv)

... (207)
The 1D integration w.r.t. dvs may be evaluated as a
contour integral over the propagator A™', which
gives the pole at v, =@,/M, (see below for its
definition). Evaluating the residue then gives
Cy = in (Mad,); &7 = m, + p; ... (208)

which will reproduce 3D BSE, eq. (200), exactly!
Substitution of eq. (206) in the second form of eq.
(204) finally gives the desired 3-body
generalization of eq (185) in the form

3G(¢En; €m) = ZD(élz)AlFAzFD(q;z)Ax'FA;F

123
G Emldy s (Mrdy)) ... (209)

where for each index, Ap=—iA™' is the Feynman
propagator.

To find the effect of the ansatz (206) on the 4D
BS wave function @&&n, P), we do a spectral
reduction like (201) for the 4D Green’s function G
on the left hand side of (204). Equating the
residues on both sides gives the desired 4D-3D
connection between @ and ¢:

OENP) = Y, D)8 &'9(En; P)

123

. [8Vi-w,/M)
Mar4,

defines the 4D wave fn in terms of piecewise
vertex fns V; ,as

... (210)
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V+V,+V,

AMA,

From (210)-(211), we infer the baryon-qqq vertex
function V3 corresponding to the ‘last’ interaction
in the 12-pair as

V, = DG 9E Mx248WIM* -6 ... 212)

and so on cyclically. (The argument of the &
function inside the radical for V; simplifies to

(pi +m;). This expression is essentially the same

as eq. (5.15) of ref. [10b], which had been obtained
from largely intuitive considerations.

To account for the appearance of the 1D &fn
under radical in (212), it is explained elsewhere®’
that it has nothing to do with connectedness® as
such, but merely reflects a ‘dimensional mismatch’
due to the 3D nature of the pairwise kernel K'®
imbedded in a 4D Hilbert space. This in turn is the
result of the ‘contact’ nature (in time dimension) of
the pairwise interaction, somewhat analogous to
Fermi &fn potential to simulate the effect of the
(short range) nuclear n—p interaction in the
“molecular’ problem of (specular) neutron
scattering by a hydrogen molecule’’. As a further
self-consistency check, it is instructive to compare
(212) with one obtained by taking the limit of a
point interaction, which amounts to setting
K=Constant in the entire derivation above. This
sturcture*’ which is worked out in Appendix C, is
free from radicals, and explicitly 4D-invariant, in
agreement with the so-called NJL-Faddeev
(contact®) model”* of 3-particle scattering.

D(pp,p3) = .. 211

11 Fermion Quarks: QCD-Motivated gqq BSE

We now turn to the more realistic case of fermion
quarks for which we shall draw freely from a
relatively recent analysis® of a gqq baryon, which
is basically a 3-body generalization of Subsection
4.3 for the two-body case. For simplicity of
description, without sacrificing the essential
physics, we shall specialize to equal mass
kinematics (mass=m,).

11.1 3D Reduction of 4D qqq BSE
The starting 4D BSE has the form (c.f. (173)):
Qm)*y(pp,py) =
(Sc(p)Sp(p, )Zfd“%'z/((é;z» (};Z)W(pIPZP;)
. .. 213)
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where the kernels Kj; are given by eqs (54)-(55) for
each ij pair, except for the Casimir value of the
color factor F,;=A,.4,/4 for the 3 state of a qq pair
(to produce a color-singlet baryon), which is just
half its ‘singlet’ value for a gg pair. And of course
the DBxS mechanism is built-in as in the two-body
case of Sec. 4.3. The Gordon reduction of the
product of two y,-matices'® also goes through as in
Sec. 4.3, leading to>:
P(ppyps) =

Yy
QrytAA,

123

Jd“‘q{zv‘ﬁl)V;Z)V(c},z, G1)P(p' pyps)

... (214)
where, following the steps of Sec. 4.3, the
‘bosonic’ @-fn is related to the fermionic W¥-fn, as
in eq. (60), byl()b.l?b

w(p) =TI S (=p) @(p); A =m+p]
... (215)
while the 4-vectors V,ﬁ') are given by eq. (61)

Next, for the 3D reduction of eq. (214), we need
to define the transverse p, and longitudinal v,
components of the 4-momenta p;, as in Sec. 10.2,
eqs. (191)-(194), and multiply the pairs of V, -fns,

as in Sec. 4.3, replacing in the processes the
longitudinal componernts, v; by their on shell

values @./M, where a3i2=m3+f),-2 (ref. 29a),

uniformly from such products'®. Now define the

3D wave function y in the as in Sec. 10.2,
- 10b.29b
viz. .

v(ppyps) = fdsidt,.(D(p]pzp}); \/553 =Vi—V,,
3ty ==2vi+v, +v, ... (216)

The product dsidy; is cyclically invariant, so that
the definition (216) can be taken over for all the
three terms on the RHS of (214), with proper
indexing. The rest of the procedure 1is
straightforward, and follows closely the pattern
laid out in the original formulations. Thus one
integrates both sides of (214) w.r.t. ds;dt;, making
use of (216) as well as the measure
d4q',2=d3é’,2Mds'3s/§/2 to give on its RHS
[ds',dt@'=y(p', p', p;). The additional dss-
integration on the RHS is expressed by the
result'®:
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_@J‘Mds_g _ 2w
A4, D,
D, = "-le'l[(Mz(l—Va)z’ a’rz’w§]/2M2(1—V3)2
. @17)
218, = iyl o + iy @5
Py = Vs * o -} . (218)

2 T 2MP(1-vy)
where Vv; has its on-shell value @y/M in the
foregoing equations, as befits a spectator quark in
the first term of (214). The resultant 3D reduction
of (214) now takes the form:

w(PprP3) =
1F2F3 ;(27[) D12
x]d*q, VY VOV (G5, 312 W (P P2 )
. (219)

11.2 Reduction of 6D Harmonic Basis

The next task is to reduce eq. (219) to a more
transparent form suitable for numerical treatment
To that end we base our procedure on the
expected smallness of the Ss-invariant quantity
8=M—-w—w,—w; compared to @, and/or M. This
gives the crucial result:
Di=—4w,0,5+0(8); 6= wrto-M ... (220)
which ensures that in (219), all the three terms on
its RHS have a.common denominator & which,
when transferred to the LHS, serves as a natural
‘energy denominator’ for the entire gqq equation.
[Since the terms of Of &) in (220) are fully
calculable, any effect on their omission can be
estimated perturbatively if necessary]. Next, from

Sec. 4.3, the confining part of V(Gy» 41y) s
harmonic for (Ap=0), that a

perturbative treatment is possible, based on the
(harmonic) confining part of V(4, §'):

ud-quarks SO

=—(27r) W, [V +Col 0518 (§-4);

r ‘on qq

4M171u17au71w0a(M12) . (221

the definitions (218) for the
conform to their

qlt/’
In this formula,
fractional momenta [,

Wightman-Gaerding56 definitions for unequal mass
kinematics, a la eq. (37) of Section 4, since the
unequal masses arise from the mass-shifts mq—@;
of the quarks (1, 2) in the presence of the spectator
# 3. Since such shifts are small, it:is fairly accurate
to approximate the fractional momenta as (1-v3)/2
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each, while M;;=M-w; only. Now to emphasize
the 3D character of the various momenta, define
the pairwise items:

L, =-ig,; XV.,’ Vi,=V,-V,;2q,=p - Py

O, = 4qlzzvlzz +8¢,,.V,, +6 . (222)
Also to take full advantage of the HO form (221),
recast the (small) energy. denominator & in the

alternative form*”
-2M$6 = (w, + W, +(1)3)2 -M?< 3((1)12 +(A022 +a)32) =
A=9m] +9E>+n*)/12-M* . (223)

The resulting ‘Master Equation’ (219) is in

pa1rw1se notation””:
- (W + WOGE )wwam

con
2.8
vy)aLM

=Mw02(1—

123
C

x| Vi +—2% <
0)0

0, C i
—jz——w—:%-—L,z(O'l +0,)+ > Ps

XV]Z(GI +02)_0162]

NCT} ... (224)
wle

NCT =
. (225)

and the OGE term in a ‘mixed’
representation is [29b]:

am
Woge = ——

[
L ! + I [412L'412+”53(’12)}1_251 -6, /3ytetc
rp w1w2 r12

r, p

ay,
123

. (226)
The OGE-term if calculated perturbatively in a 6D
HO basis given by the main confining term in
(224)*®, which in a common (& 7) basis™®
provided by eqgs. (189)-(194) of Section 10,
reads”™:
Ay = My (1-V)’ & (M - D)
Co(M? —m} +A)

wa)gﬁz

2 2
2V,, +2V5 +

O, —8JS +18
+ =8 o7 ]‘I’

. (227
where the operators QB, etc. are defined in ref.
[29a], and the symbols (o, @, v) with ‘bars’"
represent their ‘average’ values®®. From this H.O.

equation, the scale parameter 3, analogous to the 2-
body quantity (66) may be inferred as™®
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B* =4Mwla,(1-v)* (M -@)/9;
a, =@ -2C,M(1-v)* (M -@))

... (228)

so that the basis function 4 in its ground state is
exp[-+(& 2+n?)/B?); similar functions exist for

L-excited states®, providing a basis for pertur-
bative treatment®™ of the OGE terms (226).

11.3 Complex HO Basis for qqq States

It is however mathematically simpler to convert
eq. (227) to a complex basis. To this end we define
the complex dimensionless 3-vectors z;, z*, and
their (derivative) conjugate momenta azl , as

V2Blz; )= ¢ £in;;
V2B7'0,;0,.1=9;, Fid,

For the construction of angular momenta in
complex basis, see Appendix D.

A more convenient basis for handling the
various terms in (227) is provided by the
creation/annihilation operator representation””™ %
defined by two sets of complex operators

... (229)

* * T *
\/Ea,- =z;+0l +; \/Ea, =z, +0,; «/Eaf =z =0, .

J2q =z~
which satisfy the commutation relations

.. (230)

[ai’ a}]:[a:’aﬂ]:é‘y .. (231
with all other pairs commuting. In the next

subsection /1.4, we define the number operators N,
and N, which now play the role of N and N, but

unlike the latter, the former can be simultaneously
diagonalized; so their sum » and difference N, are
both constants of motion. Together with certain
two-step operators, they form several sets of SO
(2,1) algebras (described below), which
diagonalize the momentum dependent operators
(s, etc, in terms of their respective Casimirs‘“’b, SO
that the solution of eq. (227) takes a simple

algebraic form™":

F(M’ N)EFcon(Ms N)+FOGE(M,N)=N+3
.. (232)

.where the first term is given by Eq. (55) of (29b),
while the second term lends itself to a simple
perturbative treatment (see [29b] for details).
Appendix D gives a summary of the normalized

’
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SU(6)xO(3) structures of the 3D y~fns in the
complex basis, which are needed for calculating the
Fye term of eq. (232) above.

11.4 SO(2, 1) Algebras of Bilinear Operators

We start by defining the number operators
N., N., and the mixed quantities N,,, N, *®
N, =a,Ta,-; N: = a;Ta:; N, = aia:T;
N L =N :,, = a;a;r
and their linear combinations
N=N.+N,=N;+Ny N,=N,—N_ ..(234)

..(233)

Note that both N and N, are simultaneously
diagonal in this (complex) representation, while in
the real (& 7)) basis, only their sum is diagonal.
Next ggﬁne the two-step operators (and their
h.c.’s)™:

_ *. _ C C* = g
A=2a4a;; C=aa; C*=aq
¥ * *+
A =24'a’";, ¢t =dfaf; C :aifai

[t 17

... (235)

Now the trio 4, A" and N form an S;-symmetric
set, whose normalized forms

0,=4"12, 0. =-4/2; O3 =(N+3)/2
..(236)

form an SO (2, 1) algebra (bounded from below
with the Casimir’*®
u+1)=Q* = ~(44T + AT 418+ (N +3) /4

- (237)

where u(u+1)=+3/4) for even N and +2 for odd N,
while the eigenvalues of Qs are —utk, (with
k=0,1,2, ...). These imply that z=3/2 and =2 for
even and odd N respecﬁvely. Similarly the mixed
symmetric set (C, C', N.) form an SO(2, 1) algebra
in the normalized form*®

0. =C'/% O ==CI% O = 3N +312)
...(238).

with the corresponding Gasimir*

u.(u, +1)=Q2 = —(cc’ +Clc)/8

.. (239)
+(N,+3/2)*/4 _

This spectrum is again bounded from below’, with
the eigenvalues QO ;=—u,+k, where u.=-¥, for even
N. and u,=+5/16 for odd N.. An identical structure
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holds for the “starred’operators (C*, C", N : ), with
the the trio
(Np» N,’:, = N;,, N,) which is S;-antimmetric,
satisfy a ‘normal’SO(3) algebra*®®.
[N,, N,J=2N,; [N,,N,]

=-2N};[N,, N,]1=-N,

same eigenvalues. Finally

... (240)

with spectra bounded from both above and below.
The corresponding Casimir is

s(s+1)=(N,Ny + NIN,Y/2+ N2/4 . (241)

The spectrum is here determined from the

condition that both N, and N: are non-negative

integers. The result is*®

~N<N,<N; s=N/2 .. (242)

11.5 “Exotic” qqq States

The comparison of eq. (232) with the baryon
spectra is described at some length in®®, and it is
not our intention here to go into these details
afresh. Instead, we shall end this Section with some
qualitative analysis on the capacity of this model to
identify some exotic baryonic states which have for
long remained elusive. The main reason for such
optimism stems from the precise predictions on the
‘spectroscopic’ locations of the states on the one
hand, and the possibility of making more reliable
SU(6) ® O(3) assignments for such states on the
basis of their decay characteristics which the model
also allows within its broad framework. To see the
logic, a good calibration is first provided by the
fairly accurate location of several ‘known’ states in
a parameter-free manner; see Table I of™® for
comparison. With this first check, a more sensitive
test is now a comparison of the alternative SU(6) ®
O(Q3) assignmeats for the mass locations of the
same states; see Table Il of*™. Specifically the
competition is between the 56, odd™ and 70, odd
assignments for A-like states for the same total
quantum number N. The question is clearly of
physical interest since in the entire history of
baryon spectroscopy 56, odd states have suffered
from popular perceptions of elusiveness, despite
occasional attempts to the contrary’’. The analysis
in®® suggests that the 56 assignment has a slight
edge over 70, at least for a couple of odd-parity
states by virtue of ‘location’, but a more sensitive
test requires a more detailed comparative study of
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the decay and/or production characteristics that
these alternative assignments provide, a vis-a-vis
the data (which are still elusive). In this respect it
was shown in”® that the general mechanism of
‘direct’ versus ‘recoil’ modes of single-quark
transitions*®, do nor inhibit in any way the
production of natural parity 56  states w.r.t. the
corresponding 70" states, (perhaps contrary to
popular beliefs).

11.6 CIA vs CNPA for Fermionic qqq Dynamics

In the foregoing we have mostly described the
CIA predictions® on the baryon spectra. How
about the corresponding ggg-scenario with the
other MYTP-governed CNPA dynamics whose ggq

counterpart has been employed in Sections 4-6 ?
The reason for avoiding this exercise for the ggq
problem is one of pedagogical necessity. For from

the results of Sections 4-6, it has been fairly clear
that the earlier NPA treatment*® based on the old-
fashioned NP-language® formally provides the
same CNPA structure of 3D BSE as well as 4D
vertex functions for gg systems, so that a similar

qqq structure should be expected. In this respect,
the baryon spectral results® based on the old-
fashioned NPA treatment are already available in
detail’®, and the comparison with the CIA
treatment™ shows considerable overlap therewith.
As for the reconstruction of the gqq vertex functior:
under CNPA, a closely analogous treatment akin to
Section 10 formally leads to almost identical
resuits, with the CIA-CNPA correspondence
already indicated in Section 4.

How about the reconstruction of the 4D g¢qq
vertex function for fermion quarks? Again the
treatment, which is analogous for both CIA and
CNPA, consists in reducing the fermionic structure
to an effectively scalar problem via eq. (215) which
relates the fermionic BS wave function ¥ to the
‘scalar’ function @ fits in smoothly with the
treatment outlined in Section 10 for spin zero
quarks, with almost no change, thus rendering
unnecessary another fresh formulation for
fermions. As for quark loop applications to the ggq
problem, the general problem of ‘Lorentz
mismatch’ of 3D wave functions in a quark-loop
integral, that had led us to abandon the CIA
treatment in favour of CNPA for the gg problem

(see, e.g., Sections 5-6), is also encountered in the
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qqq case, so that it is profitable to adopt CNPA*!
for baryonic transition amplitudes as well.

The only exceptions are two-loop integrals, as in
the self-energy problem (Sec. 7), or one-loop
integrals, as in the vacuum condensate problem
(see Sec. 8), where this pathology is just avoided.
Full-fledged baryon-loop calculations’ are still
being developed, so such topics are not intended
for a detailed coverage in this article, except for
indicating the results of a recent calculation of
SU(2)n-p-mass ~ splitting” analogous to the
treatment of pseudoscalar mass splittings (Sec. 7)***
by this method. Thus, using the same value
(4 MeV) of the ‘current’ d-u mass difference, the
total n-p mass difference works out as 1.28 Mel”,
to be compared with the experimental value of 1.29
MeV?,  except for possible QED gauge
corrections®. On this last item, an indication of the
expected correction is available from its effect on
the Kaon e.m. mass difference, which yields a

~60% upward revision on its (uncorrected) value
of about 1 MeV**; see Appendix C for an
estimation of this correction. If this value for the
kaon case is taken as rough indication of the same
effect expected for the nucleon case, then (on a
proportionate basis) the QED gauge corrected
value for n-p mass difference comes down to ~1
MeV. For details of this methodology, see ref [95].

12 Summary and Conclusions

In this article an attempt has been made to present a
somewhat ‘less than conventional’ BSE-SDE
formalism based on the Markov-Yukawa
Transversality Principle (MYTP)" on the one
hand, and a strongly QCD motivated 4-fermion
Lagrangian which generates the BSE-SDE
framework by breaking its chiral symmetry
dynamically (DBxS)*?, on the other. The MYTP
mechanism provides an exact interconnection
between the 3D and 4D forms of the BSE, so that
both can be used interchangeably, a facility which
does not seem to exist in other alternative 3D BSE
formalism®®, or the null-plane formulations-both
non-covariant”> and covariant’®®®. This twin
property of the MY TP-governed BSE formalism',
termed 3D-4D BSE for short, gives rise to a natural
‘two-tier’ description‘“), the 3D sector (with its
relativistic ~ Schroedinger-like  BSE) - being
appropriate for making contact with the hadron
spectra’®, while the reconstructed 4D BSE yields a
vertex function which allows the direct use of the
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language of Feynman diagrams for evaluating
transition armplitudes as 4D loop integrals. (This
contrasts with other 3D formulations® which
require specialized versions of Feynman diagrams®’
for calculating loop integrals).

At a more quantitative dynamical level, both
qq and gqq hadrons are amenable to a unified

treatment, since their respective BSE’s emanate
from a common (input) chiral 4-fermion
Lagrangian with a gluon-like propagator whose
‘color-factor’ has the right relative strengths for
both systems. And while the 3D-4D structure of the
g7 BSE'®*, as well as the 3D reduction of the qqq

BSE”, have been around for some time, the
missing link of a reconstructed 4D BS wave
function for the gqq system (only conjectured in'®
has now (hopefully) been supplied through a
formal derivation in Sec. 10 via Green’s Function
techniques’’. Indeed the main emphasis in this
Article has been on the ‘second stage’ of this two-
tier formalism, relating to the calculation of 4D
quark-loop integrals, of which some selected
examples have been given in Secs. 5-7 to bring out
the feasibility of its applications to the meson
sector. The corresponding applications to baryonic
amplitudes via loop integrals are still being
developed, and only a ‘pilot’ example, relating to
SU(2) mass splitting®, is as yet available. However
the scope (and feasibility) of such applications is
quite substantial®.

The capacity of this BSE-SDE formalism to
relate its parameters to the ‘vacuum condensates’
of QCD-SR theory® has been sought to be brought
out in Sec. 8, wherein it has been shown that
several types of condensates (both direct and
induced) lend themselves with great ease to this
simple treatment’’, while the corresponding QCD-
SR treatments®*** often need additional ansatze for
their evaluation. This facility it owes to its (input)
gluon propagator on the one hand, and the
(derived) mass function m(p) from the SDE

solution'' on the other. The two fundamental
parameters'' of the infrared gluon propagator are
not calculable within this (Bethe’s Second
Principle oriented) framework, but they are firmly
rooted in spectroscopy, as their contact’®? with
data reveals. Indeed the performance of this
spectroscopy-oriented BSE-SDE framework in
predicting the vacuum condensates, can be directly
attributed to its off-shell structure.
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An important (new) aspect of this Study has
been a demonstration of the powers of MYTP
extending from its/ original mandate”® of
transversality in terms of Covariant Instantaneity’
(CIA)'*", to a wider ‘transversality’ on a
Covariant Null Plane (CNPA)*, thus vastly
enhancing the applicability of this important
principle. In this article, we have tried to present
both CIA and CNPA on very similar lines, but the
mathematical viability of the Latter' seems to
exceed that of the former'®, in as much as a CIA

treatment of triangle (and higher) loop integrals is

fraught with problems of ‘Lorentz mismatch’ of
different CIA wave functions, leading to ill-defined
integrals due to the presence of time-like
momentum components in the
exponential/gaussian factors inside the integrals
concerned’’. This problem, which has been known
since the FKR paper”, is properly circumvented in
CNPA, except for the (less serious) problem of
dependence on the ‘null-plane orientation’ which
can be tackled through other means, e.g., a simple
device of ‘Lorentz completion’ which yields an
explicitly Lorentz-invariant structure. This has
been illustrated in Sec. 5 for the pion form factor
which shows the expected high energy behaviour
as well as very reasonable results’* in both the
high and low energy regimes. For more general
three-hadron amplitudes’ too, similar calculations
in Sec. 6 show that the anomalies of ill-defined 4D
loop integrals are absent in a CNPA treatment. The
osnly exceptions are two-quark loops™ (Sec. 7),
where both methods, CIA and CNPA, work.

Clearly, the MYTP is a very powerful Principle
which helps organize a whole spectrum of
phenomena under a single umbrella. It has been
possible to study only a very few (though
illustrative) examples to bring out its powers, but
its potential is vast, and warrants many more of
such applications. More importantly, the 3D-4D
structure of BS dynamics provided by MYTP takes
in its stride the spectroscopy sector as an integral
part of the dynamics, as envisaged long ago by
Feynman ert al®.

A good part of the logic behind this Article was
evolved during my tenure of an INSA
Professorship (1989-94), while the actual contents
of this Article include both published and
unpublished material developed subsequently, in
my capacity as a freelance workers (unattached to
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any Institution), as part of an ongoing research
process.

Appendix A: Derivation of F (k) and Ny, for P-
meson
In.this Appendix we outline the main steps to the
derivation of the P-meson form factor (81), as well
as the Normalizer (80), given in Sec. 5 of Text.
Collecting the various pieces after p,,-pole
integration, gives for (73)

F(k*)=2(27)’N,(P)N,(P")m,

2.2 R
x IdzqidzzP.ng(zz)e L f(z,)) B

=2} .. (243)
f(z22) = M20i216,23 — 2,K%my + O m3k2 1 4);
.. (244)
D, +D, = 4Pnlg} + MX(z; -2k’ 12 ) o
+mik* 1 4)/n, - A14M?];
D +D M'+m
=— +h(z,); .. (246
8@ == e ) (246)
= 2P n(nm. — M?— 2
h(z,) =2P n(m, - z,)[ om e

MM = M? =K 12)[(M? + k*14)]

The integration over g, and z, are both routine,

the latter with a translation z; — 2z, + %rhzkz /6y,

to reduce the gaussian factor to the standard form.
Note that, unlike the conventional (Weinberg)
form®® of light-front dynamics, the present 4D
form which permits off-shellness of the internal
momenta, does not restrict in principle the limits of
z, integration. Thus after the translation, the odd-z;
terms can be dropped, and f{z,) reduces to

f(z,)=M?236, I} + (Mm,k)* /46, .. (248)

while the g-function is a sum of two pieces g,tg>:

g = 77/([‘]i +M22§/77k

+ lMzn‘é/?(l +3k214)16} .. (249)
4
—A/4M2(1 + Sm® I MY,
g, = 2n,(M* - 6m*)m, /6, 250)

+2(6m* = M* —k* 12)ymin; 16,
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Before writing the final result for F(K), it is
instructive at this stage to infer the normalizer Ny
of the hadron, obtained by setting k,=0, and
demanding that F(o)=1. This gives after some
routine steps:

N, (PY? =2MQry (Pn/ MY jd%je"?z’ﬂzG(O);
.. (251)
G(0) = [(1+ 6m> I M*)§® - A/4M?)

+ 2y (M? - 5m*))

where g =(q,, Mz,) is effectively a 3-vector, in
conformity with the requirements of the angular
condition™* *® which gives a formal meaning to its
third  component ¢ =M.gq.n/P.n=Mz,.  The
normalization factor N,(P) is also seen to vary
inversely as P.n, while the multiplying integral is
clearly independent of the NP-orientation n,. To
exhibit this P, indepdendence more explicitly,
define a ‘reduced normalizer’ Ny which equals

N(P)xP.n/M and gives for N,?],2 the Lorentz-
invariant result, eq. (80) of Text.
Now insert the result N,(P)=MNy/P. n on the
RHS of (243), and note, via eq. (75) that
M*/Pn P'n=M*/(Pn)n; n, =1- k4.
.. {253)

.. (252)

One now checks that the factors P cancel out
completely, and the evaluation of the gaussian
integrals leads after a modest algebra to eq. (81) of

Text, where G(/Q ), after collecting from eqs (248),
is given by

G(k) = (1+ 6m” I MPYh(k) + 2(M? = 5m* ), 16,

+ 203,07 (dm* - M? —k?/2); (254)
hk) = (1+ k% /26,) % - A/ 4M*
+ (Mingk 126,)*(1+ 2 k2);, .. (255)

om=m; —m,.

Appendix B: Gauge Corrections to Kaon E.M.
Mass

We outline here a practical procedure to evaluate
the gauge corrections to the e.m. self-energy of a
qq system, vide Fig. 1b of ref. [18a]. For brevity

we shall refer to the figures of KL® in their
notation without drawing them anew. Thus Fig. 1b
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of ref. [18a] corresponds to fig. 1a of KL, except
for the presence of the hadron lines at the two ends.
We shall call this simply  “la’, with the
understanding that the hadron lines are ‘attached’
to la. For the actual mathematical symbols
(including phase conventions) we shall draw freely
from'®?, without explanation. In'®?, only 1a of KL*
was calculated, but now ‘one must add 2(a,b,c,d,e)
of KL%, all with hadron lines undetstood at the two
ends of each. There is no need to calculate 1b or 1c
of which are mere e.m. self=energies of single
quarks (g.i.by themselves), and are routinely
absorbed in quark mass renormalization (of little
significance in this study which has these masses as
inputs).

A new ingredient is a 4-point vertex in each of
2(a,b,c,d), and two 4-point vertices in 2e, except
that the word ‘point’ is now understood as an
extended structure characterized by the hadron-
quark vertex function D(§ )@ g ) where one must

insert a photon line in each such Hgg blob. Since

it is not a standard point vertex, the method® of
inserting exponential phase integrals with each
current is not technically feasible; instead we may
resort to the simple-minded substitution preA(x))
for each 4-momentum p; (in a mixed p, x
representation) occurring in the structure of the
vertex function, which has the same physical
content, at least up to first order in the e.m. field,
without further comment. This amounts to
replacing each g, occurring in /(g )= D(@)$(g).

by q,—e;A4,, where e =me —me,. The net

result in the first order in A4, is a first order
correction to /{ g ) of amount eqj(é). A defined by

J(@)-A=—4Mg.AJ(G)(1 - D(G/(4MB)) ... (256)

(The effect of the hat structure of ¢ on the e.m.

substitution 1is ignored in this approximate
treatment). This effective 4-point vertex function is
operative at one end in each of 2a,2b,2¢,2d of KL®
and at both ends of 2e. For the e.m. vertex at the
quark lines of 2(a,b,c,d), we use simply ie;y.4, as in
ref. [18a]. The matrix elements can now be written
down on exactly the same lines, and the same phase
convention as in ref. [18a], to keep proper track of
the gauge corrections with sign. We need write
these down only for 2a and 2e, noting theequalities
2a=2b, as also 2c¢=2d, and the further substitutions
(1) > (2) and vice versa to generate 2¢(=2d) from
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2a(=2b). The contribution from 2a* to the e.m.
quadratic self-energy of a kaon is expressible as

Mzza = Nf, (27:)_5 ee,
x (@), D@8 )TrlysDp, (k)

Sp(py—ik)iery Sp(p)ysSe(-p)ld qd 'k

.. (257)

where p; = p; +myk and p, = py = py —nyk  are
the 4-momenta of the quarks at the other (right-
hand) end, and the photon propagator in the

Landau gauge is —i(5,,, —k,k, /k*)/ k2. 1t is now
convenient to change the variable from k, to g,
which
d*k =d*q'/ 3, etc. This shows that Fig. 2a(=2b),

where the photon line ends on the heavier quark
my, gives a bigger contribution than does

noting  that  g'=gqg+mk, gives

Fig. 2c(=2d) which would give m* arising from

the d*k —measure. Evaluating the traces, and
integrating over the poles of the two time-like
momenta ¢, and q; gives for the sum of the
contributions from 2a-2d to the quadratic mass
difference between K° and K as a product of two
3D quadratures after some simplifications with
factorable approximations a 1a'*:

6N, Md(ee,)

oM, 3 3
Q2ry m,

2a-d)

< [dq a2 [1 D (‘1)2}
9q'o, | AMP

x[(G*(2-4/7)—¢q'/3)(M* - 6m’

+ D@ 12+ D(§)w, " 2)

+ Liingd (D(@§)w;" 12+ M* - m°)]

+[l & 2] .. (258)

Here S(eje,)is the K° minus K difference

between the indicated charge factors associated

with line ‘I’, while w,?2=m12’2+c}'2 and

2 An D
Cl)lzk =m +(q—mlk) .
Next the contribution to oM 2 arising from Fig.

2e of KL® which involves the product of two
vertex blobs like eq. (256) is given by
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dM;, = iN},r) e} [d'qd kD)
x j(@),J(@), TrlysSr(p, — mk)ys

X Sy (=p, +myk)] ..(259)

This integral is somewhat different in structure
from (257) in as much as &, is fully decoupled from
either wave function @,¢', both of which have the

same argument g . This makes it possible to

integrate first over d'k as well as the time-like
component g, of g, neither of which is involved in
the vertex function. The relevant integra] after
tracing and rearranging has the form

F(§) = 3(=i)" [d'k [dg,k *(8,, — kK, /1K)
[G* — g2 + mm, — g, (P~ k)*1/(AA,)

... (260)
where 4, = m? +(p, - k) . The integral which
is entirely convergent works out after some
standard manipulations involving Feynman

techniques as well as differentiation under integral
signs as

F(q) = 6x’[mm, +q° + A)

% (WA = A — iy e, M?] [(siy i, M)

.. (261)

where A = mm,M? + D(G)/2M . And the final
expression for (259) in terms of (261) is

M3, = Nj2m)*8(e)) [d°3i(§) F(§) .. (262)

Further evaluation of (258) and (262) can be
made a la ref. [18a] in straightforward way. The
key ingredients are

Seje, =0.236¢°; de,e, =0.139¢”; 8] = ~0.0294¢2.
... (263)

The break-up of the final results for the
diagrams 2(a-e) after dividing the results of

(263) and (262) by 2M, since
SM? = 2M68M, is (in MeV) :
oM, _p =—0.6996; OM,. ., ,; =+0.1358;

2a=2b 2¢+2d (264)

SM,, = ~0.0481; 6M,,, = —0.612MeV .

All these corrections, which reinforce one
another due to a complex interplay of signs, add up
to a figure which increases the value —1.032. MeV
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due to Fig. 1(b) of ref. (18a), to —1.644 MeV,
roughly a 60 percent (negative) increase, which is a
rough indication of the type of QED gauge
correction to be expected from such diagrams.

Appendix C: A 4D NJL-Faddeev Model

We summarize here the results of a simplified
4D NJL-Faddeev bound state problem®*’, with 3
scalar-isoscalar quarks interacting pairwise in a
contact fashion, a la NJL*. It is merely a special
case of 3D-4D-BSE when its kernel K becomes a
constant A. For ease of comparison, we employ the
same notation and phase convention for the various
quantities as in Secs. (4, 9), but in view of the
bound state nature of the problem it is enough to
work with the 4D BSE for the wave function only,
without invoking Green’s functions. We start with
the gq problem as a prerequisite for the solution of
the ggq problem.

C.1 qq Bound State in NJL Model

The BSE for the 4D wave function @ for a gq
system may be written down for the NJL model:

iQr)' ®(q,P,) = A'AA jd4Q;2(D(q;zP12) .. (265)

where A is the strength of the contact NJL
interaction for any pair of (scalar) quarks. The
solution of this equation simply reads as®’

D(qi2Ry) = AK' &' - (266)

when plugged back into (265), one gets an
‘eigegvalue’ equation for the invariant mass

M} =-P5 of an isolated bound gg pair in the
implicit form of a determining equation for A:

X' =—iQry* [ dia's;) = h(M,) .. (267)
where 4, = mg' + q2 —M3/4 +q.B,, and we

have indicated the result of integration by a
function A(M;) of the mass M, of the composite
bound state (diquark). Unfortunately the integral
eq. (267) logarithmically divergent, but it can be
regularized with a 4D ultraviolet cut-off
A, together with a Wick rotation, i.e., gy — igy,

which is allowed by the singularities of the two
propagators. The exact result is:
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16747 = 1+ In(4A2 I M3) .

1Mm; - Mﬁ
2-—————arcsin (M4 /2m,)

M,

.. (268)

under the condition M, <2m,. A slightly less

accurate but much simpler form which is also
easier to adapt to the gqq problem to follow, may
be obtained by the Feynman method of introducing
an auxiliary integration variable #(0 <u<1) to
combine the two propagators, followed by a Wick
rotation and a translation to integrate over d'q
(ignoring surface terms which formally arise due to
the logarithmic divergence):

642
———— —1=167"h(M,),
6mq - Md

1672227 = In
... (269)

Thus defining a diquark ‘self-energy’ function
h(M) where the ‘on-shell’ value is M=M, Eq.
(269) also provides a determining equation for the
NIJL strength parameter A in terms of the ‘diquark’
mass M, and the cut-off paramter A, in a clearly 4D
invariant form.

C.2 NJL-qqq Bound State Problem

We now set up the corresponding NJL-gqq
problem under the same g-q contact interaction
strength A. Using the same notation for the various
4-momenta and propagators as listed in Sec. 10, the
4D wave function @(¢, n; P) expressed in terms

of any of the S; invariant pairs(g;, n;) of internal
4-momenta satisfies the BSE:

iQr)' D&, 7, P) = Y AN, [dq,®(&,. n,: P)

123

(270)
where the arguments of @ on the LHS are not-
indexed since it is S;-symmetric as a whole, while
those on the RHS are indexed in order to indicate
which subsystem is in pairwise interaction (see
explanation in Sec. 10). The solution of this
equation may be read off from the observation the

q;z = \/5‘53 12 the
respective integrals as functions of 7, only, where
i=1, 2, 3. Thus ref. [87b].

O, 1 P) = ) A'AF(n,)

123

integration  w.r.t. leaves

. 271)
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where F'is a function of a single variable 7. Next,
plugging back the solution (271) into the main
equation (270), gives the following integral
equation in a single variable 7; as a routine
procedure applicable to separable potentials®™

(h(M,)~ H(M,)F(7,) = ~i(27) ™ &' [d*q;,)A7"

+(1o2)] . (272)
Note that the cut-off parameter A drops out from
the LHS, as checked by substitution for

h(M) from (269). This means that the 4D diquark
propagator  (hW(Md)-h(M,))" is formally
independent of the cut-off A, in this simple NJL
model. A

Next, the meaning of the function F(7) can be
inferred from an inspection of eq. (271), on similar
lines to 3D*® or 4D studies: F(15)is the 4D
‘quark(3)-diquark (12)’ wave function which is
generated by an exchange force represented by the
propagators A'l_l and A'Z' ! in the first and second
terms on the RHS respectively. And the baryon-
qqq. vertex function V5 corresponding to a break-up
of the baryon into quark (3) and diquark (12) may
be identified by multiplying this quantity with the
product of the inverse propagators of quark (3) and
diquark (12).:

Vi=V(m)=Af(m)F,)
where the diquark inverse
reexpressed as

f(m) = h(M,)-h(M,;)

6m; +1; —AM; /9
6m: -M;

making use of eq. (269) and the kinematical

relation 4; = m; +n-M j%; /9, where My is the

.. (273)
propagator is

.. (274
=@r)tin 274)

b

mass of the bound ggq state, and i=1,2,3. The
quantity V3 of eq. (273) may be compared directly
(except for normalization) with the corresponding
‘3D-4D-BSE’ eq. (212).

C.3 Solution of the Bound qqq State Eq. (272)

We now turn to the Lorentz structure of the NJL-
gqq equation (272), as well as an approximate
analytic solution for the energy eigenvalues of the
bound gqq states. To that end we substitute (273) in

(272) to give an integral equation for (1), with
1, = n for short
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Vi) = -2i@m) " [d*nv(mf oy x (my + 7
~Mp/9) (ml + (i +m)? - MF/9)!

.. (275)
where the factor 2 on the RHS signifies equal
effects of the two terms on the RHS of (272). For a
bound state solution of this equation, with
M, <M, +m,, the singularity structures permit a

Wick rotation 7, — in, which converts 7 into a

Euclidean variable 7. This shows without further
ado that eq. (275) is 4D-invariant just like its gq
counterpart eq. (267). This is not quite the same
thing as the old result'* on O(4)-like spectra with
harmonic confinement in the limit of infinite quark
mass', since this NJL-Faddeev model of contact
interaction, patterned after similar approachs®,
lacks a confining interaction, so that although in
principle eq. (275) predicts a spectrum of bound
states at the gqq level (starting with NJL (contact)

pairwise interactions), such spectra cannot be a
realistic representation of the actual hadron
spectra”’. We now show how this comes about via
Wick rotation in (275).

For an approximate analytic solution of eq.
(275), note that the logarithmic function f(n) in
the integral appearing on the right is slowly.
varying, so that not much error is incurred by
taking it out of the integral and replacing it with an
average value W(7n),provided any further
logarithmic dependence on 7 is also similarly
treated for consistency. The integral is now exactly
of the type (267), i.e., logarithmically divergent,
and can be handled successively by Wick rotation,
Feynman auxiliary variable u, and a translation.
The result is again of the form (269), and after
cancelling out the factors ¥(75;) and V() from both
sides, the eigenvalue equation reads:

A2

-1
n3/6)+my - M3 /27

(f(m) =2(47)?|In <

... (276)
To simplify this equation, we express all
quantities in terms of the A(M) functions given in
(269) and (274) and ignore the difference between
n = nand 7 inside the logarithms, to give
h(Md) ‘»'h(Mlz) = 2h(M|2 );

) .. (277)
= A" = h(M,) =3h(M,,)
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The last equation brings out clearly the fact that
the baryong binding comes about from three pairs
of gq interaction, albeit off-shell, since the function

<M122>=<n32>—4M129/9 still depends on the

(average) value of 77. The qualitative features are
thus on expected lines, but this oversimplified
model is not intended for a realistic fit to the
nucleon/Delta masses (which at minimum require
the introduction of spin-isospin d.o.f.), beyond the
general feature of a quark-diquark structure that
characterizes an NJL-Faddeev approach®, as
expected from any separable potential®”®, of which
the NJL model is a special case.

C.4 Comparison of NJL-Faddeev with 3D-4D-
BSE

We end this Appendix with a comparison
between the vertex functions (212) and (273). The
NJL-Faddeev form (273) of V; is Lorentz invariant,

being derived from a BSE with a constant kernel,
viz. the K=const limit of 3D-4D BSE'®. Its quark
diquark form merely reflects the ‘separable’ nature
of the NJL model”. there is no motivation here for a
3D BSE reduction, or 4D reconstruction, since 4D
invariance is in-built throughout.

In contrast, the vertex function (212), obtained
from 3D-4D-BSE*, is merely Lorentz covariant
due to the 3D kernel support, but the derivation is
otherwise more general than NJL-Faddeev, since it
is valid for any spatial form of the kernel as long as
it is 3D in content. This leads to an exact 3D
reduction of the (4D) BSE whose formal solution is
a 3D wave function ¢(£,7), a function of rwo
independent 3-momenta'®, in contrast to its NJL
counterpart F(7;) in (273) which is a function of a
single 4-momentum 7 only. The denominator
function (D(q;;) of (212) similarly is a 3D
counterpart of the corresponding 4D inverse
propagator f{7;) in (273). Finally the big radical in
(212) corresponds to the inverse propagator 4; in
(273), except for its more involved structure, which
we now seek to explain.

While the ‘zero extention’ in the temporal
direction is common to both approaches, NJL-
Faddeev has also a zero spatial extension, while
3D-4D-BSE has a ‘normal’ spatial extension. Thus
any ambiguity in the reconstruction of the 4D wave
function from the 3D form of the 3D-4D BSE,
vanishes in the K=const limit, so that the same is

AN MITRA

directly attributable to the (mere Lorentz covariant)
3D form of the BSE kernel. Indeed the 1D&
function in (212) fills up an information gap in the
reconstruction from a truncated 3D to the full 4D
Hilbert space in the simplest possible manner,
while satisfying a vital self-consistency check by
reproducing the full structure (200) of the 3D BSE.
This already lends sufficienty to the ansatz (206)
which leads to (212). As to its ‘necessity’, this
ansatz has certain desirable properties like on-shell
propagation of the spectator in between two
successive interactions, as well as an explicit
symmetry in the p; and p’; momenta. There is a fair
chance of its uniqueness within some general
constraints, but this is still short of a formal ‘proof
of necessity’.

The other question concerns the compatibility of
the 1D J&function in (212) with the standard
requirement of connectedness®. Both the &
function and the 4 propagator appear in rational
forms in the 4D Green’s function, eq. (209)
reflecting a free on-shell propagation of the
spectator between two vertex points. The square
root feature in the baryon-qqq vertex function
(212) is a technical artefact corresponding to an
equal distribution of this singularity between the
initial and final state vertex points, and has no
deeper significance. Furthermore, as the steps in
Sec. 10.2 indicate, the three-body connectedness
has already been achieved at the 3D level of
reduction, so the ‘physics’ of this singularity,
generated via eq. (206) must be traced to some
mechanism other than a lack of connectedness®’ in
the 3-body scattering amplitude. A plausible
analogy is to a sort of (Fermi-like)
‘pseudopotential’ of the type employed to simulate
the effect of chemical binding in the coherent
scattering of neutrons from a hydrogen molecule in
connection with the determination of the singlet n-
p scattering length®. Such &function potentials
have no deeper significance other than depicting
the vast mismatch in the frequency scales of
nuclear and molecular interactions. In the present
case, the instantaniety in time of the pairwise
interaction kernel in an otherwise 4D Hilbert space
causes a similar mismatch, needing a 1D [delta-
function to fill the gap. And just as the ‘pseudo-
potential’ in the above example® does not have any
observable effect, the singularity under radicals in
(212) will not show up in any physical amplitude
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for hadronic transitions via quark loops, since the
Green’s functions (209) involve both the &function
and the propagator 4 in rational forms before the
relevant quark loop integrations over them are
performed.

Appendix D: SU(6)Q0(3) Wave Fns In Complex
Basis ‘

In this Appendix, we outline a general method of
expressing the ggg wave functions in a complex
basis™®**®. Such a basis gives a compact realization
of the doublet representation of the permutation
group S;, with the two complex vectors z, z*
substituting for the real pair &, 7. The action of the

permutations P; on this basis in the order (12);
(31); (23) is [94a]

})Uz - [1’ eZm/l; e
P"Z* —_ [1, e~2i7r/3; e2m/3]z

Identical doublet representations hold for the
orbital y, spin y and isospin ¢ d.o.f’s, in the
notation of Sections 9-11. To that end, define the

corresponding complex quantities (except for an
overall I-factor)

\/E[‘/Inlc’ ¢c] E[V/"_il//'; Z n__iZ v; ¢ul__i¢c]
..(279)

—2/7:/3]1‘;

.. (278)

together with a second set of complex conjugate
relations. Using these definitions, the action of
permutation group on the full wave function is

Fly.®2.®¢:y @y ®4]1=lv ®1.0¢;

.y ®¢] ... (280)
Another important result concerns the action of P;
on any pair of component wave functions

(A, :), where (4., ) are any two out of the
full set (v, g, ¢) of three’®.

PylAe ® 1 4@ p]= 7, ® i 2, ® 4]

.. (28D
As to the quantities (y; ¥,), they are Si-singlets
by themselves, with eigenvalues +1 for the P,
operators. The properly symmeétrized SU(6)xO(3)
states, eqs. (168)-(172), are now:

156)7 =y 2°8%156)" = (28s + 2.8/ N2;
- (282)

581

1 70)" = 2°(w o +v.8.)/2;

|70} = Woxed. +Vired)IN2 . (283)
'20>q =VaX ¥ 2O>d = V’a(lc¢: -X :¢c)/\/§
.. (284)

D.1 Construction of \y-Fns in Complex Basis

We now turn to the construction of the orbital y~
functions in terms of (z,, z,), s0 as to preserve the
total angular momentum adapted to the complex
language.To that end, the angular momenta (both
diagonal and ‘mixed’) in the complex basis are
given by

L, =-izxV;L_. =+iz*xV;
] R ... (285)
L, =-iz*xV_j;L, =+iz*xV,
which obey the connections
L=L,+L.=L,+L;L =L,=L +L,_
... (286)

These quantities transform according to eq. (278)
under the elements P;; of S;.

To construct angular momentum states of
correct S; symmetry, it is useful to take those of
highest seniority***, now expressed in appropriate
powers of . and z.*, and to note that z.z* z.z.*
and z.’ are all Ss-invariant. The angular momenta
carried by these basic units are easily checked to be
in conformity with the above (complex) definitions
(285) and (286) of the angular momenta. Using
these basic building blocks, the natural parity states
of highest seniority for a given angular
momentuma are compactly written in an HO basis

as46b,
|56%;707; 70*;56“} = (z,2,) [;2,; 22; 22 ]2

... (287)
The superscripts +on the various states on the
LHS correctly describe their parity structures, by

noting that z7 has parity (-1)", while zz* is a 3-
scalar. The L’-values of the states (287) in this
order are****®:

F =0t e+ e+ )% (20+3)7;

... (288)
while ¢ goes through the values 0, 1, 2, 3..., thus
bringing out the naturalness of the respective
parity structures.

In a similar way it is possible to systematically
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span all the “unnatural” parity states in the same
representation*®, noting that the main carrier of
unnatural parity is the axial vector {=izxz*, which
is a fully antisymmetric Si-singlet. The L’-
structures of such states of highest seniority,
corresponding to the series (287) are*6*?*:

120" 70"; 70°; 20"> = (.Q2z2.2)

—222*

x[l; z,;2%; zlJe

... (289)

together with the respective L -values

P =0+ (20+2) 5 (20 +3); (20 +4);
... (290)

thus bringing out the unnaturalness’ of their
respective parities. For the construction of more

involved states on these lines, see*®.

A similar construction is possible for the ‘spin’
wave functions in the complex basis; see*® for
details.

D.2 Normalization of Natural and Unnatural
Parity Baryons

We now outline a new method of integration for
the normalization of the spatial wave functions
(287) and (289) in the 6D (z, z*) space, which is
rather well-suited to the (complex) variables on
hand; see ref. [29b, 46b]. The volume measure in
this 6D space is expressible in the spherical
basis as

d’t = d’zd’z* = (dz,dz" )(dz dz) )(dz,dz,) ... (291)

where the six elements on the RHS of (291) have
been rearranged into 3 sets of real 2D volumes,
since the three pairs on the RHS, each form
complex conjugate pairs. Now put

V2(z.:2) = Re*™; V2(z; 20) = Ree™™;
V2(z,: ) = Re™™

Then the volume element becomes

..(292)
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