Nucleotide sequence of a cDNA coding for rat *hck* tyrosine kinase and characterization of its gene product

B S VIJAYA GOURI, V REMA, S KAMATKAR and GHANSITYAM SWARUP

Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India

MS received 26 November 1993; revised 28 March 1994

Abstract. The *hck* gene is member of *src* family of non-receptor type tyrosine kinases. Here we report the nucleotide sequence of the rat *hck* eDNA of 194 kb. The nucleotide sequence shows an open reading frame coding for a polypeptide of 503 amino acids. A vector expressing a fusion protein of glutathione-S-transferase with 82 amino acids of the N-terminal region of *hck* (from amino acids 32 to 113) was constructed, Using this bacterially expressed fusion protein antibodies were prepared which recognize the cellular *hck* gene product. These antibodies identified, by immunoblotting, two polypeptides of 56 and 59 kDa in rat spleen where *hck* transcripts are present at high level. Immunoprecipitated *hck* polypeptides were enzymatically active and were autophosphorylate in the presence of ATP and Mg²⁺. Immunoprecipitated *hck* could phosphorylate exogenous substrates. Treatment of immunoprecipitated *hck* by a purified protein tyrosine phosphatase decreased its enzymatic activity. Our results suggest that the enzymatic activity of *hck* tyrosine kinase is regulated by phosphorylation and dephosphorylation.

Keywords. *hck;* protein tyrosine kinase; enzyme regulation; nucleotide sequence; auto-phosphorylation.

1. Introduction

Protein tyrosine kinases have been implicated to be key regulatory molecules in the signal transduction pathways controlling many vital cellular processes. These protein tyrosine kinases have been broadly classified into two classes (Swarup et al 1984; Hunter and Cooper 1985). The transmembrane receptor tyrosine kinases have direct involvement in signal transduction pathways (Ulrich and Schlessinger 1990). The non-receptor kinases are intracellular proteins which lack both transmembrane and extracellular domains, but are capable of membrane association (Hunter and Cooper 1985; Sreevastava 1990; Bolen 1993). The members of the src gene family src, lck, lyn, fyn, yes, fgr and blk share common structural features and many of them are expressed in various hematopoietic cells (Perlmutter et al 1988; Eiseman and Bolen 1990). Recent studies have shown that fvn, lvn and *lck* are associated with cytoplasmic domains of different cell surface receptors (Rudd et al 1988; Veillette et al 1988; Samelson et al 1990; Yamanashi et al 1991), suggesting, therefore, that the members of src gene family might play important roles in signal transduction. Strong evidence in favour of this comes from the studies demonstrating direct physical and functional association of fyn tyrosine kinase with the antigen receptors of T cells (Samelson et al 1990).

118 B S Vijaya Gouri et al

We have earlier isolated cDNA clones coding for *hck* tyrosine kinase from a rat spleen cDNA library (Rema and Swarup 1990). Here we report the complete nucleotide sequence of rat *hck* cDNA. The polypeptide products of the rat *hck* gene were identified by preparing antibodies using a fusion protein of *hck* with glutathione-S-transferase (GST), made in *Escherichia coli*, as antigen. Using these antibodies we have characterized the enzymatic properties of immunoprecipitated *hck* protein; our results suggest that its kinase activity is regulated by phosphorylation and dephosphorylation.

2. Materials and methods

2.1 Analysis of RNA

Total RNA was isolated from various tissues using the method of Chomczynski and Sacchi (1987). mRNA was purified by oligo dT cellulose (Pharmacia) column chromatography. Total RNA (10 μ g) or mRNA (5· μ g) was separated on 1% agarose gel containing 2·2 M formaldehyde and transferred to nitrocellulose membrane. To ensure that equal amounts of RNA were present, 0·5 μ g of ethidium bromide was added to the (25 μ l) samples prior to loading, to visualize RNA after the gel was run. Hybridization was done at 50°C as described previously (Swarup *et al* 1991). The blots were washed with 0·2 × SSPE + 0·1% SDS at 60°C and kept for autoradiography at - 70°C. The *hck* probe was labelled by nick translation.

2.2 Isolation of rat hck cDNA clones and sequence analysis

Rat *hck* cDNA clones were isolated from a rat spleen cDNA library (Rema and Swarup 1990). Complete nucleotide sequence of the largest clone Ll15 (which contains 1940 nucleotides) was determined by sequencing both strands of DNA using dideoxy chain termination method (Sanger *et al* 1977) as modified for double stranded DNA by Chen and Seeburg (1985). Smaller clones of *hck* and various restriction fragments of the large clone L115 were subcloned into pUC 19 for sequence analysis. This nucleotide sequence has been deposited with EMBL data bank (accession number X 62345). Standard molecular cloning experiments such as ligations, transformation etc., were carried out as described by Sambrook *et al* (1989).

2.3 Preparation of tissue samples

Soluble and particulate fractions from various tissues were prepared as described previously (Swarup and Subrahmanyam 1989). Normal macrophages were collected from the rat by peritoneal lavage, by injecting 10 ml PBS. The cells were then washed with PBS and used for further experiments.

2.4 Preparation of hck antibodies

A 246 bp *Bam*HI-*Hinc*II fragment (amino acids 32 to 113) from the 5['] coding region of the rat *hck* cDNA was ligated with *Bam*HI and *Sma*I digested pGEX-1 expression vector (Smith and Johnson 1988). The resulting construct, pGEX-*hck*, expressed a fusion protein with GST carrying *hck* sequences at the C-terminal end. This fusion protein band of 35 kDa was electroeluted from polyacrylamide gels and used to inject several Balb/c mice with complete Freund's adjuvant. Two further injections were given with Freund's incomplete adjuvant at 15 day intervals and blood was collected 4 days after the 3rd injection. Antibody titres were monitored by immunodiffusion and immunoblotting.

2.5 Production of hck monoclonal antibodies

Splenocytes were collected from a mouse showing high *hck* antibody titre after boosting with the bacterially expressed GST-*hck* fusion protein intraperitoneally. These splenocytes were fused with Sp2/0 myeloma cells by using polyethylene glycol method. Hybrid cells were dispersed in HAT-IMDa over a layer of mouse peritoneal macrophage feeder cells (Fazekas de St. Groth and Scheidegger 1980). Supernatants from HAT resistant colonies were checked for antibody secretion by enzyme linked immuno filtration assay (ELIFA) and Western blotting and the positive clones propagated. Colonies giving a good positive reaction were cloned by limiting dilution. The hybridoma cell lines were maintained in IMDM supplemented with 10% FCS and antibiotics.

2.6 Immunoblotting

Proteins fractionated by SDS-PAGE were transferred electrophoretically to Immobilon-P membranes. The membranes were blocked using 1% horse serum in TBST-gelatin (10 mM Tris-CI, pH 8.0, 150 ma NaCl, 0.05% Tween E0 and 0.2% gelatin) for 1 h. The blots were incubated with either polyclonal antibody diluted 1 : 1000 or hybridoma supernatant diluted 1 : 10 for 2 h. After washing for 2 h, the blots were incubated with alkaline phosphatase conjugated anti mouse IgG for 1 h. After washing, immuno reactive bands were visualized using nitroblue tetrazolium and 5-bromo-4-chloro-3-indolyl phosphate.

For competition experiments 10 μ g of purified GST-*hck* fusion protein of 35 kDa was incubated at room temperature for 30 min with 5 μ I of antiserum in a volume of 500 μ I and then used as primary antibody after diluting to 5 ml in TBST.

2.7 Immunoprecipitation, kinase assay and phosphates treatment

Particulate fraction (01 mg protein) of rat spleen was extracted with 0.5 ml of IP buffer (1 × IP buffer contains 150 mM NaCI, 1% Triton, 0.5% deoxycholate, 2 mM EDTA, E mM PMSF, E μ g/ml soyabean trypsin inhibitor and 2 μ g/ml leupeptin) on ice and centrifuged at 15,000 g for 20 min. Incubation with antibody or control

medium was carried out for 1 h at 4°C by gentle mixing. Preswollen protein A-sepharose beads were added and further mixed for 30 min. The beads were centrifuged and washed 5 times with IP buffer.

Phosphorylation of the immunoprecipitated *hck* was carried out in 25 mM Tris-CI, pH 7.5, 10 mM MgCl₂ 1 mM DTT, 2 mM PMSF, and protease inhibitors (leupeptin, antipain, soyabean trypsin inhibitor) at 2 µg/ml, 1 µM $[\gamma^{-32}P]ATP$ (specific activity 5×10^4 cpm/pmol) in a total volume of 0.05 ml. After incubating at 30°C for 10 min the reaction was stopped by adding 0.05 ml of 2 × SDS sample buffer and boiled for 3 min. Exogenous substrate, 10 µg of poly (Glu⁴, Tyr¹) was included wherever indicated. Treatment with phosphatase was carried out at 30°C for 10 min in the same buffer but without MgCl₂ or ATP. After phosphatase treatment the kinase assay was started by adding ATP, MgCl₂ and sodium orthovanadate (100 µM). The phosphatase used was a protein-tyrosine phosphatase expressed in *E. coil* (see below) and was added at 0.5 µg (2-3 µl) per assay.

2.8 Purification of a protein tyrosine phosphatase made in E. coli

A protein tyrosine phosphatase, PTP-S, has been expressed in *E. colic* at high level by constructing an expression vector (Radha *et al* 1993). This phosphatase was extracted from *E. coli* cells carrying the expression vector as described previously (Radha *et al* 1993). This extract was applied on a DEAE-Sephacel column, washed and the phosphatase was eluted with 01 M NaCl in the column buffer (25 mM Tris-C1, pH 71, 1 mM EDTA, 0025% mercaptoethanol, 10% glycerol, 01% Triton X-100). Column fractions were assayed for tyrosine phosphatase activity using ³²P-labelled poly (Glu⁴, Tyr¹) as substrate as described by Swarup and Subrahmanyam (1989). The purified enzyme was stored in 50% glycerol made in column buffer. This storage buffer was used as control buffer for phosphatase treatment experiments.

3. Results

3.1 Nucleotide sequence of rat hck

The rat *hck* cDNA clones were isolated by screening a spleen cDNA library (Rema and Swarup, 1990). The nucleotide sequence of the largest clone (1.94 kb) showed an open reading frame coding for a polypeptide of 503 amino acids beginning after 212 nucleotides at the 5' end (figure 1). Figure 2 shows a comparison of first 80 amino acids of human, mouse and rat *hck* gene products starting from the initiator ATG codon, which is numbered + 1. Human and mouse *hck* sequences are taken from published papers (Quintrell *et al* 1987; Ziegler *et al* 1987; Holtzman *et al* 1987). Translation of mouse *hck* can also initiate from a CTG codon located 21 codons 5' of the ATG codon (Lock *et al* 1991). This CTG codon, beginning at nucleotide 150 (figure 1) is also conserved in rat *hck* sequence and is numbered -21 in figure 2. The rat and mouse *hck* not proteins show 97% identity (16 substitutions) whereas rat and human *hck* and proteins show 89% identity (53 substitutions and 2 single amino acids between mouse and rat *hck* protein are located within the first 100 amino acids. This is also the case with human protein in which 29 out of 55

GA CGC TCG GGC	ATT TCG AGT TGC	CGG GAG CCG CCG	TCT CGC GGG CGA	CAG CAA CCA GGC	ACG CGC CCA GAA	GGT AGC GGG GGG	GGG CTC GCC CGG	AGG CGT GCG GTG	GAA AGC GCG CCC	CCA CCG CTG AGG	AAG CAA GGG ATG Met	TCG GTC GGT GGA GIY	CCG TTC CGT TGT Cys	GTA GTC TCG GTG Val	AAG GCT AGC AAG Lys	GCG TGC TGC TCC Ser	GCT TCC GAG AGG AFg	CTG GGG GAT TTC Phe	ACC CTC CCG CTC Leu	59 119 179 239
CGA	GAA	GGA	AGC	AAG	GCC	TCA	AAA	ATA	GAG	CCA	AAT	GCC	AAC	CAG	AAA	GGC	CCT	GTG	TAT	299
Arg	Giu	Giy	Ser	Lyb	Ala	Ser	Lys	11e	G I U	Pro	Asn	Ala	Asn	GIN	Lys	GIY	Pro	Val	Tyr	
GTG	CCG	бАТ	CCC	ACG	TCC	CCT	AAG	AAG	CTG	GGA	CCG	AAC	AGC	ATC	AAC	AGC	CTG	CCC	CCG	359
Val	Pro	Авр	Pro	Thr	Ser	Pro	Lys	Lys	Leu	GIY	Pro	Asn	Ser	11e	Asn	Ser	Leu	Pro	Pro	
GGG	GTC	GTG	GAG	GGC	тст	GAG	бас	ACC	ATT	GTG	GTC	GCA	CTG	TAC	бас	TAT	GAG	GCC	ATT	419
Giy	Vasl	Val	Glu	G1y	Seг	Giu	Авр	Thr	11e	Val	Val	Ala	Leu	Tyr	Абр	Tyr	Glu	Ala	1e	
CAC	CGT	GAA	GAC	CTC	AGC	TTC	CAG	AAG	GGA	GАС	CAG	ATG	GTG	GTT	CTG	GAG	GAG	TCT	GGG	479
Hib	Arg	Giu	Asp	Leu	Ser	Phe	Gin	Lys	G1y	Азр	Gin	Net	Val	Val	Leu	Glu	Glu	Ser	Gly	
GAG	Т66	төө	AAG	GCC	CGT	TCC	CTG	GCT	ACC	AAG	AAA	GAA	GGC	тат	ATC	CCA	AGC	AAT	TAT	539
Glu	Тгр	Тгр	Lys	Ala	Arg	Ser	Leu	Ala	Thr	Lys	Lys	Giu	Gly	Туг	11e	Pro	Ser	Asn	Tyr	
GTA	GCT	CGA	GTT	AAC	TCT	TTG	GAG	ACT	GAG	GAG	TGG	TTC	TTC	AAG	GGT	ATC	AGC	CGG	AAG	599
Val	Ala	Arg	Val	Asn	Ser	Leu	Glu	Thr	GIU	Glu	Trp	Phe	Phe	Lys	G1γ	11e	Ser	Arg	Lys	
бАТ	GCA	GAG	CGC	CAC	СТG	CTG	GCT	CCC	GGG	AAC	ATG	CTG	GGC	TCC	TTC	ATG	ATC	CGG	G∧С	659
Авр	Ala	Glu	Arg	His	Leu	Leu	Ala	Pro	G I Y	Asn	Met	Leu	Giy	Ser	Phe	Het	16	∧rg	Азр	
AGT	GAG	ACC	ACC	AAA	GGG	AGC	ТАС	TCA	CTT	тст	GTT	CGA	GAC	TTT	GAC	ccc	CAG	CAC	GGA	719
Ser	Glu	Thr	Thr	Lys	Giy	Ser	Туг	Ser	Leu	Ser	Val	Arg	Asp	Phe	Asp	Pro	Gin	His	G1y	
GAC	ACG	GTG	AAG	CAT	TAT	AAA	ATC	CGG	ACA	CTG	GAC	AGT	GGA	GGG	TTC	тас	ATC	TCT	CCG	779
Asp	Thr	Val	Lys	His	Tyr	Lyb	}e	Arg	Thr	Leu	Asp	Ser	Gły	Gly	Phe	Туг	11e	Ser	Pro	
AGG	AGC	ACC	TTC	AGC	AGC	CTG	CAG	GAA	CTT	GTC	GTC	CAC	тас	AAG	AGG	GGG	AAG	GAT	GGG	B 39
Arg	Ser	Thr	Phe	Ser	Ser	Leu	Gin	Glu	Leu	Val	Val	His	Туг	Lys	Arg	Giy	Lys	Asp	Gly	
CTC	ТСС	CAG	AAG	CTG	TCA	GTG	CCC	тдт	GTG	TCT	CCC	ллл	CCC	CAG	AAG	ССА	TGG	GAG	AAA	899
Leu	Сув	Gin	Lys	Leu	Ser	Vai	Pro	Су в	Val	Ser	Pro	Lyb	Pro	Gin	Lys	Рго	Trp	Giu	Lys	
GAT	GCC	TGG	GAG	ATT	CCT	CGA	GAA	тсс	CTC	CAG	ATG	GAG	AAG	AAA	CTG	GGA	GCC	666	CAG	959
Asp	Ala	Trp	G I u	IIC	Pro	Arg	Giu	Ser	Leu	Gin	Met	G I u	Lys	Lys	Leu	GIY	Ala	61 y	G1n	
TTT	GGA	GAA	GTG	TGG	ATG	GCC	ACC	TAC	AAC	AAG	САС	ACC	AAA	GTG	GCG	GTG	AAG	ACA	ATG	1019
Phe	Giy	Giu	Val	Trp	Het	Ala	Thr	Tyr	Asn	Lys	Нів	Thr	Lys	Val	Ala	Val	Lys	Thr	Met	
AAG	CCA	GGG	AGC	ATG	TCT	GTG	GAG	GCC	TTC	CTG	GCA	GAG	GCC	AAC	CTG	ATG	AAG	ACG	TTA	1079
Lyb	Pro	Giy	Ser	Het	Ser	Val	Gi⊔	∧la	Phe	Leu	Ala	Glu	Ala	Asn	Leu	Met	Lys	Thr	Leu	
CAG	САТ	бат	AAA	CTG	GTG	AAG	CTG	CAC	GCC	GTG	GTC	TCT	CAG	GAG	CCC	ACC	TTT	ATT	GTC	1139
Gin	Нів	Авр	Lys	Leu	Vali	Lys	Leu	His	Ala	¥al	Val	Ser	Gin	Glu	Pro	Thr	Phe	11e	Val	
ACC	GAG	TTC	ATG	GCC	AAA	GGA	AGC	CTG	CTG	GAC	TTT	CTC	AAG	AGT	GAA	GAA	GGC	AGC	AAG	1199
Thr	G1u	Phe	Het	A1a	Lys	Giy	Ser	Leu	Leu	Asp	Phe	Leu	Lys	Ser	Giu	Giu	Gly	Ser	Lys	
CAG	CCA	CTG	CCA	AAA	CTC	ATT	GAC	TTC	TCA	GCC	CAG	ATT	TCA	GAG	GGC	ATG	GCT	TTC	ATT	1259
Gin	Pro	Leu	Pro	Lys	Leu	11e	Asp	Pine	Ser	Ala	Gin	I le	Ser	GÌ⊔	Giy	Met	Ala	Phe	11e	
GAG Giu	CAG Gin	AGG Arg	ААС Авп	TAC Tyr	ATC	CAC His	CGA Arg	GAC Asp	СТС Leu	CGG ∧rg	GCT Ala	GCC Ala	ААС Авл	ATC	TTG Leu	GTT Val	TCT Ser	GCA Ala	ТСА Бег	1319
CTG Leu	GTG Vali	тбт Суз	AAG Lys	ATC	GCT Ala	GAC Asp	TTT Phe	GGA G1y	CTG Leu	GCA Ala	ccc Arg	ATC	ATC Ile	GAG Glu	GAC Asp	AAT Asri	GAG Glu	тас Туг	ACA Thr	1379
GCT Ala	CGG Arg	GAA Giu	GGA Giy	GCC Ala	AAG Lys	TTC Phe	CCC Pro	ATC	AAG Lys	TGG Trp	ACA Thr	GCT Ala	CCT Pro	GAA G1u	GCC Ala	ATC	AAC Asn	ттт Phe	GGC G1y	1439
TCC Ser	TTC Phe	ACC Thr	ATC	AAG Lyb	TCA Ser	GAT Asp	GTC Val	TGG Trp	TCC Ser	TTT Phe	GGT Gly	АТС ↓1е	CTG Leu	CTG Leu	ATG Met	GAA Glu	ATC }e	GTC Val	ACC Thr	1499
тас Туг	GGC Gly	CGG Arg	ATC	ССТ Рго	тас Туг	CCA Pro	GGT Giy	ATG Met	TCA Ser	AAC Asn	ССА Рго	GAG Glu	GTG Val	ATT 11e	CGA Arg	GCA Ala	CTA Leu	GAG GIU	CAT His	1559
666 61 y	тас Туг	CGT Arg	ATG Met	CCT Pro	CGA Arg	CCA Pro	GAT Asp	AAC Asn	тбс Суз	CCA Pro	GAG G1u	GAG Glu	СТС Leu	ТАС Туг	AGT Ser	ATC	ATG Met	ATC	CGC Arg	1619
TGC Cys	тбб Тгр	AAG Lys	AAC Asn	CGT Arg	CCA Pro	GAG Giu	GAA G1u	CGG Arg	CCC Pro	ACT Thr	TTC Phe	GAA Giu	TAC Tyr	ATC	CAG Gin	AGC Ser	GTG Val	CTG Leu	GAT Asp	1679
GAC Asp	TTC Phe	TAC Tyr	ACG Thr	GCC	ACT Thr	GAG Glu	AGC Ser	CAG Gin	тат Туг	CAG Gin	CAG Gin	CAA G1n	CCT Pro	TGA	TGG	GCC	GGA	AGA	ACA	1739
TGA AGA TTT TGC	GCA CGC GAC CTG	CAG CCC TCT GAA	CCA CTC AGT TGA	GAA CCC CAT ACT	GCC CAC CTG GAA	CCA ATT CAA TTC	TCA CCA TCT	GGG GCT GCC	CCT GTC ATT	TGA GAG CTC	CAT TGG AGG	GCT AGG GCC	CGA GAG TCC	CCT AGG AAG	GCT АСТ ТТА	GGG TCA GTG	CCC CAA TTT	АСТ ТСТ СТС	CTC CTT ATT	1799 1859 1919 1940

Figure 1 Nucleocide and deduced amino acid sequence of rat *lick* cDNA isolated from spleen cDNA library.

Rat																					-2	1	м	G	G	R	s	s	С	E	D	Ρ	G	С	Ρ	R	G	E	G	R	¥	P	R	-1
Mouse																													•							•	s			•	A	•		-1
Human																																•	•	•	•	•	D		E	•	A	•	·	-1
Rat-	N	1	5 (C	٧	ĸ	s	R	F	L	, F	E	G	-	2	5 1	ĸ	A	s	ĸ	I	Е	P	N	A	N	Q	K	G	Ρ	V	Y	۷	P	D	Ρ	Т	s	Ρ	K	K	L	GÌ	40
Mouse	,	,										C		-							т	·		s	۰.											×			s	s	×	,		40
Human		,			м			ĸ			ç	v		c	1	1	7	F			т		т	S		s	P	H	С										Т	I		P		41
Rat	F	1	1 5	5	I	N	s	L	P	P	G	٧	٧	E		- (3	s	E	D	т	I	۷	۷	A	L	Y	D	Y	E	A	I	۲	R	E	D	L	s	F	Q	ĸ			80
Mouse	-			1 :	s			м				F				- 1																												80
Human				. 1	H			N	т			I	R		1	ι.					I													Н										82

Figure 2 Comparison off amino terminal 100 amino acids off the rat, mouse and human *hck.* The initiator ATG codon is numbered as +1, Human and mouse sequences are taken from published papers (Quintrell et al 1987; Ziegler *el al* 1987; Holtzman *et al* 1987).

differences are located within the first 100 amino acids (figure 2). This suggests that the variability occurs mainly in the N-terminal region of the protein. There are three cysteine residues near the amino terminal end at positions -15, -10 and +3 which are conserved in rat, mouse and human (figure 2).

The rat *hck* protein shows a highly conserved tyrosine kinase domain beginning at amino acid 230. The tyrosine kinases of *src* family share conserved SH2 and SH3 domains (*src* homology domains 2 and 3, respectively). The SH2 (amino acids 109-229) and SH3 domains (amino acids 61–108) are also present in the rat *hck* in the N-terminal half of the protein. Amino acids 1-60 do not show any significant homology to any known protein and this region is therefore known as unique region. Two conserved Tyr residues, Tyr 388 and Tyr 499 are homologous to the autophosphorylation and negative regulatory phosphorylation sites, respectively, of the *src* kinase.

3.2 Expression of hck transcripts

We analysed the expression of *hck* transcripts in rat thymus, spleen and some other tissues, Northern hybridization was carried out with RNA from rat tissues, using a 550 base pair *Eco*RI-*Hinc*II fragment from the 5' end of the rat *hck* cDNA clone, L115. A major transcript of $2 \cdot 2$ kb was seen in the spleen. Another faint band of larger size was also observed. On longer exposure of the blot similar size transcripts were detected in thymus (figure 3), at very low level. *hck* transcripts could not be detected in brain and liver.

3.3 Identification of hck gene product

In order to identify the protein product coded by hck, antibodies were prepared using a fusion protein of GST and hck (amino acids 32 to 113) as immunogen. Construction of the vector pGEX-hck (figure 4) which expresses the 35 kDa GST-hckfusion protein in bacteria under the control of the inducible tac promoter is described in §E. The polyclonal antibodies raised in mice and the monoclonal

122

Figure 3. Analysis of *hck* transcripts from different rat tissues. Poly (A)⁺ RNA (5 μ g) from indicated tissues was hybridized to 5 specific fragment of the rat *hck* cDNA as described in §2, The same blot was reprobed with actin (lower panel). The actin probe used was β-actin which seems to be expressed al different levels in various tissues. However, an actin blot shows that the absence of *hck* transcripts in these tissues is not due to degradation of RNA.

antibody recognized the GST-hck fusion protein but not the GST itself by immunoblotting. These polyclonal as well as a monoclonal antibody identified two polypeptides of 59 and 56 kDa by immunoblotting in the particulate fraction of rat spleen (figure 5). When antibodies were preincubated with GST-*hck* fusion protein prior to immunoblotting, these two bands of 59 and 56 kDa were not observed suggesting that these polypeptides are not non-specifically precipitated.

3.4 Kinase activity of hck protein

Many protein tyrosine kinases can autophosphorylate upon incubation with ATP and divalent cations. The protein kinase activity of *hck* proteins was examined in the immunoprecipitate. For this purpose extracts were prepared from rat peritoneal macrophages or the particulate fraction of spleen and immunoprecipitation was

Figure 4. Restriction map of rat *hck* cDNA and schematic drawing of the vector *p*GEX-*hck* which expresses GST-*hck* fusion protein. The restriction sites are abbreviated. E, *Eco*RI; B, *Bam*HI (at nucleotides 173, 305, 1505); S, *Smal* (358, 626); H, *Hinc*II (551). The numbers such as 32 and 113 are amino acids of rat *hck* as in figure 1. SH2 and SH3 are *sic* homology domains 2 and 3, respectively.

Figure 5. Identification of hck gene product by Western blotting. Particulate fraction from rat spleen (0.1 mg) was fractionated by SDS-PAGE on a 10% gel and analysed by Western blotting using polyclonal (lane I) or monoclonal (lane 2) hck antibody.

carried out using polyclonal antibodies and protein A-Sepharose as described under §2. The immunoprecipitate was incubated with $[\gamma^{-3^2}P]$ ATP and Mg²⁺ and the resultant phosphorylated proteins were analysed by SDS-PAGE followed by autoradiography. Two polypeptides of 59 and 56 kDa were phosphorylated in the *hck* immunoprecipitate (figure 6, lanes 2, 3). This phosphorylation was alkali-stable (data not shown). The immunoprecipitated *hck* could phosphorylate poly (Glu⁴, Tyr¹), a synthetic substrate for tyrosine kinases (figure 7, lane 1), but not BSA. When antibodies were preincubated with GST-*hck* fusion protein prior to immunoprecipitation, the 59 or 56 kDa phosphorylated bands were not observed (figure 6, lanes 1, 4).

Figure 6. Protein kinase activity of hck gene product in the immunoprecipitate. Rat peritoneal macrophages (lanes 1, 2) or spleen particulate fraction (lanes 3, 4) were extracted and the extracts were subjected to immunoprecipitation and kinase assays as described in §2. The antibody was competed with GST-hck fusion protein (lanes 1, 4) for determining specificity. The samples were analysed by SDS-PAGE on a 12% gel followed by autoradiography.

3.5 Regulation of kinase activity by phosphorylation

Activity of some protein tyrosine kinases is regulated by autophosphorylation (Swarup and Radha, 1992). In order to test this possibility, immunoprecipitated *hck* was preincubated with ATP and Mg^{2+} followed by the addition of exogenous substrate; there was no increase in the tyrosine kinase activity of *hck*. This suggested

Figure 7. Effect of phosphatase treatment on the kinase activity of *hck*, Immunoprecipitated *hck* was incubated with control buffer (lane I), purified protein tyrosine phosphatase (lane 2) or phosphatase plus 100 μ M sodium orthovanadate (lane 3) for [0 min at 30°C. The kinase reaction was then started as described under §2. The sample in lane 4 contained phosphatase during kinase reaction only. Orthovanadate was always present during kinose reaction so as to prevent dephosphorylation. The arrow indicates the position of phosphatase (M_r 47 kDa).

that either *hck* is not regulated by autophosphorylation or it is already in an activated, phosphorylated state. In case hck was already in an activated, phosphorylated state, dephosphorylation by a tyrosine phosphatase is expected to decrease its kinase activity. Therefore immunoprecipitated hck was treated with a purified protein-tyrosine phosphatase prior to kinase assay with poly (Glu⁴, Tyr¹) as substrate; there was nearly complete loss of kinase activity of hck (figure 7, lane 2). This loss of kinase activity upon treatment with protein tyrosine phosphatase was prevented substantially if orthovanadate, a known inhibitor of this and other protein tyrosine phosphatases (Swarup et al 1982; Swarup and Subrahmanyam 1989; Radha et al 1993) was included during phosphatase treatment (figure 7, lane 3). These observations suggest that phosphatase treatment inactivates hck by dephosphorylation. Therefore, the hckprotein is in a phosphorylated, active state, which becomes less active or inactive by dephosphorylation. During incubation of *hck* with phosphatase in the presence of vanadate, the phosphatase was phosphorylated by hck (figure 7, lane 3). When phosphatase was added during the kinase assay, there was no effect on enzyme activity of hck (figure 7, lane 4) suggesting thereby that the phosphatase does not

interfere with the kinase activity in presence of vanadate. Because the PTP was added with vanadate, vanadate was always present during kinase assay. A labelled PTP band should be present in lane 4 but since poly (Glu, Tyr) is phosphorylated and gives a smear in that region the band cannot be seen. On shorter exposure one can see a PTP band but not as clearly as in lane 3. The phosphatase treated, inactive *hck* could be reactivated partially upon incubation with ATP (figure not shown). Incomplete reactivation may be due to phosphorylation of phosphatase by *hck* which may compete for autophosphorylation reaction.

4. Discussion

The nucleotide sequence of rat hck shows an open reading frame beginning with an ATG codon, coding for a polypeptide of 503 amino acids. In mouse hcktranslation can also initiate from an upstream CTG codon which was found to be conserved in the rat hck sequence also. This would give rise to a polypeptide of 524 amino acids. Identification of the hck gene product with antibodies showed two polypeptides of 59 and 56 kDa which are similar in size to mouse hck proteins. These polypeptides are enzymatically active, as shown by phosphorylation of exogeneous substrate and also by autophosphorylation.

A comparison of rat hck protein sequence in the N-terminal region with the mouse and human sequences shows that 3 cysteines are conserved at positions -15, -10 and +3. The 56 kDa product of hck will have only one conserved cysteine. Two cysteine residues in the amino terminal region of lck are known to play an important role in its interaction with CD4 and CD8 glycoproteins in T cells (Shaw *et al* 1989; Turner *et al* 1990). Whether hck polypeptides interact with any cell surface proteins is not known. Another important point that emerges from sequence comparison (figure 2) is that although most of the differences are in the N-terminal 100 amino acids, the first 14 amino acids are identical in all the 3 species in the 59 kDa form of hck. This conservation suggests an important role for these 14 amino acids in the hck protein.

The protein kinase activity of hck appears to be regulated by phosphorylation. Treatment with phosphatase decreases kinase activity of hck, which suggests that in the immunoprecipitate, hck is in the phosphorylated, active state. The effect of phosphatase on kinase activity is due to dephosphorylation; this is suggested by the observation that the phosphatase inhibitor vanadate largely prevented inactivation of the kinase by phosphatase.

Regulation of protein kinase activity of low molecular weight tyrosine kinases by phosphorylation is known for a few kinases (Swarup and Radha 1992). We had previously shown that the kinase activity of TK-I, a tyrosine kinase isolated from rat spleen, is regulated by autophosphorylation at tyrosine (Swarup and Subrahmanyam 1985a, b 1989); dephosphorylation by a phosphatase inactivates this kinase (Swarup and Subrahmanyam 1989). This kinase could be isolated in the active state by including vanadate during purification; this preparation could not be activated further by incubation with ATP since it was already in the phosphorylated, active state (Swarup and Subrahmanyam 1985, 1988, 1989). Another kinase isolated from bovine spleen was in the active state and could be inactivated by dephosphorylation (Kong *et al* 1988). The *hck* kinase activity seems to be regulated by phosphorylation in the same manner as that of TK-I or the kinases from bovine spleen and lung (Kong *et al* 1988; Sreevastava and Chiasson 1988).

Regulation of protein kinase activity by phosphorylation is a very complex process which has been analysed in great detail in the case of *c-src* kinase (Hunter 1987). Phosphorylation at Tyr 416, which is also the in vitro autophosphorylation site, increases the kinase activity of *c-src* whereas phosphorylation at Tyr 527 inhibits its activity. When both the sites are phosphorylated the kinase activity is inhibited. Phosphorylation at Tyr 527, which is carried out by a tyrosine kinase named *csk*, inhibits kinase activity only when both SH2 and SH3 domains are intact. Deletion of SH2 or SH3 domains, or certain point mutations in these regions, affect inhibition of src kinase activity by phosphorylation at Tyr 527 (Superti-Furga et al 1993). Therefore, interaction of SH2 and SH3 domains with phosphorylated Tyr plays an important role in regulating kinase activity (Pawson and Gish 1992; Superti-Furga et al 1993). In addition, SH2 and SH3 domains are also involved in the interaction of these kinases with other proteins (Pawson and Gish 1992). The hck sequence shows conserved potential phosphorylation sites at Tyr 388 (homologous to Tyr 416 of c-src) and Tyr 499 (homologous to Tyr 527 of c-src). Which sites are phosphorylated in hck in vitro and in vivo are not known at present. Our results suggest that dephosphorylation of immunoprecipitated hck inhibits kinase activity, implying thereby that the *hck* protein is phosphorylated *in vivo* at a positive regulatory site.

References

Bolen J B 1993 Nonreceptor tyrosine protein kinascs; Oncogene 8 2025-2032

- Chen E Y and Seeburg P M 1985 Supercoil sequencing: A fast and simple method for sequencing plasmid DNA; DNA 4 165–370
- Chomoezynski P mid Sacchi N 1987 Single step method of RNA isolation by acid guanidiniuim thiocyanate-phenol-chloroform extraction; *Anal. Biochem.* **162** 356-159
- Eiseman E and Bolen J B 1990 Src-related tyrosine protein kinases as signalling components in hematopoietic cells; *Cancer Cells* **2** 303–310
- Fazekas de St. Groth S and Scheidegger D 3980 Production of monoclonal antibodies: strategy and tactics; J. Immunol. Methods 35 1-21

Holtzman D A, Cook W D and Dunn A R 1987 Isolation and sequence of a cDNA corresponding to a *src*-related gene expressed in murine hematopoietic cells; *Proc. Natl. Acad. Sci. USA* 84 8325–8329

- Hunter T 1987 A tail of two src's: Mutatis Mutandis; Cell 49 3-4
- Hunter T and Cooper J A 1985 Protein-tyrosine kinases; Anna. Rev. Biochem. 54 897-930
- Kong S K, Chohan I S and Wang J H 1988 Autophosphorylation and autoactivation of spleen protein tyrosine kinase; J. Biol. Chem. 263 14523–14530
- Lock P, Ralph S, Stanely E, Boulet I, Ramsay R and Dunn A R 1991 Two isoforms of murine *hck* generated by utilization of alternative translational initiation codons exhibit different patterns of subcellular localization; *Mol. Cell. Biol.* **11** 4363–4370

Pawson T and Gish G D 1992 SH2 and SH3 Domains: From Structure to Function; Cell 71 359-362

- Perlmutter R M, Marth J D, Ziegler S F, Garvin A M, Pawar 5, Cooke M P and Abraham K M 1988 Specialized protein tyrosine kinase proto- oncogenes in hematopoietic cells; *Biochim Biophys. Acta* **948** 245–262
- Quintrell N, Lebo R, Varmus H, Bishop 1 M, Pettanati M J, Le Beau M M, Diaz M O and Rowely J D 1987 Identification of a human gene (HCK) that encodes a protein tyrosine kinase and is expressed in hematopoietic cells; *Mol. Cell. Biol.* 7 2267–2275
- Radha V, Kamatakar S and Swarup G 1993 Binding of a protein-tyrosine phosphatase to DNA through its carboxy terminal non-catalytic domain; *Biochemistry* **32** 2194–2201
- Rema V and Swarup G 1990 Molecular cloning of a membrane bound tyrosine-specific protein kinase from rat spleen; *Indian J. Biochem. Biophys.* 27 433–437

- Rudd C E, Trevillyan J M, Dasgupta J D, Wang L L and Schlossman S F 1988 The CD4 receptor is complexed in detergent lysates to a protein tyrosine kinase (pp58) from human T lymphocytes; *Proc. Natl. Acad. Sci. USA* 85 5190–5194
- Sambrook J, Fritsch E F and Maniatis T 1989 *Molecular cloning: a laboratory manual* 2nd edition (Cold Spring Harbor: Cold Spring Harbor Laboratory Press)
- Samelson L E, Philips A F, Luong E T and Klausner R D 1990 Association fo the fyn protein-tyrosine kinase with the T-cell antigen receptor; Proc. Natl. Acad. Sci. USA 87 4358–4362
- Sanger F, Nicklen S and Coulson A R 1977 DNA sequencing with chain terminating inhibitors; *Proc, Natl. Acad. Sci. USA* **74** 5463–5467
- Shaw A S, Amrein K E, Hammond C, Stern D F, Stern B M and Rose J K 1989 The *lck* tyrosine protein kinase interacts with the cytoplasmic tail of the CD4 glycoprotein through its unique amino-terminal domain; *Cell* **59** 627-636
- Smith D B and Johnson K S 1988 Single step purification of poly peptides expressed in *E. coli* as fusions with glulathione-S-Iransferase; *Gene* 67 31-40
- Srivastava A K 1990 Non-receptor protein tyrosine kinases of normal tissues; Int. J. Biochem. 22 1229-1234
- Srivastava A K and Chiasson J L 1988 Regulation of a rat lung protein tyrosine kinase activity by reversible phosphorylation/dephosphorylation; *FEBS Lett* **238** 156-160
- Superti-Furga G, Fumagali S, Koegl M, Courtneidge S A and Drama G 1993 Csk inhlbition of c-Src activity requires both the SH2 and SH3 domains of src; EMBO J. 12 2625–2634
- Swarup G, Cohen S and Garbers D L 1982 Inhibition of membrane phosphotyrosyl protein phosphatase by orthovanadate; *Biochem. Biophyc. Rec. Common.* 107 1104–1109
- Swarup G, Dasgupta J 1) and Garbers D L 1984 Tyrosine specific protein kinases of normal tissues; Adv. Enzyme Regal. 22 267–288
- Swarup G, Kamatkar S, Radha V and Rema V 1991 Molecular cloning and expression of a proteintyrosine phosphatase showing homology with transcription factors Fos and Jun; FEBS Lett. 280 65–69
- Swarup G and Radha V 3992 Protein tyrosine phosphatases as regulators of protein kinase activity; *Curr*, *Sci.* **62** 462–469
- Swarup G and Subrahmanyam G 1985 Activation of a cellular tyrosine specific protein kinase by phosphorylation; *REDS Lett.* **188** 131–134
- Swarup G and Subrahmanyam G 1988 ATP dependent activation of a tyrosine-specific protein kinase and its possible role as a molecular switch; *Indian J. Biochem. Biophys.* 25 61–65
- Swarup G and Subrahmanyam G 1989 Purification and characterization of a protein-phosphotyrosine phosphatase from rat spleen which dephosphorylates and inactivates a tyrosine-specific protein kinase; J. Bill, Chem. 264 7803–7808
- Turner J M, Brodsky M H, Irving B A, Levin S D, Perlmutter R M and Littman D R 1990 Interaction of the unique N-terminal region of tyrosine kinase p56^{lck} with cytoplasmic domains of CD4 and CD8 is mediated by cysteine motifs; *Cell* **60** 755–766
- Ulbrich A and Schlessinger J 1990 Signal transduction by receptors with tyrosine kinase activity; *Cell* 61 203-212
- Veillette A, Bookman M A, Horak E M and Bolen J B 1988 The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56^{lck}; *Cell* **55** 301–308
- Yamanashi Y, Kakiuchi T, Mizuguchi J, Yamamoto T and Toyoshima K 1991 Association of B cell antigen receptor with protein tyrosine kinase Lyn; *Science* 251 192–194
- Ziegler S F, Mardi J D, Lewis D B and Perlmutter R M 1987 Novel protein-tyrosine kinases gene (hck) preferentially expressed in cells of hematopoictic origin; *Mal. Cell. Biol.* **7** 2276–2285