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Abstract

Using the method of Green’s functions within the framework of a Bethe-Salpeter
formalism characterized by a pairwise qq interaction with a 3D support to its kernel
(expressed in a Lorentz-covariant manner), the 4D BS wave function for a system of
three identical relativistic spinless quarks is reconstructed from the corresponding
3D form which satisfies a fully connected 3D BSE. This result is a 3-body general-
ization of a similar interconnection between the 3D and 4D 2-body wave functions
that had been found earlier under identical conditions of a 3D support to the cor-
responding BS kernel, using the ansatz of Covariant Instaneity for the pairwise qq̄

interaction. The generalization from spinless to fermion quarks is straightforward.
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1 Introduction: Statement of Problem and Summary

of Results

The problem of connectedness in a three-particle amplitude has been in the forefront of
few-body dynamics since Faddeev’s classic paper [1] showed the proper perspective by
emphasizing the role of the 2-body T-matrix as a powerful tool for achieving this goal.
The initial stimulus in this regard came from the separable assumption to the two-body
potential [2] which provided a very simple realization of such connectedness via the T-
matrix structure envisaged in [1], a result that was given a firmer basis by Lovelace [3]. An
alternative strategy for connectedness in an n-body amplitude was provided by Weinberg
[4] through graphical equations which brought out the relative roles of T- and V- matrices
in a more transparent manner. As was emphasized in both [3] and [4], an important
signal for connectedness in the 3-body (or n-body) amplitude is the absence of any delta

function in its structure, either explicitly or through its defining equation. This signal
is valid irrespective of whether or not the V- or the T- matrix is employed for the said
dynamical equation. The above results were found for a non-relativistic n-body problem
within a basically 3D framework whose prototype dynamics is the Schroedinger equation.
For the corresponding relativistic problem whose typical dynamics may be taken as the
Bethe-Salpeter equation (BSE) with pairwise kernels within a 4D framework, it should
in principle be possible to follow a similar logic, using the language of Green’s functions
with corresponding diagramatic representations [4], leading to equations free from delta
functions. However there are other physical issues associated with a 4D support to the
BS kernel of a ‘confining’ type, such as O(4)-like spectra [5], while the data [6] exhibit
only O(3)-spectra. To handle this issue in a realistic and physically plausible manner,
there have been many approaches in the literature (which hardly need to be cited) that
are centred on a basically ”instantaneous” approximation to the (pairwise) two-particle
interaction. In the spirit of this general philosophy, and keeping close to the observational

features of the hadron mass spectra [6], a concrete ‘two-tier’ strategy [7] had been proposed
by incorporating the physical content of the Instantaneous Approximation, albeit treated
covariantly [8], wherein the 3D reduction of the original 4d BSE would serve for the
dynamics of the spectra, while the reconstructed 4D wave function would be appropriate
for applications to various transition amplitudes by standard Feynman techniques for 4D
quark loop integrals [7,8]]. This philosophy found [8] a precise mathematical content
through the ansatz of Covariant Instantaneity (CIA for short) which gives a 3D support

to the BSE kernel. This ansatz yields a complete equivalence between the 3D and 4D
forms of the BSE, viz., not only is the 4D form exactly reducible to the 3D form, but
conversely the 4D BS vertex function Γ is fully expressible as a simple product of only
3D quantities, viz., Dxφ, where D and φ are both 3D denominator and wave functions
respectively, satisfying a relativistic Schroedinger-like equation [8]. (The ansatz of a 3D
support to the BS kernel was also advocated by Pervushin and collaborators [9], but
under a different philosophy from the two-tier point of view enunciated in [8], so that the
feature of 3D-4D interconnection was apparently not on their agenda). A comparative
assessment of this method vis-a-vis more conventional ones employing the BSE has been
given elsewhere [10]. One may now ask: Does a similar 3D-4D interconnection exist in
the corresponding BS amplitudes for a three-body system under the same conditions of
3D support to the pairwise BS kernel? This question is of great practical value since the
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3D reduction of the 4D BSE (under conditions of a 3D support for the pairwise kernel)
already provides a a fully connected integral equation [11], leading to an approximate
analytic solution (in gaussian form) for the corresponding 3D wave function, as a by-
product of the main results on the baryon mass spectra [11]. Therefore a reconstruction
of the 4D qqq wave (vertex) function in terms of the corresponding 3D quantities will
open up a vista of applications to various types of transition amplitudes involving qqq
baryons, just as in the q̄q case [8]. This is the main purpose of the present investigation,
with three identical spinless particles for simplicity and definiteness, which however need
not detract from the generality of the singularity structures. The answer is found to
be in the affirmative, except for the recognition that a 3D support to the pairwise BS
kernel implies a truncation of the Hilbert space. Such truncation, while still allowing an
unambiguous reduction of the BSE from the 4D to the 3D level, nevertheless leaves an
element of ambiguity in the reverse direction, viz., from 3D to 4D. This limitation for the
reverse direction is quite general for any n-body system where n > 2; the only exception
is the case of n = 2 where both transitions are reversible without any extra assumptions
(a sort of degenerate situation). The extra assumption needed to complete the reverse
transition in its simplest form is facilitated by some 1D delta-functions which however
have nothing to do with connectedness [3,4] of an n-body amplitude (see Sec.4 for a formal
demonstration). The paper which makes use of Green’s function techniques to formally
derive the results stated above, is organized as follows. In Sec.2 we first derive the 3D-4D
interconnection [8] at the level of the Green’s function for a q̄q system, under conditions
of a 3D support for the BS kernel, whence we reproduce the previously derived result [8]
for the corresponding BS wave functions in 3D and 4D forms. In Sec.3, starting with
the BSE for the 4D Green’s function for three identical spinless quarks (q), when the qq
subsystems are under pairwise BS interactions with 3D kernel support, this 4D BS integral
equation is reduced to the 3D form by integrating w.r.t. two internal time-like momenta,
and in so doing, introducing 3D Green’s functions as double integrals over two time-like
internal momenta. The resulting 3D BSE has a fully connected structure, free from delta-
functions, as anticipated from an earlier analysis with 3D BS wave functions [11,12]. With
this 3D BSE as the check point, Sec.4 is devoted to the task of reconstructing the full
4D Green’s function in terms of its (partial) 3D counterparts, so as to satisfy exactly the
above 3D BSE, after integration w.r.t. the relevant time-like momenta. (In doing these
various manipulations, the inhomogeneous parts of the various Green’s functions will
not be kept track of, since we shall be mainly concerned with their bound state poles).
Sec.5 concludes with a discussion of this result, including the technical issues arising from
the inclusion of spin, together with a comparison with contemporary approaches to the
relativistic qqq problem.

2 3D-4D Interconnection For the q̄q System

If the BSE for a spinless q̄q system has a 3D support for its kernel K in the form K(q̂, q̂′)
where q̂ is the component is the component of the relative momentum q = (p1 − p2)/2
orthogonal to the total hadron 4-momentum P = p1 + p2, then, as was shown in [8],
the 4D hadron-quark vertex function Γ is a function of q̂ only, and is expressible as
Γ(q̂) = D(q̂)φ(q̂), where D and φ are the respective denominator and wave functions of
the BSE in 3D form, viz., Dφ =

∫

Kφ dq̂. For this 2-body case the 4D and 3D forms
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of the BSE are exactly reversible without further assumptions. For the 3-body case a
corresponding 3D-4D connection was obtained on the basis of semi-intuitive arguments
[12], and therefore needed a more formal derivation, which is the central aim of this paper.
To that end it is useful to formulate the 4D and 3D BSE’s in terms of Green’s functions.
Therefore in this section we first outline the derivation of the 3D-4D connection for a
two-body system in terms of their respective Green’s functions, in preparation for the
generalization to the three-body case in the next two sections.

Apart from certain obvious notations which should be clear from the context, we shall
use the notation and phase conventions of [8,12] for the various quantities (momenta,
propagators, etc). The 4D qq Green’s function G(p1p2; p1

′p2
′) near a bound state satisfies

a 4D BSE without the inhomogeneous term, viz. [8,12],

i(2π)4G(p1p2; p1
′p2

′) = ∆1
−1∆2

−1

∫

dp1
′′dp2

′′K(p1p2; p1
′′p2

′′)G(p1
′′p2

′′; p1
′p2

′) (2.1)

where
∆1 = p1

2 + mq
2; (mq = massofeachquark) (2.2)

Now using the relative q = (p1−p2)/2 and total P = p1 +p2 4-momenta (similarly for the
other sets), and removing a δ-function for overall 4-momentum conservation, from each
of the G- and K- functions, eq.(2.1) reduces to the simpler form

i(2π)4G(q.q′) = ∆1
−1∆2

−1

∫

dq̂′′Mdσ′′K(q̂, q̂′)G(q, q′) (2.3)

where q̂µ = qµ − σPµ, with σ = (q.P )/P 2, is effectively 3D in content (being orthog-
onal to Pµ). Here we have incorporated the ansatz of a 3D support for the kernel K
(independent of σ and σ′), and broken up the 4D measure dq′′ arising from (2.1) into the
product dq̂′′Mdσ′′ of a 3D and a 1D measure respectively. We have also suppressed the
4-momentum Pµ label, with (P 2 = −M2), in the notation for G(q.q′). Now define the

fully 3D Green’s function Ĝ(q̂, q̂′) as [8,12]

Ĝ(q̂, q̂′) =
∫ ∫

M2dσdσ′G(q, q′) (2.4)

and two (hybrid) 3D-4D Green’s functions G̃(q̂, q′), G̃(q, q̂′) as

G̃(q̂, q′) =
∫

MdσG(q, q′); G̃(q, q̂′) =
∫

Mdσ′G(q, q′); (2.5)

Next, use (2.5) in (2.3) to give

i(2π)4G̃(q, q̂′) = ∆1
−1∆2

−1

∫

dq′′K(q̂, q̂′′)G̃(q′′, q̂) (2.6)

Now integrate both sides of (2.3) w.r.t. Mdσ and use the result [8]

∫

Mdσ∆1
−1∆2

−1 = 2πiD−1(q̂); D(q̂) = 4ω̂(ω̂2 − M2/4); ω̂2 = mq
2 + q̂2 (2.7)

to give a 3D BSE w.r.t. the variable q̂, while keeping the other variable q′ in a 4D form:

(2π)3G̃(q̂, q′) = D−1

∫

dq̂′′K(q̂, q̂′′)G̃(q̂′′, q′) (2.8)

5



Now a comparison of (2.6) with (2.8) gives the desired connection between the full 4D
G-function:

2πiG(q, q′) = D(q̂)∆1
−1∆2

−1G̃(q̂, q′) (2.9)

which is the Green’s function counterpart, near the bound state, of the same result [8]
connecting the corresponding BS wave functions. Again, the symmetry of the left hand
side of (2.9) w.r.t. q and q′ allows us to write the right hand side with the roles of q and
q′ interchanged. This gives the dual form

2πiG(q, q′) = D(q̂′)∆1
′−1

∆2
′−1

G̃(q, q̂′) (2.10)

which on integrating both sides w.r.t. Mdσ gives

2πiG̃(q̂, q′) = D(q̂′)∆1
′−1

∆2
′−1

Ĝ(q̂, q̂′). (2.11)

Substitution of (2.11) in (2.9) then gives the symmetrical form

(2πi)2G(q, q′) = D(q̂)∆1
−1∆2

−1Ĝ(q̂, q̂′)D(q̂′)∆1
′−1

∆2
′−1

(2.12)

Finally, integrating both sides of (2.8) w.r.t. Mdσ′, we obtain a fully reduced 3D BSE for
the 3D Green’s function:

(2π)3Ĝ(q̂, q̂′) = D−1(q̂
∫

dq̂′′K(q̂, q̂′′)Ĝ(q̂′′, q̂′) (2.13)

Eq.(2.12) which is valid near the bound state pole (since the inhomogeneous term has
been dropped for simplicity) expresses the desired connection between the 3D and 4D
forms of the Green’s functions; and eq(2.13) is the determining equation for the 3D form.
A spectral analysis can now be made for either of the 3D or 4D Green’s functions in the
standard manner, viz.,

G(q, q′) =
∑

n

Φn(q; P )Φ∗

n(q
′; P )/(P 2 + M2) (2.14)

where Φ is the 4D BS wave function. A similar expansion holds for the 3D G-function
Ĝ in terms of φn(q̂). Substituting these expansions in (2.12), one immediately sees the
connection between the 3D and 4d wave functions in the form:

2πiΦ(q, P ) = ∆1
−1∆2

−1D(q̂)φ(q̂) (2.15)

whence the BS vertex function becomes Γ = D × φ/(2πi) as found in [8]. We shall make
free use of these results, taken as qq subsystems, for our study of the qqq G-functions in
Sections 3 and 4.

3 Three-Quark Green’s Function: 3D Reduction of

the BSE

As in the two-body case, and in an obvious notation for various 4-momenta (without
the Greek suffixes), we consider the most general Green’s function G(p1p2p3; p1

′p2
′p3

′) for
3-quark scattering near the bound state pole (for simplicity) which allows us to drop the
various inhomogeneous terms from the beginning. Again we take out an overall delta

6



function δ(p1 + p2 + p3 − P ) from the G-function and work with two internal 4-momenta
for each of the initial and final states defined as follows [12]:

√
3ξ3 = p1 − p2 ; 3η3 = −2p3 + p1 + p2 (3.1)

P = p1 + p2 + p3 = p1
′ + p2

′ + p3
′ (3.2)

and two other sets ξ1, η1 and ξ2, η2 defined by cyclic permutations from (3.1). Further,
as we shall be considering pairwise kernels with 3D support, we define the effectively 3D
momenta p̂i, as well as the three (cyclic) sets of internal momenta ξ̂i, η̂i, (i = 1,2,3) by
[12]:

p̂i = pi − νiP ; ξ̂i = ξi − siP ; η̂i − tiP (3.3)

nui = (P.pi)/P
2 ; si = (P.ξi)/P

2 ; ti = (P.ηi)/P
2 (3.4)

√
3s3 = ν1 − ν2 ; 3t3 = −2ν3 + ν1 + ν2 (+cyclicpermutations) (3.5)

The space-like momenta p̂i and the time-like ones νi satisfy [12]

p̂1 + p̂2 + p̂3 = 0 ; ν1 + ν2 + ν3 = 1 (3.6)

Strictly speaking, in the spirit of covariant instantaneity, we should have taken the relative
3D momenta ξ̂, η̂ to be in the instantaneous frames of the concerned pairs, i.e., w.r.t. the
rest frames of Pij = pi + pj ; however the difference between the rest frames of P and Pij

is small and calculable [12], while the use of a common 3-body rest frame (P = 0) lends
considerable simplicity and elegance to the formalism. We may now use the foregoing
considerations to write down the BSE for the 6-point Green’s function i terms of relative
momenta, on closely parallel lines to the 2-body case. To that end note that the 2-body
relative momenta qij = (pi − pj)/2 = sqrt3ξk/2, where (ijk) are cyclic permutations of
(123). Then for the reduced qqq Green’s function, when the last interactio was in the
(ij) pair, we may use the notation G(ξkηk; ξk

′ηk
′), together with ’hat’ notations on these

4-momenta when the corresponding time-like components are integrated out. Further,
since the pair ξk, ηk is permutation invariant as a whole, we may choose to drop the index
notation from the complete G-function to emphasize this symmetry as and when needed.
The G-function for the qqq system satisfies, in the neighbourhood of the bound state pole,
the following (homogeneous) 4D BSE for pairwise qq kernels with 3D support:

i(2π)4G(ξη; ξ′η′) =
∑

123

∆1
−1∆2

−1

∫

dq̂′′
12

Mdσ12
′′K(q̂12, q̂

′′

12
)G(ξ3

′′η3
′′; ξ3

′η3
′) (3.7)

where we have employed a mixed notation (q12 versus ξ3) to stress the two-body nature
of the interaction with one spectator at a time, in a normalization directly comparable
with eq.(2.3) for the corresponding two-body problem. Note also the connections

σ12 =
√

3s3/2 ; q̂12 =
√

3ξ̂3/2 ; η3 = −p3, etc (3.8)

The next task is to reduce the 4D BSE (3.7) to a fully 3D form through a sequence
of integrations w.r.t. the time-like momenta si, ti applied to the different terms on the
right hand side, provived both variables are simultaneously permuted. We now define the
following fully 3D as well as mixed 3D-4D G-functions according as one or more of the
time-like ξ, η variables are integrated out:

Ĝ(ξ̂η̂; ξ̂′η̂′) =
∫ ∫ ∫ ∫

dsdtds′dt′G(ξη; ξ′η′) (3.9)

7



which is S3-symmetric.

G̃3η(ξη̂; ξ′η̂′) =
∫ ∫

dt3dt3
′G(ξη; ξ′η′); (3.10)

G̃3ξ(ξ̂η; ξ̂′η′) =
∫ ∫

ds3ds3
′G(ξη; ξ′η′); (3.11)

The last two equations are however S − 3-indexed. The full 3D BSE for the Ĝ-function is
obtained by integrating out both sides of (3.7) w.r.t. dsidsj

′dtidtj
′ (S3-symmetric), and

using (3.9) with (3.8) as follows:

(2π)3Ĝ(ξ̂η̂; ξ̂′η̂′) =
∑

123

D−1(q̂12)
∫

dq̂′′
12

K(q̂12, q̂
′′

12
)Ĝ(ξ̂′′η̂′′; ξ̂′η̂′) (3.12)

This integral equation for Ĝ which is the 3-body counterpart of (2.13) for a qq system in
thev neighbourhood of the bound state pole, is the desired 3D BSE for the qqq system in
a fully connected form, i.e., free from delta functions. Now using a spectral decomposition
for Ĝ

Ĝ(ξ̂η̂; ξ̂′η̂′) =
∑

n

φn(ξ̂η̂; P )φ∗

n(ξ̂
′η̂′; P )/(P 2 + M2) (3.13)

on both sides of (3.12) and equating the residues near a given pole P 2 = −M2, gives the
desired equation for the 3D wave function φ for the bound state in the connected form:

(2π)3φ(ξ̂η̂; P ) =
∑

123

D−1(q̂12)
∫

dq̂′′
12

K(q̂12, q̂
′′

12
)φ(ξ̂′′η̂′′; P ) (3.14)

The solution of this equation for the ground state was found in [11] in a gaussian form
which implies that φ(ξ̂η̂; P ) is an S3-invariant function of ξ̂2

i + η̂2

i , valid for any index i.
While the gaussian form may prove too restrictive for more general applications, the mere
S3-symmetry of φ in the (ξ̂i, η̂i) pair may prove adequate in practice, and hence useful
for both the solution of (3.14) and for the reconstruction of the 4D BS wave function in
terms of the 3D wave function (3.14), as is done in Sec.4 below.

4 Reconstruction of the 4D BS Wave Function

In this section we shall attempt to re-express the 4D G-function given by (3.7) in terms
of the 3D Ĝ-function given by (3.12), as the qqq counterpart of the qq results (2.12-13).
To that end we first adapt the result (2.12) to the hybrid Green’s function of the (12)
subsystem given by G̃3η, eq.(3.10), in which the 3-momenta η3, η3

′ play a parametric
role reflecting the spectator status of quark #3, while the active roles are played by
q12, q12

′ =
√

3(ξ3, ξ3
′)/2, for which the analysis of Sec.2 applies directly. This gives

(2πi)2G̃3η(ξ3η̂3; ξ3

′η̂′

3
) = D(q̂12)∆1

−1∆2
−1Ĝ(ξ̂3η̂3; ξ̂

′

3
η̂′

3
)D(q̂′

12
)∆1

′−1
∆2

′−1
(4.1)

where on the right hand side, the ‘hatted’ G-function has full S3-symmetry, although (for
purposes of book-keeping)we have not shown this fact explicitly by deleting the suffix ‘3’
from its arguments. A second relation of this kind mau be obtained from (3.7) by noting
that the 3 terms on its right hand side may be expressed in terms of G̃3ξ functions vide
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their definitions (3.11), together with the 2-body interconnection between (ξ3, ξ3

′) and
(ξ̂3, ξ̂

′

3
) expressed once again via (4.1), but without the ‘hats’ on η3 and η3

′. This gives

(
√

3πi)2G(ξ3η3; ξ3

′η3
′) = (

√
3πi)2G(ξη; ξ′η′)

=
∑

123

∆1
−1∆2

−1(πi
√

3)
∫

dq̂′′
12

Mdσ12
′′K(q̂12, q̂

′′

12
)G(ξ3

′′η3
′′; ξ3

′η3
′)

=
∑

123

D(q̂12)∆1
−1∆2

−1G̃3ξ(ξ̂3η3; ξ̂
′

3
η3

′)∆1
′−1

∆2
′−1

(4.2)

where the second form exploits the symmetry between ξ, η and ξ′, η′. This is as far as we
can go with the qqq Green’s function, using the 2-body techniques of Sec.2. However,,
unlike the 2-body case where the reconstruction of the 4D G-function in terms of the
corresponding 3D quantity was complete at this stage, the process is far from complete
for the 3-body case, as eq.(4.2) clearly shows. This is due to the truncation of Hilbert
space implied in the ansatz of 3d support to the pairwise BSE kernel K which, while
facilitating a 4d to 3d BSE reduction without extra charge, does not have the complete

information to permit the reverse transition (3d to 4D) without additional assumptions.
This limitation of the 3D support ansatz for the BSE kernel affects all n-body systems
except n = 2 (which may be regarded as a sort of degenerate situation. Now it may be
argued: Is this 3D ansatz for the BSE kernel really necessary? Since this paper is not
the most convenient place to dwell on this physical issue in detail (the same has been
discussed elsewhere [10], vis-a-vis contemporary approaches), we shall here take the 3D
support ansatz for granted, and look upon this ”inverse” problem as a purely mathematical

one. We add in parentheses however that the physical applications of the 3D ansatz are
(indeed) quite widespread since it is directly related to the ”instantaneous approximation”
on which a considerable amount of low and intermediate energy hadron physics (at the
quark level) has been (and is still being) studied. As a purely mathematical problem,
we must look for a suitable ansatz for the quantity G̃3ξ on the right hand side of (4.2)
in terms of known quantities, so that the reconstructed 4D G-function satisfies the 3D
equation (3.12) exactly, which may be regarded as a ”check-point” for the entire exercise.
We therefore seek a structure of the form

G̃3ξ(ξ̂3η3; ξ̂
′

3
η3

′) = Ĝ(ξ̂3η̂3; ξ̂
′

3
η̂′

3
) × F (p3, p3

′) (4.3)

where the unknown function F must involve only the momentum of the spectator quark
#3. A part of the η3, η3

′ dependence has been absorbed in the Ĝ function on the right,
so as to satisfy the requirements of S3-symmetry for this 3D quantity, whether it has
a gaussian structure [11] (where it is explicit), or a more general one; see the discussion
below eq(3.14). As to the remaining factor F , it is necessary to choose its form in a careful
manner so as to conform to the conservation of 4-momentum for the free propagation of
the spectator between two neighbouring vertices, consistently with the symmetry between
p3 and p3

′. A possible choice consistent with these conditions is the form

F (p3, p3
′) = C3∆3

−1δ(ν3 − ν3
′) (4.4)

where ∆3 could also be written more symmetrically as
√

∆3∆3
′. Here we have taken

only the time component of the 4-momentum p3 in the δ-function since the effect of its
space component has already been absorbed in the ”connected” (3D) Green’s function Ĝ.
∆3

−1 represents the ”free” propagation of quark #3 between successive vertices, while C3
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represents some residual effects which may at most depend on the 3-momentum p̂3, but
must satisfy the main constraint that the 3D BSE, eq.(3.12), is explicitlysatisfied . To check
the self-consistency of the ansatz (4.4), integrate both sides of (4.2) w.r.t. ds3ds3

′dt3dt3
′

to recover the 3D S3-invariant Ĝ-function on the left hand side; and in the first form on
the right hand side, integrate w.r.t. ds3ds3

′ on the G-function which alone involves these
variables. This yields the quantity G̃3ξ. At this stage, employ the ansatz (4.4) to integrate
over dt3dt3

′. Consistency with the 3D BSE, eq.(3.12), now demands

C3

∫ ∫

dν3dν3
′∆3

−1δ(ν3 − ν3
′) = 1; (sincedt = dν) (4.5)

The 1D integration w.r.t. dν3 may be evaluated as a contour integral over the propagator
∆−1 , which gives the pole at ν3 = ω̂3/M , (see below). Evaluating the residue then gives

C3 = iπ/(Mω̂3); ω̂2

3
= mq

2 + p̂2

3
(4.6)

which will reproduce the 3D BSE, eq.(3.12), exactly! Substitution of (4.4) in the second
form of (4.2) finally gives the desired 3-body generalization of (2.12) in the form

3G(ξη; ξ′η′) =
∑

123

D(q̂12)∆1F ∆2F D(q̂′
12

)∆1F
′∆2F

′Ĝ(ξ̂3η̂3; ξ̂
′

3
η̂′

3
)[∆3F /(Mπω̂3)] (4.7)

where for each index, ∆F = −i∆−1 is the Feynman propagator. Before commenting on
this structure of the 4D Green’s function near the bound state pole, let us first find the
effect of the ansatz (4.4) on the 4D BS wave function Φ(ξη; P ). This is achieved through
a spectral representation like (3.13) for the 4D Green’s function G on the left hand side
of (4.2). Equating the residues on both sides gives the desired 4D-3D connection between
Φ and φ:

Φ(ξη; P ) =
∑

123

D(q̂12)∆1
−1∆2

−1φ(ξ̂η̂; P ) ×

√

δ(ν3 − ω̂3/M)

Mω̂3∆3

(4.8)

From (4.8) we can infer the structure of the baryon-qqq vertex function by rewriting the
it in the alternative form [12]:

Φ(ξη; P ) = (V1 + V2 + V3)

∆1∆2∆3

(4.9)

where

V3 = D(q̂12)φ(ξ̂η̂; P ) ×

√

∆3δ(ν3 − ω̂3/M)

Mω̂3

(4.10)

The quantity V3 is the baryon-qqq vertex function corresponding to the ”last interaction”
in the (12) pair, and so on cyclically. This is precisely the form (apart from a constant
factor that does not affect the baryon normalization) that had been anticipated in an
earlier study in a semi-intuitive fashion [12].

5 Discussion and Conclusion

Eqs.(4.7-10) which represent the principal results of this investigation, bring out rather
directly the significance of the square root of the δ-function in the energy variable of the
spectator. Both the δ-funnction and the ∆3F propagator appear in rational forms in the
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4D Green’s function. reflecting a free on-shell propagation of the spectator between two
vertex points. The square root feature in the baryon-qqq vertex function is the result of
equal distribution of this singulariity between the initial and final state vertex functions.
Further, as the steps indicate, the appearace of this singularity has nothing to do with the
connectedness [3,4] of the 3-body scattering amplitude, but rather with the 3D support
for the pairwise BSE kernel. More importantly, this singularity will not show up in any
physical amplitude for hadronic transitions via quark loops, since such amplitudes will
always involve both the δ-function and the propagator ∆3F in a rational form before the
relevant momentum integrationns are performed. The next question concerns the possible
uniqueness of the structure (4.7-10). It is certainly ”sufficient” since the 3D form (3.12)
of the BSE for the Ĝ- function is exactly satisfied. Moreover the underlying ansatz (4.4)
has certain desirable properties like on-shell propagation of the spectator in between two
successive interactions, as well as an explicit symmetry in the p3 and p3

′ momenta. There
is a fair chance of its uniqueness within certain general constraints, but so far we have not
been able to prove this. As regards spin, the extension of the above formalism to fermion
quarks is a straightforward process amounting to the replacement of ∆F = −i∆−1 by
the corresponding SF -functions, as has been shown elsewhere [11,12]. In particular, the
fermion vertex function has recently been applied to the problem of proton-neutron mass
difference [13] via quark loop integrals, to bring out the practicability of its application
without parametric uncertainties, since the entire formalism is linked all the way from
spectroscopy to hadronic transition amplitudes [7]. At this stage it is interesting to ask,
again as a purely mathematical problem, what would have been the possible scenario
if the 3D support ansatz for the BSE kernel had not been made. In that case, the
entire ”hat” formalism would become redundant, and there would be no special roles
of equations like (2.12) or (4.7) connecting the 4D to the 3D Green’s functions. The
”connected” equations (2.13) or (3.12) would simply remain valid without the ”hats”,
viz., as 4D integral equations, and with the replacement of D(q̂12) by ∆1∆2/(2iπ). And if
closed form solutions of these equations were routinely possible in 4D form, there would
be no special advantage in going in for more complicated connected equations [3,4]. This
kind of 3-body approach in direct 4D form was indeed attempted in a Wick-rotated
Euclidean manner [5], but the predicted O(4)-like spectra did not accord with observation
[6]. And while ‘normal’ 4D kernels (i.e., without Wick rotation) have been employed for
q̄q systems [14], there is no corresponding evidence of the qqq BSE attempted on similar
lines. The 3D kernel support discussed here is just a concrete alternative which, being
otherwise rooted in a 4D framework, acts as an effective bridge between traditional 3D
methods employed in the literature for few-body problems at the quark level and more
formal 4D treatments [14-17]; ( see next para for specific comparison with other qqq
problem studies). Its strong connection with the ‘instantaneous approximation’ gives it
a natural applicational base for a systematic treatment of hadronic phenomena at the
quark level up to moderately high energies, as indicated by its observational successes
[8,10-13]. Finally we would like to comment on this formalism vis-a-vis contemporary
approaches to the qqq problem. Many such approaches as are available in the literature
are parametric representations attuned to QCD-sum rules [15], effective Lagrangians for
hadronic transitions to ”constituent” quarks, with ad hoc assumptions on the hadron-qqq
form factor [16], similar (parametric) ansatze for the hadron- quark-diquark form factor
[17]; or more often simply direct gaussian parametrizations for the qqq wave functions
as the starting point of the investigation [18]. Such approaches are often quite effective
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for the investigations of some well-defined sectors of hadron physics with quark degrees
of freedom, but are not readily extensible to other sectors without further assumptions (
e.g., meson and baryon parametrizations are quite unrelated to each other), since there
is no possibility of a deeper understanding of the crucial functions/parameters involved,
from more formal dynamical premises. A more unified approach, albeit at the cost of a
bigger dynamical investment, should have the capacity to provide a more natural form of
integration of the different sectors, perhaps all the way to hadron spectroscopy, without
additional assumptions on the way. Such approaches usually need a ”dynamical equation”
such as the BSE or SDE, as the starting point for the flow of information. It is precisely
in respect of such unification that the philosophy underlying the present formalism for
the qqq problem differs from some others [15-18]. This is hardly a new philosophy, since
the perspective in this respect was shown 25 years ago by Feynman [19], but can stand
a reiteration. This work arose out of the need for a formal demonstration of a semi-
intuitive ansatz [12] on the structure of the baryon-qqq vertex function that had been
recently applied to the neutron-proton mass difference problem [13], on the demand of
some critics. However it took shape as a self-contained ”mathematical” problem in its
own right, even though its origin is strongly physical. The final version of this paper was
prepared at the International Centre for Theoretical Physics during a short time visit
of the author in November 1996. He expresses his appreciation to the Director, Prof.
M.A.Virasoro, for this hospitality.
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