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Abstract

We describe a model that enables us to analyze the runniegofiran algorithm in a computer with
a memory hierarchy with limited associativity, in terms @afrious cache parameters. Our model, an
extension of Aggarwal and Vitter's /O model, enables usdtaklish useful relationships between the
cache complexity and the I/O complexity of computations.aA=orollary, we obtain cache-optimal al-
gorithms for some fundamental problems like sorting, FFO an important subclass of permutations
in the single-level cache model. We also show that ignorsspeiativity concerns could lead to infe-
rior performance, by analyzing the average-case cachevioela mergesort. We further extend our
model to multiple levels of cache with limited associativétnd present optimal algorithms for matrix
transpose and sorting. Our techniques may be used for syStesmploitation of the memory hierarchy
starting from the algorithm design stage, and dealing withhitherto unresolved problem of limited
associativity.

1 Introduction

Models of computation are essential for abstracting theptexity of real machines and enabling the design
and analysis of algorithms. The widely-used RAM model owg$oingevity and usefulness to its simplic-
ity and robustness. While it is far removed from the compiesiof any physical computing device, it
successfully predicts the relative performance of alhori based on an abstract notion of operation counts.

The RAM model assumes a flat memory address space with wstitacoess to any memory location.
With the increasing use of caches in modern machines, thimastion grows less justifiable. On modern
computers, the running time of a program is as much a functiaperation count as of its cache reference
pattern. A result of this growing divergence between mode eeality is that operation count alone is
not always a true predictor of the running time of a progrand manifests itself in anomalies such as a
matrix multiplication algorithm demonstrating(n”) running time instead of the expectédn?) behavior
predicted by the RAM mode[][5]. Such shortcomings of the RAMd®l motivate us to seek an alternative
model that more realistically models the presence of a megmerarchy. In this paper, we address the issue
of better and systematic utilization of caches startingnftbe algorithm design stage.

*Some of the results in this appeared in a preliminary formha Proceedings of the Eleventh ACM-SIAM Symposium on
Discrete Algorithms 200@9].
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A challenge in coming up with a good model is achieving a baddmetween abstraction and fidelity, so
as not to make the model unwieldy for theoretical analys@rplistic to the point of lack of predictiveness.
Memory hierarchy models used by computer architects tagdesaches have numerous parameters and
suffer from the first shortcomind][{, 6]. Early algorithmiork in this area focussed on a two-layered
memory mode|[21]—a very large capacity memory with slowesstime (secondary memory) and a limited
size faster memory (internal memory). All computation isfpened on elements in the internal memory
and there is no restriction on placement of elements in tieenal memory (fully associative).

The focus of this paper is on the interaction between main ongmndcache which is the first level
of memory hierarchy once the address is provided by the CIg structure of a single level hierarchy of
cache memory is adequately characterized by the followirggtparameter#i ssociativity,Block size, and
Capacity. Capacity and block size are in units of the minimuenmary access size (usually one byte). A
cache can hold a maximum 6fbytes. However, due to physical constraints, the cacheidetl intocache
framesof size B that containB contiguous bytes of memory—calledr@emory block The associativityd
specifies the number of different frames in which a memorglblcan reside. If a block can reside in any
frame (i.e.,.A = %), the cache is said to Helly associativeif A = 1, the cache is said to lubrect-mapped
otherwise, the cache i4-way set associative

For a given memory access, the hardware inspects the cadegetmine if the corresponding memory
element is resident in the cache. This is accomplished Iogwsi indexing function to locate the appropriate
set of cache frames that may contain the memory block. If themary block is not resident, a cache miss is
said to occur. From an architectural standpoint, cacheasisan be classified into one of three claspds [20].

e A compulsory misgalso called aold mis$ is one that is caused by referencing a previously unref-
erenced memory block. Eliminating a compulsory miss reguprefetching the data, either by an
explicit prefetch operation or by placing more data itema single memory block.

¢ A reference that is not a compulsory miss but misses in a-aglociative cache with LRU replace-
ment is classified as@pacity missCapacity misses are caused by referencing more memorksbloc
than can fitin the cache. Restructuring the program to réslagis while they are in cache can reduce
capacity misses.

¢ Areference that is not a compulsory miss that hits in a falgociative cache but misses inway
set-associative cache is classified asaflict miss A conflict miss to block X indicates that block X
has been referenced in the recent past, since it is contairtbd fully-associative cache, but at least
A other memory blocks that map to the same cache set have begssad since the last reference to
block X. Eliminating conflict misses requires transformthg program to change either the memaory
allocation and/or layout of the two arrays (so that conterapeous accesses do not compete for the
same sets) or the manner in which the arrays are accessed.

Conflict misses pose an additional challenge in designifigiexiit algorithms in the cache. This class of
misses is not present in the 1/0 models, where the mappingeleet internal and external memory is fully
associative.

Existing memory hierarchy modelf [, [2,[3, 5] do not modetaiarsalient features of caches, notably
the lack of full associativity in address mapping and thé latexplicit control over data movement and
replacement. Unfortunately, these small differences atigmin the effecf] The conflict misseshat they
introduce make analysis of algorithms much more difficui][1Carter and Gatlin[J9] conclude a recent
paper saying

1See the discussion iEl[Q] on a simple matrix transpose pnogra



What is needed next is a study of “messy details” not modelddNdH (particularly cache as-
sociativity) that are important to the performance of thmeening steps of the FFT algorithm.

In the first part of this paper, we develop a two-level memaeydrchy model to capture the interaction
between cache and main memory. Our model is a simple exteakibe two-level I/O model that Aggarwal
and Vitter [4] proposed for analyzing external memory ailfpons. However, it captures three additional
constraints of caches: lower miss penalties; lack of fudbagtivity in address mapping; and lack of explicit
program control over data movement. The work in this papewslithat the constraint imposed by limited
associativity can be tackled quite elegantly, allowingassttend the results of the I/O model to the cache
model very efficiently.

Most modern architectures have a memory hierarchy congisti multiple cache levels. In the second
half of this paper, we extend the two-level cache model to hitiewel cache model.

The remainder of this paper is organized as follows. Se@@isarveys related work. Secti¢h 3 defines
our cache model and establishes an efficient emulation sebetween the 1/0 model and our cache model.
As direct corollaries of the emulation scheme, we obtaimeaaptimal algorithms for several fundamental
problems such as sorting, FFT, and an important class ofygations. Sectiofi4 illustrates the importance
of the emulation scheme by demonstrating that a dirieet pypassing the emulation) implementation of
an 1/0O-optimal sorting algorithm (multiway mergesort) i@yably inferior, even in the average case, in the
cache model. Sectidh 5 describes a natural extension of odelntio multiple levels of caches. We present
an algorithm for transposing a matrix in the multi-levellsaenodel that attains optimal performance in the
presence of any number of levels of cache memory. Our afgoris not cache-oblivious,e., we do make
explicit use of the sizes of the cache at various levels. Negtshow that with some simple modifications,
the funnel-sort algorithm of Frigo et al. attains optimatfpemance in a single level (direct mapped) cache
in an oblivious sense,e., without prior knowledge of memory parameters. Finallyct®m [6 presents
conclusions, possible refinements to the model, and direstior future work.

2 Related work

The I/O model assumes that most of the data resides on digkaanio be transferred to main memory to do
any processing. Because of the tremendous difference adspé ignores the cost of internal processing
and counts only the number of I/Os. Floyd][15] originally defi a formal model and proved tight bounds on
the number of I/Os required to transpose a matrix using tvgepaf internal memory. Hong and Kurjg][21]
extended this model and studied the 1/0O complexity of FFTmime internal memory size is bounded by
M. Aggarwal and Vitter [[4] further refined the model by incorgiing an additional parametd?, the
number of (contiguous) elements transferred in a singleofd€ration. They gave upper and lower bounds
on the number of 1/Os for several fundamental problems dioly sorting, selection, matrix transposition,
and FFT. Following their work, researchers have desigr@ebfitimal algorithms for fundamental problems
in graph theory[[1]3] and computational geomefry [19].

Researchers have also modeled multiple levels of memonrgroley. Aggarwakt al. [P] defined the
Hierarchical Memory Mode(HMM) that assigns a functioif(x) to accessing locatiom in the memory,
where f is a monotonically increasing function. This can be regadrae a continuous analog of the multi-
level hierarchy. Aggarwadt al.[§] added the capability of block transfer to the HMM, whiateéled them
to obtain faster algorithms. Alpeet al.[H] described thé&Jniform Memory HierarchfUMH) model, where
the access costs differ in discrete steps. Very recentigpfet al. [[[8] presented an alternate strategy of
algorithm design on these models which has the added adjeatitat explicit values of parameters related
to different levels of the memory hierarchy are not requiiardi and Pesericd][8] investigate further the



complexity of designing algorithms without the knowledgetitectural parametefsOther attempts were
directed towards extracting better performance by panalmory hierarchied [34, B, 114], where several
blocks could be transferred simultaneously.

Ladneret al. [P3] describe a stochastic model for performance analpsisiche. Our work is different
in nature, as we follow a more traditional worst-case arnigly@ur analysis of sorting in Sectigh 4 provides
a better theoretical basis for some of the experimental wbtkaMarca and Ladnef]25].

To the best of our knowledge, the only other paper that addsethe problem of limited associativity in
cache is recent work of Mehlhorn and Sandels[27]. They shawfor a class of algorithms based on merg-
ing multiple sequences, the I/O algorithms can be madeyeptimal by use of a simple randomized shift
technique. The emulation theorem in Secf{ibn 3 of this papeonly provides a deterministic solution for
the same class of algorithms, but also works for a very gésituation. The results iff [27] are nevertheless
interesting from the perspective of implementation.

3 The cache model

The (two-level) I/O model of Aggarwal and Vittef] [4] captsrehe interaction between a slow (secondary)
memory of infinite capacity and a fast (primary) memory ofited capacity. It is characterized by two
parameters:M, the capacity of the fast memory; a8} the size of data transfers between slow and fast
memories. Such data movement operations are cHlzeperationsor block transfers The use of the
model is meaningful when the problem sixe> M.

The I/O model contains the following further assumptions.

1. A datum can be used in a computation iff it is present in flastory. All data initially resides in
slow memory. Data can be transferred between slow and fastonye(in either direction) by I/O
operations.

2. Since the latency for accessing slow memory is very hlgghaterage cost of transfer per element can
be reduced by transferring a block Bfelements at little additional cost. This may not be as usesul
it may seem at first sight, since theBeelements are not arbitrary, but are contiguous in memorg. Th
onus is on the programmer to use all the elements, as tnaalit®RAM algorithms are not designed
for such restricted memory access patterns. We denote thdrora a memory address to its block
address by. The internal memory can hold at least three blocks, &% 3 - B.

3. The computation cost is ignored in comparison to the dosh &/O operation. This is justified by the
high access latency of slow memory.

4. A block of data from slow memory can be placed in any bloctasf memory.
5. 1/O operations are explicit in the algorithm.

The goal of algorithm design in this model is to minimize thenier of I/O operations.

We adopt much of the framework of the I/O model in developirgaehe model to capture the interac-
tions between cache and main memory. In this case, the cad¢he fast memory, while main memory is
the slow memory. Assumptions 1 and 2 of the I/O model contiiouleold in our cache model. However,
assumptions 3-5 are no longer valid and need to be repladetcass.

e The difference between the access times of slow and fast myeism@onsiderably smaller than in
the 1/0O model, namely a factor of 5-100 rather than factorGfi0D. We will useL to denoted the

2However, none of these models address the problem of liragsdciativity in cache.



normalizedcache latency. This cost function assigns a cost of 1 forssaog an element in cache and
L for accessing an element in the main memory. This way, weadsount for the computation in
cache.

e Main memory blocks are mapped into cache sets usiiigedand pre-determined mapping function
that is implemented in hardware. Typically, this is a modukpping based on the low-order address
bits. However, the results of this section will hold as losglzere is dixedaddress mapping function
that distributes the main memory evenly in the cache. We tdetiis mapping from main memory
blocks to cache sets I8 We will occasionally slightly abuse this notation and gppldirectly to a
memory address rather than t@(z).

e The cache is not visible to the programmer (not even at thenasly level). When a program issues
a reference to a memory locatiaf) animage(copy) of the main memory block= B(z) is brought
into the cache seéi(b) if it is not already present there. The blokkontinues to reside in cache until
it is evicted by another block' that is mapped to the same cache set,(S(b) = S(¥')). In other
words, a cache setcontains the latest memory block referenced that is mapptudd set.

To summarize, we use the notatidf)M, B, L) to denote our three-parameter cache model, and the
notationJ(M, B) to denote the I/O model with parametevs and B. We will usen andm to denoteN/B
andM /B respectively. The assumptions of our cache model parabhskt of the I/O model, except as noted
abovef] The goal of algorithm design in the cache model is to minimizeing time defined as the number
of cache accesses pligimes the number of main memory accesses.

3.1 Emulating I/O algorithms

The differences between the two models listed above wouyldapto frustrate any efforts to naively map an
I/O algorithm to the cache model, given that we neither hkaeecontrol nor the flexibility of the 1/O model.
Our main result in this section establishes a connectiowdst the 1/0O model and the cache model using a
very simple emulation scheme.

Theorem 3.1 (Emulation Theorem) An algorithmA in 3(M, B) using7 block transfers and processing
time can be converted to an equivalent algoritdhin €(M, B, L) that runs inO(I + (L + B) - T') steps.
The memory requirement df is an additionalm + 2 blocks beyond that ofl.

Proof: Note that/ is usually not accounted for in the I/O model, but we will keggck of the internal
memory computation done id in our emulation. The idea behind the emulation is as folloW& will
mimic the behavior of the 1/O algorithrd in the cache model, using an arBuyf of m blocks to play the
role of the fast memory. We will view the main memory in thelwamodel as an arrdemof B-element
blocks. AlthoughBuf is also part of the memory, we are using different notationaake their roles explicit
in this proof. Likewise, we will view the cache as an array etssand denote thigh set byC'[i].

As discussed above, we do not have explicit control on théeeots of the cache locations. However, we
can control the memory access pattern through a level afdation so as to maintain a 1-1 correspondence
betweerBuf and the cache. Wlog, we assume thaaps block of Buf to cache se€'[i] for i € [1,m].

We divide the 1/O algorithm into rounds, where in each routha, I/O algorithmA transfers a block
between the slow memory and the fast memory and (possibgg slame computations. The cache algorithm
A¢ transfers the same blocks betwédamandBuf and then does the identical computation8uf. Figure
formally describes the procedure. Note that thelements must be explicitly copied in the cache model.

3Frigoet al. [@] independently arrive at a very similar parameteranf their model.



Round ¢ of the emulation

I/0 Algorithm A Cache Emulatiom¢

1. Transfer blockb; from slow memory to| 1. Copy contents of th& locations of
block a; of the fast memory Menb;] into Buf(a]

2. Perform computations in fast memory 2. Perform identical computations Buf

Figure 1: The emulation scheme used in the proof of Thegrdm 3.

It must be obvious that the final outcome of algorithtfiis the same as algorithmd. The more inter-
esting issue is the cost of the emulation.

A block of sizeB is transferred into cache if its image does not exist in tleheat the time of reference.
The invariant that we try to maintain at the end of each rogritiat there is a 1-1 correspondence between
Buf andC'. This will ensure that all thé operations are done within the cache at minimal cost.

Assume that we have maintained the above invariant at thefmdindt — 1. In round¢, we transfer
block Menib,] into Buf|a,]. Accessing the memory bloddenb;] will displace the existing block in cache
setClq|, whereq = S(b:). From the invariant, we know that the block displaced fr6tg] is Buf[q],
which must be restored to cache to restore the invariant. aWdodng it back by a single memory reference
and charge this to the rourntdtself, which is L. (Actually it will be brought back during the subsequent
reference, so the previous step is only to simplify the anting.)

The cost of copyindMenib,] to Buf[a,] is L + B assuming thabenib;] andBuf|a,] are not mapped to
the same cache s&(b;) # S(a;)). Otherwise it will cause alternate cache missbhsghing of the blocks
Menb;] andBuf|a,] leading toL - B steps for copying. This can be prevented by transferringutin an
intermediate memory blocklen Y] such thatS(Y) # S(b;). Having two such intermediate buffers that
map to distinct cache sets would suffice in all cases. So, wetfansfeMentd,] to MenmY'] followed by
MemY'] to Buf[;]. The first copying has co8&t. + B since both blocks must be fetched from main memory.
The second transfer is between blocks, one of which is préséme cache, so it has cost+ B. To this we
must also add codt for restoring the block oBuf that was mapped to the same cache s&las{Y]. So,
the total cost of theafemethod istL + 2B.

The internal processing remains identical.///fdenotes the internal processing cost of stefhe total
cost of the emulation is at moSt,_, (I, + 2(L + B) + 2L) = [ +4L-T + 2B - T. O

Remark 1

e A possible alternative to using intermediate memory-msicbuffers to avoid thrashing is to use
registers, since register access is much faster. In peticiwe haveB registers, then we can save
two extra memory accesses, bringing down the emulationto@dt + 25.

e We can make the emulation somewhat simpler by using a razéohmapping scheme. That is, if
we choose the starting location of arf@uf randomly, then the probability thddenb,] andBuf|a,]
have the same image 1M . So the expected emulation costlis- 2L - T'+ (B + (LB)/M) - T
without using any intermediate copying.

e The basic idea of copying data into contiguous memory loaatio reduce interference misses has
been exploited before in some specific contexts like matrikiplication [24] and bit-reversal per-
mutation [9]. Theorenh 3.1 unifies these previous resulthiw common framework.



The termO(B - T') is subsumed by)(I) if computation is done on at least a constant fraction of the
elements in the block transferred by the 1/0O algorithm. Thigsually the case for efficient 1/0O algorithms.
We will call such I/O algorithm®lock-efficient

Corollary 3.2 A block-efficient /O algorithm foB (M, B) that used” block transfers and processing can
be emulated i€(M, B, L) in O(I + L - T') steps.

Remark 2 The algorithms for sorting, FFT, matrix transposition, andtrix multiplication described in
Aggarwal and Vitter[[#] are block-efficient.

3.2 Extension to set-associative cache

The trend in modern memory architectures is to allow limitiedibility in the address mapping between
memory blocks and cache sets. Thavay set-associative cache has the property that a memock bl
can reside in any (one) df cache frames. Thug;, = 1 corresponds to the direct-mapped cache we have
considered so far, whilé = m corresponds to a fully associative cache. Valueg @ir data caches are
generally small, usually in the range 1-4.

If all the & sets are occupied, a replacement policy like LRU is used li{byhtardware) to find an as-
signment for the referenced block. The emulation technimfute previous section would extend to this
scenario easily if we had explicit control on the replacetn&his not being the case, we shall tackle it indi-
rectly by making use of an useful property of LRU that Frea!. [[L§] exploited in the context of designing
cache-oblivious algorithms for a fully associative cache.

Lemma 3.1 (Sleator-Tarjan[30]) For any sequence, F ry, the number of misses incurred by LRU with
cache sizevy gy is no more tharin ry /(nLru —nopr+1)Fopr), WhereFp pr is the minimimum number
of misses by an optimal replacement strategy with cachengjze-.

We use this lemma in the following way. We run the emulatiarthigque for only half the cache sizeg.,

we choose the buffer to be of size/2, such that for every cache lines in a set, we have ortly2 buffer
blocks. From Lemm@.l, we know that the number of missesdh each cache set is no more than twice
the optimal, which is in turn bounded by the number of miseearred by the 1/O algorithm.

Theorem 3.3 (Generalized Emulation Theorem)An algorithm A in 3(M /2, B) usingT block transfers
and I processing time can be converted to an equivalent algoritihin the k-way set-associative cache
model with parameters/, B, L that runs inO(I + (L + B) - T') steps. The memory requirement4sfis
an additionalm /2 + 2 blocks beyond that of.

3.3 The cache complexity of sorting and other problems

Aggarwal and Vitter[[{] prove the following lower bound fasrsing and FFT in the 1/O model.

Lemma 3.2 ([#]) The average-case and the worst-case number of 1/O’s redjfiresorting N records and

for computing theV-input FFT graph inJ(M, B) is Q <% 71125((11:]\];//?))

. . . log N/B
Theorem 3.4 The lower bound for sorting i&(M, B, L) is Q(N log N + L% loggM//B).

Proof: Any lower bound in the number of block transfersiiV/, B) carries over ta&€(M, B, L). Since
the lower bound is the maximum of the lower bound on numberoaigarisons and the bound in Lemma
B.3, the theorem follows by dividing the sum of the two teri2b O

7



Theorem 3.5 In €(M, B, L), N numbers can be sorted @(Nlog N + L - % - fg’gﬁ//g) steps and this is
optimal.

Proof: The M/B-way mergesort algorithm described in Aggarwal and Vitfitfas an 1/0 complexity of
O(%%). The processing time involves maintaining a heap of 8iz&3 andO(log M/ B) per output

element. ForV elements, the numberofphase%f%, so the total processing time@& N log N). From

Corollary[3.2, and Remaik 2, the cost of this algorithm indaehe model i©)(N log N + L - & - 12372,
Optimality follows from Theoren 3/4.

Remark 3 The M/B-way distribution sort (multiway quicksort) also has thengaupper bound.

We can prove a similar result for FFT computations.

Theorem 3.6 The FFT of N numbers can be computed@{N log N + L - %) in ¢(M, B, L).

Remark 4 The FFTW algorithm[[17] is optimal only foB = 1. Barve [§] has independently obtained a
similar result.

The class of Bit Matrix Multiply Complement (BMMC) permuians include many important permutations
like matrix transposition and bit reversal. Combining therkvof Cormenet al. [[L4] with our emulation
scheme, we obtain the following result.

Theorem 3.7 The class of BMMC permutations f&f elements can be achieveo[-Bn(N +L-
steps in€(M, B, L).

N _logM
B log(M/B)

Remark 5 Many known geometric[[13] and graph algorithnfis|[19] in th® thodel, such as convex hull
and graph connectivity, can be transformed optimally iheo¢ache model.

4 Average-case performance of mergesort in the cache model

In this section, we analyze the average-case performankenaly mergesort in the cache model. Of the
three classes of misses described in Sedfjon 1, we note dhgiutsory misses are unavoidable and that
capacity misses are minimized while designing algorithorsttie /0 model. We are therefore interested
in bounding the number of conflict misses for a straightfadvanplementation of the 1/0-optimal-way
mergesort algorithm. It is easy to construct a worst-capatipermutation where there will be a conflict
miss for every input element (a cyclic distribution suffices the average case is more interesting.

We assume thatcache sets are available for the leading blocks okthensS1, . .., Si. In other words,
we ignore the misses caused by heap operations (or equlyad@msure that the heap area in the cache does
not overlap with the runs).

We create a random instance of the input as follows. Condigesequencél, ..., N}, and distribute
the elements of this sequence to runs by traversing the segumincreasing order and assigning element
to run S; with probability 1/k. From the nature of our construction, each fyris sorted. We denotg-th
element ofS; as.S; ;. The expected number of elements in any Siiis N/ k.

During thek-way merge, the leading blocks are critical in the sensetki®heap is built on thkeading
elementof every sequencs;. The leading element of a sequence is the smallest elenegritdl not been
added to the merged (output) sequence. [Ehding blockis the cache line containing the leading element.



Let b; denote the leading block of rusy. Conflictcan occur when the leading blocks of different sequences
are mapped to the same cache set. In particulegnélict missoccurs for elemens; ;; when there is at
least one element € by, for somek # 4, such thatS; ; < = < S; ;41 andS(b;) = S(by). (We do not count
conflict misses for the first element in the leading blaak, S; ; and.S; ;1 must belong to the same block,
but we will not be very strict about this in our calculatigns.

Let p;, denote the probability of conflict for element [1, N|. Using indicator random variables; to
count the conflict miss for elementthe total number of conflict misses = ", X;. It follows that the
expected number of conflict missé§X| = > . F[X;] = >, p;. In the remaining section we will try to
estimate a lower bound gn for i large enough to validate the following assumption.

Al The cache sets of the leading blocRéb;), are randomly distributed in cache séts. ., s
independent of the other sorted runs. Moreover, the exatti@o of the leading element within
the leading block is also uniformly distributed in positsofi, ..., sB}.

Remark 6 A recent variation of the mergesort algorithm (sge [7]) alijusatisfiesAl by its very nature.
So, the present analysis is directly applicable to its ayease performance in cache. A similar observation
was made independently by Sanddrg [27] who obtained upperds for mergesort for a set associative
cache.

From our previous discussion and the definition of a conflisisirwe would like to compute the proba-
bility of the following event.

E1 For somei, j, for all elementse, such thatS; ; < x < S; j11, S(x) # S(S; ;).

In other words, none of the leading blocks of the sorted saopsss;, j # ¢, conflicts withb;. The prob-
ability of the complement of this evenité., Pr[E1]) is the probability that we want to estimate. We will
compute an upper bound éh[E1], under the assumption A1, thus deriving a lower boun®oir1].

Lemma 4.1 For k/s > ¢, Pr[E1] < 1 — §, wheree and § are positive constants (dependent onlyscend
k but not onn or B).

Proof: See AppendifA. ]

Thus we can state the main result of this section as follows.

Theorem 4.1 The expected number of conflict misses in a random input fimgd® £-way merge in an
s-set direct-mapped cache, whekés Q)(s), is Q(N), where N is the total number of elements in all the
k sequences. Therefore the (ordinary 1/O-optiméfy B-way mergesort in ail/ / B-set cache will exhibit

O(N %) cache misses which is asymptotically larger than the ogtiralue ofO(% %).

Proof: The probability of conflict misses i8(1) whenk is 2(s). Therefore the expected total number of
conflict misses i§2(V) for N elements. The 1/0O-optimal mergesort usdg B-way merging at each of the

og N/B Jevels, hence the second part of the theorem follows. U
og M/B

Remark 7 Intuitively, by choosingk < s, we can minimize the probability of conflict misses resgtin

in an increased number of merge phases (and hence runniey tifithis underlines the critical role of

conflict missesvis-a-viscapacity misses that forces us to use only a small fracticgheofvailable cache.

Recently, Sander§ [R7] has shown that by chooblttgbeO( ; +1 7z ) in ana-way set associative cache with

a modified version of mergesort i [7], the expected numbeonﬂlct misses per phase can be bounded by
O(N/B). In comparision, the use of the emulation theorem guarantéeimal worst-case conflict misses

while making good use of cache.



5 The Multi-level Cache Model

Most modern architectures have a memory hierarchy congisti multiple levels of cache. Consider two
cache levelsL; and £y preceding main memory, with; being faster and smaller. The operation of the
memory hierarchy in this case is as follows. The memory looateing referenced is first looked upAn.

If it is not present inCq, then it is searched for if, (these can be overlapped with appropriate hardware
support). If the item is not present iy butitis in Lo, then it is brought intaC;. In case that it is not i,

then a cache line is brought in from main memory idtpand into£;. The size of cache line brought into
Lo (denoted byB-) is usually no smaller than the one brought iftp(denoted byB;). The expectation is
that the more frequently used items will remain in the fastahe.

The Multi-level Cache Model is an extension to multiple aatdvels of the previously introduced Cache
Model. LetZ; denote the-th level of cache memory. The parameters involved hereter@itoblem size
N, the size ofZ; which is denoted by/;, the frame size (unit of allocation) df; denoted byB; and the
latency factor;. If a data item is present in th&;, then it is present it ; for all j > i (sometimes referred
to as thanclusion property). If it is not present in;, then the cost for a miss Igplus the cost of fetching
it from £, (if itis present in; 1, then this cost is zero). For convenience, the latency fdcte the ratio
of time taken on a miss from theth level to the amount of time taken for a unit operation.

Figure[2 shows the memory mapping for a two-level cache t&ctire. The shaded part of main mem-
ory is of sizeB; and therefore occupies only a part of a line of thyecache which is of sizé,. There is a
natural generalization of the memory mapping to multiplele of cache.

We make the following assumptions in this section, whichcamgsistent with existing architectures.

Al. For alli, B;, L; are powers of 2.
A2.2B; < B;y1 and the number of Cache Linés < L; 4.
A3. B, < Ly and4B;, < B1L4 (i.e. By > 4) whereLy, is the largest and slowest cache. This
implies that
L;-B; > By, - B; 1)

This will be useful for the analysis of the algorithms and swenetimes termed aall cachein
reference to the aspect ratio.

5.1 Matrix Transpose

In this section, we provide an approach for transposing aixriatthe Multi-level Cache Model.
The trivial lower bound for matrix transposition of & x N matrix in the multi-level cache hierarchy
is clearly the time to scaiv? elements, namely,
N2

Q —1;
EY

where
B; is the number of elements in one cache lineCincache;L; is the number of cache lines if); cache,
which is 3%:; andl; is the latency for’; cache.

Our aléorithm uses a more general form of the emulation #rado get the submatrices to fit into cache
in a regular fashion. The work in this section shows that jgassible to handle the constraints imposed by
limited associativity even in a multi-level cache model.

We subdivide the matrix int@3; x Bj submatrices. Thus we gét /By | x [n/Byj| submatrices from
ann x n submatrix.
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Main Memory

L ,Cache L , Cache

Figure 2: Memory mapping in a two-level cache hierarchy
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aj a Qp,
an+1 an4+2 ... ... 0(2n A1 A2 An/B

Anz—nB/B An2/32
an2_n+1 “ e oo “ e CLn2
Note that the submatrices in the last row and column needensgibare as one side may have3 rows

or columns.
Letm = n/B then

T T T

AT A A

A2 Am+2 2m
AT =

T T

AT AT,

For simplicity, we describe the algorithm as transposingj@ase matrixA in another matrixB, i.e.
B = AT, The main procedure Rec Trans(A, B, s), whereA is transposed int@ by dividing A and B
into s> submatrices and then recursively transposing the subieesiti_et4; ; (B; ;) denote the submatrices
for1 < 4,5 < s. ThenB = AT can be computed aRec Trans( A; j,Bj;,s') for all 4,5 and some
appropriates’ which depends o, and By, _;. In general, ifty, tx_1,...,t; denote the values of at the
1,2... level of recursion, then; = B;1/B;. If the submatrices arB, x B; (base case), then perform the
transpose exchange of the symmetric submatrices dirédyperform matrix transpose as follows, which
is similar to the familiar recursive transpose algorithm.
1. Subdivide the matrix as shown ini8), x B;, submatrices.
2. Move the symmetric submatrices to contiguous memontimas
3. Rec.Trans( Am’, Bjﬂ', Bk/Bk:—l)-
4. Write back theB;, x By, submatrices to original locations.

In the following subsections we analyze the data movemettisfalgorithm to bound the number of
cache misses at various levels.

5.2 Moving a submatrix to contiguous locations

To move a submatrix we will move it cache line by cache line.cBgice of size of submatrice®8(, x B;,)
each row will be an array of sizBy, but the rows themselves may be far apart.

Lemma 5.1 If two memory blocks andy of sizeBy, are aligned inL,-cache map to the same cache set in
L;-cache for some < i < k, thenz andy map to the same set in each-cache for alll < j <.

Proof: If z andy map to the same cache setdn cache then theii-th level memory block humbers (to
be denoted by’ (z) andbi(y)) differ by a multiple ofZ;. Letb’(z) — b'(y) = aL;. SinceL;|L; (both are
powers of two) ' (z) — b'(y) = BL; where = « - L;/L;. Letz’,y’ be thecorrespondingsub-blocks of
x andy at thej-th level. Then their block numbeté(z’), v/ (v') differ by B;/B; - 3 - L;, i.e., a multiple of
L; asB;|B;. Note that blocks are aligned across different levels ohea®hereforer andy also collide in
Ej. O
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Corollary 5.1 If two blocks of sizeB,, that are aligned inl,-cache do not conflict in levelthey do not
conflict in any levelj for all i < j < k.

Theorem 5.2 There is an algorithm which moves a set of blocks of sizgwhere there are: levels of
cache with block siz#; for eachl < i < k) into a contiguous area in main memory in

°(X51)

where N is the total data moved ahds the cost of a cache miss for tif& level of cache.

Proof. Let the set of blocks of siz&;, be I (we are assuming that the blocks are aligned). Let the target
block in the contiguous area for each black I be in the corresponding sdtwhere each block € J is
also aligned with a cache line ify, Cache.

Let blocka map toR 4, b = {1,2,...,k} whereR, , denote the set of cache lines in thig-cache.
(Sinceua is of size By, it will occupy several blocks in lower levels of cache.)

Let thei*” block map to sefk;, ; of the £;, Cache. Let the target blockmap to setR;, ;. In the worst
case,Ry, ; is equal toR; ;. Thus in this case the lin&;, ; has to be moved to a temporary block say
(mapped taRZ;, ;) and then moved back By, ;. We chooser such thatR; , and R, ; do not conflict and
alsoR; , andR; ; do not conflict. Such a choice ofis always possible because our temporary storage area
X of size4 By, has at least lines of £;-cache { andj will take up two blocks ofC,-cache, thus leaving at
least one block free to be used as temporary storddes.is why we have the assumption th&y, < By L.

That is, by dividing theC,-cache intoB; L,/ By, zones, there is always a zone free for

For convenience of analysis, we maintain the invariant #has always inL;-cache By application of
the previous corollary on our choice of(such thatR, ; # R, # R ;) we also haveR, ; # R, # Ra
forall 1 < a < k. Thus we can movéto x andz to j without any conflict misses. The number of cache
misses involved is three for each level—one for gettingithdlock, one for writing thej** block, and one
to maintain the invariant since we have to touch the lineldisggd byi. Thus we get a factor df.

Thus the cost of this process is
N
3 —1;
(=)

whereNN is the amount of data moved.
O

Remark 8 For blocks! that are not aligned if;, Cache, the constant would increase to 4 since we would
need to bring up to 2 cache lines for each 1. The rest of the proof would remain the same.

Corollary 5.3 A By x By, submatrix can be moved into contiguous locations in the mye'm@(ij’f %f l;)
time in a computer that has levels of (direct-mapped) cache.

This follows from the preceding discussion. We allocate msnsayC' of size By, x By, for placing the
submatrix and memory, say; of size4B), for temporary storage and keep both these areas distinct.

Remark 9 If we have set associativity> 2) in all levels of cache then we do not need an intermediate
buffer « as linei andj can both reside in cache simultaneously and movement franathe other will

not cause thrashing. Thus the constant will come down to Siace at any point in time we will only be
dealing with two cache lines and will not need the liries j once we have read or written to them the
replacement policy of the cache does not affect our algorith

13



Remark 10 If the capacity of the register file is greater than the sizénefcache linef§;) of the outermost
cache level £;) then we can move data without worrying about collision bgying from linei to registers
and then from registers to ling Thus even in this case the constant will come down to two.

Once we have the submatrices in contiguous locations wernpeithe transpose as follows. For each of
the submatrices we divide the. x B, submatrix (says) in level £,. (for 2 < r < k) further intoB,._1 x
B,_; size submatrices as before. EaBh | x B,_; size subsubmatrix fits intd,._; cache completely
(sinceB,_1 - B,—1 < By_1 - By < By_1 - L,_1 from equation[{1)). LeB,/B,_1 = k.

Thus we have the submatrices as

Sii Sz .. Sig,

Skr,l el e Skr,kr

So we perform matrix transpose of eas})y; in place without incurring any misses as it resides com-
pletely inside the cache. Once we have transposed gacie exchanges; ; with S; ;. We will show that
S;,; andS; ; can not conflict inC,_,-cache for # j.

SincesS; ; andsS;; lie in different parts of theC,-cache lines, they will map to different cache sets in the
L,_i-cache. The rows aof; ; andS;; correspond tqiB,_1 + a1)k, + j and (jB,—1 + a2)k, + i where
ai,as € {1, 2....Br_1} and

B,/B,_1 = k,.

If these conflict then
(iBr—1+a1)k, +j = (jBr—1 + az)k, +i(mod L, 1).
SinceB,_; = 2% andB, = 2Y andL,_; = 2% (all powers of two)
oy = 207"
Thereforek, dividesL,_; (becauseé, = B,/B,_1 < B, < L,_1). Hence
J = i(modk,).

Sincei, j < k, the above implies
i=j.

Note thatS; ;'s do not have to be exchanged. Thus, we have shown tiata B, matrix can be di-
vided intoB,_1 x B,_1 which completely fits intaC,._;-cache. Moreover, the symmetric sub-matrices do
not interfere with each other. The same argument can bededeto anyB; x B; submatrix forj < r.
Applying this recursively we end up dividing the, x B size matrix inL,-cache toB; x B; sized sub-
matrices inL;-cache, which can then be transposed and exchanged easity.tike preceding discussion,
the corresponding submatrices do not interfere in any lefviile cache.

(Note that even though we keep subdividing the matrix atyeeache level recursively and claim that
we then have the submatrices in cache and can take the tesnapd exchange them, the actual movement,
i.e., transpose and exchange happens only af theache level, where the submatrices are of iz B;.)

The time taken by this operation is

N2
Bi

This is because eac$ ; and S;; pair (such that # j) has to be brought int@,_; Cache only once

for transposing and exchanging Bi x B; submatrices. Similarly, at any level of cache, a block frowm t

l;.
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Figure 3: Positions of symmetric submatrices in Cache
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matrix is brought in only once. The sequence of the recursalls ensures that each cache line is used
completely as we move from sub-matrix to sub-matrix.

Finally, we move the transposed symmetric submatriceszefsi x By, to their location in memory,
i.e., reverse the process of bringing in blocks of siZgfrom random locations to a contiguous block. This
procedure is exactly the same as in Theofein 5.2 in the pregiection that has the constant 3.

Remark 11 The above constant of 3 for writing back the matrix to an appade location depends on the
assumption that we can keep the two symmetric submatricgigeaf3;, x By, in contiguous locations at the
same time. This would allow us to exchange the matrices guhia write back stage. If we are restricted to
a contiguous temporary space of si2g x By, only, then we will have to move the data twice, incurring the
cost twice.

Remark 12 Even though in the above analysis we have always assumecgesgatrix of sizeV x N the
algorithm works correctly without any change for transpgsh matrix of sizell x N if we are transposing

a matrix A and storing it inB. This is because the same analysis of subdividing into strimaa of size

B, x By, and transposing still holds. However if we want to transp@odé x N matrix in place then the
algorithm fails because the location to write back to wowdtlle obvious and the approach used here would
fail.

Theorem 5.4 The algorithm for matrix transpose runs in

i=k
0 (Z %ju) + O(N?)

i=1
steps in a computer that haslevels of direct-mapped cache.

If we have temporary storage space of dZ& x By, + 4B, and assume block alignment of all subma-
trices then the constant is 7. This includefr initial movement to contiguous locatio,for transposing
the symmetric submatrices of sizs, x B, and3 for writing back the transposed submatrix to its original
location. Note that the constant is independent of the numitlevels of cache.

Remark 13 Even if we have set associativity (2) in any level of cache the analysis goes through as before
(though the constants will come down for data copying to igoiaius locations). For the transposing and
exchange of symmetric submatrices the set associativityjaticome into play because we need a line only
once in the cache and are using only 2 lines at a given timeitiser € RU or even FIFO replacement policy
would only evict a line that we have already finished using.

5.3 Sorting in multiple levels

We first consider a restriction of the model described abdverzdata cannot be transferred simultaneously
across non-consecutive cache levels. Wed@se denote) 7~ M;.

Theorem 5.5 The lower bound for sorting in the restricted multi-levetha model i$2( N log N+Zf:1 l;

B; logC;/B; /"

Proof: The proof of Aggarwal and Vitter can be maodified to disregdatk transfers that merely rearrange
data in the external memory. Then it can be applied sepgraietach cache level, noting that the data
transfer in the higher levels do not contribute for any gilerel. O
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These lower bounds are in the same spirit as those of VitMNatine [32] (for the S-UMH model)
and Savagd [28], that is, the lower bounds do not capturerthgdtaneous interaction of the different levels.
If we remove this restriction, then the following can be @dwalong similar lines as Theordm|3.4.

Lemma 5.2 The lower bound for sorting in the multi-level cache model is

N -log N/B;

k
Q Nlog N, - L 208/ iy
(max{Nlog N ti - e 75, V)

a

This bound appears weak /ifis large. To rectify this, we observe the following. Acrosgle cache
boundary, the minimum number of I/Os follow from Aggarwabavitter’'s arguments. The difficulty arises
in the multi-level model as a block transfer in leviebropagates in all levelg < i although the block
sizes are different. The minimum number of I/Os from (thehbig}) levelk remains unaffected, namely,
Bﬂkllg’ggé\i//%’l. For levelk — 1, we will subtract this number from the lower boundg}%%.
Continuing in this fashion, we obtain the following lowerumal.

Theorem 5.6 The lower bound for sorting in the multi-level cache model is

k
N -log N/B; Z N -log N/B;

k
QO NognN+3 4
o8N+ ; B;log C;/B; B,log C;/B;

a

If we further assume tha@— > BB, 3, we obtain a relatively simple expression that resembles
Theorem[5]5. Note that the consecutive terms in the expressithe second summation of the previous
lemma decrease by a factor of 3.

Corollary 5.7 The lower bound for sorting in the multi-level cache modeahwgeometrically decreasing

cache sizes and cache lineI¢N log N + 1 Skt %). U

Theorem 5.8 In a multi-level cache, where thB; blocks are composed d@;_; blocks, we can sort in

expected time O (N log N + (%) DD %)

Proof: We perform al/; / B;-way mergesort using the variation proposed by Bava. [[f] in the context
of parallel disk 1/0s. The main idea is to shift each sortedash cyclically by a random amou#; for the
ith stream. IfR; € [0, M} — 1], then the leading element is in any of the cache sets withl é§abhood.
Like Barveet al.[{]], we divide the merging into phases where a phase outplgements, where: is the
merge degree. In the previous section we counted the nurhbenfict misses for the input streams, since
we could exploit symmetry based on the random input. It 'rﬁcxdilt to extend the previous arguments to a
worst case input. However, it can be shown easily thdt ik — L (wheres is the number of cache sets), the
expected number of conflict misseg¥$1) in each phase. So the total expected number of cache misses is
O(N/B;) in the leveli cache for alll < i < k.

The cost of writing a block of siz&8; from levelk is spread across several levels. The cost of transferring
By, /By blocks of sizeB; from levelk is ¢j + 5 1B k2 Bkkl §§ ; + -+ 61 . Amortizing this

og M1/B1
suffice for(M; /By )'/3-way mergesort. O

cost overBy, / B; transfers gives us the required result. Recall@létN /Bi( f’gﬂ)) By block transfers
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Remark 14 This bound is reasonably close to that of Corolfary 5.7 if greore constant factors. Extending
this to the more general emulation scheme of Thedrefn 3.1 isnmoediate as we require the block transfers
across various cache boundaries to have a nice pattern)yntmasub-blockproperty. This is satisfied by
the mergesort and quicksort and a number of other algorithuhsannot be assumed in general.

5.4 Cache-oblivious sorting

In this section, we will focus on a two-level cache model thas$ limited associativity. One of tl@ache-
oblivious algorithms presented by Friget al. [Lg] is the funnel sort algorithm. They showed that the
algorithm is optimal in the 1/O model (which is fully assdiva). However it is not clear whether the
optimality holds in the cache model. In this section, we shioat, with some simple modification, funnel
sort is optimal even in the direct-mapped cache model.

The funnel sort algorithm can be described as follows.

e Split the input inton!/3 contiguous arrays of size?/? and sort these arrays recursively.

e Merge then!/? sorted sequences using.& *-merger, where &-merger works as follows.

A k-merger operates by recursively merging sorted sequendetike mergesort, &-merger stops
working on a merging sub-problem when the merged outputssemibecomes “long enough” and resumes
working on another merging sub-problem (see Figlire 4).

INVARIANT The invocation of &-merger outputs the firét® elements of the sorted sequence obtained
by merging the: input sequences.

BASE CASE k = 2 producingk® = 8 elements whenever invoked.

NoTE The intermediate buffers are twice the size of the outputiobtl by a'/2 merger.

To outputk® elements, theé:-merger is invoked:*/2 times. Before each invocation tiiemerger fills
each buffer that is less than half full so that every buffes dideask?/2 elements—the number of elements
to be merged in that invocation.

Frigoet al. [L§] have shown that the above algorithm (that does not magéicét use of the various
memory-size parameters) is optimal in the I/O model. Howete I/O model does not account for conflict
misses since it assumes full associativity. This could begratling influence in the presence of limited
associativity (in particular direct-mapping).

5.4.1 Structure of k-merger

It is sufficient to get a bound on cache misses in the cache Irsoae the bounds for capacity misses in the
cache model are the same as the bounds shown in the I/O model.

Let us get an idea of what the structure df-energer looks like by looking at a 16-merger (see Figlire 5).
A k-merger, unrolled, consists of 2-mergers arranged in alitedashion. Since the number of 2-mergers
gets halved at each level and the initial input sequencek imraumber there ark k levels.

Lemma 5.3 If the buffers are randomly placed and the starting posii®also randomly chosen (since the
buffers are cyclic this is easy to do) the probability of ciehfihisses is maximized if the buffers are less than
one cache line long.

The worst case for conflict misses occurs when the bufferteasethan one cache line in size. This is
because if the buffers collide then all data that goes thrabhgm will thrash. If however the size of the
buffers were greater than one cache line then even if someslgwents collide the probability of future
collisions would depend upon the data input or the relatiwement of data in the two buffers. The
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Figure 4: Recursive definition of a k-merger in terms:bf2-mergers
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Figure 5: Expansion of a 16-merger into 2-mergers
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probability of conflict miss is maximized when the buffers &ss than one cache line. Then probability of
conflict is1/m, wherem is equal to the cache siZd divided by the cache line sizB, i.e., the number of
cache lines.

5.4.2 Bounding conflict misses

The analysis for compulsory and capacity misses goes thraditnout change from the 1/0 model to the
cache model. Thus, funnel sort is optimal in the cache mdde¢iconflict misses can be bounded by

N logN/B
B~ logM/B

Lemma 5.4 If the cache is 3-way or more set associative, there will becowflict misses for a 2-way
merger.

Proof: The two input buffers and the output buffer, even if they majphie same cache set can reside
simultaneously in the cache. Since at any stage only onerganis active there will be no conflict misses
at all and the cache misses will only be in the form of capamitgompulsory misses. O

5.4.3 Direct-Mapped case

For an input of sizéV, a N/3-merger is created. The number of levels in such a mergegi&/3 (i.e.,
the number of levels of the tree in the unrolled merger). feéement that travels through thé'/3-merger
seedog N'/3 2-mergers (see Figufé 6). For an element passing througier@er there are 3 buffers that
could collide. Wechargean element for a conflict miss if it is swapped out of the cackfere it passes
to the output buffer or collides with the output buffer whemsibeing output. So the expected number of
collisions is*C, times the probability of collision between any two buffersd input and one output). Thus
the expected number of collisions for a single element pgsirough a 2-merger &5 x 1/m < 3/m
wherem = M/B.

If z; ; is the probability of a cache miss for elemén level j then summing over all elements and alll
levels we get

N Nl/S

N
E Z Z T 4 = Z E(Z’Z‘J)

i=1 j=1 i=1  j=1

A
g
3ee
I
|
X
R
<

5

Lemma 5.5 The expected performance of funnel sort is optimal in thectimapped cache modeldf; % <
%. It is also optimal for a 3-way associative cache.

Proof: If M andB are such that M

log o= <
B = B’log B
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we have the total number of conflict misses

Nlog N Nlog N < N " log N/B
m BlogBFz%gB ~ B logM/B

Note that the condition is satisfied faf > B?*¢ for any fixede > 0 which is similar to thetall-cache
assumption made by Friggd al..
The set associative case is proved by Lenjmla 5.4. O

The same analysis is applicable between successive l8yelad £; 1 of a multi-level cache model.
This yields an optimal algorithm for sorting in the multicache model.

Theorem 5.9 In a multi-level cache model, the number of cache missewvak4g in the funnel sort algo-

; log(N/B;)
rithm can be bounded Tos(V 7B

This bound matches the lower bound of Lemna 5.5 within a emsactor, which makes it an optimal
algorithm when simultaneous transfers are not allowedsaamwultiple levels.

6 Conclusions

We have presented a cache model for designing and analfgogtms. Our model, while closely related
to the 1/O model of Aggarwal and Vitter, incorporates thrddiional salient features of cache: lower miss
penalty, limited associativity, and lack of direct prograomtrol over data movement. We have established
an emulation scheme that allows us to systematically coavelfO-efficient algorithm into a cache-efficient
algorithm. This emulation provides a generic starting péin cache-conscious algorithm design; it may
be possible to further improve cache performance by proigeetific techniques to control interference
misses. We have also demonstrated the relevance of thet@mwaheme by demonstrating that a direct
mapping of an I/O-efficient algorithm does not guarantee coefficient algorithm. Finally, we have
extended our basic cache model to multiple cache levels.

Our single-level cache model is based on a blocking direagtped cache that does not distinguish
between reads and writes. Modeling a non-blocking cachétinduishing between reads and writes would
appear to require queuing-theoretic extensions and ddegppear to be appropriate at the algorithm design
stage. Theranslation lookaside buffesr TLB is another important cache in real systems that caghtes|-
to-physical address translations. Its peculiar aspeict azid high miss penalty raise different concerns for
algorithm design. Our preliminary experiments with certpermutation problems suggests that TLBs are
important to model and can contribute significantly to pasgirunning times.

We have begun to implement some of these algorithms to velidiee theory on real machines, and
also using cache simulation tools likast-cache AToMm, or cprof. Preliminary observations indicate that
our predictions are more accurate with respect to misssréian actual running times (sde][12]). We have
traced a number of possible reasons for this. First, bedheseache miss latencies are not astronomical, it
is important to keep track of the constant factors. An atbamic variation that guarantees lack of conflict
misses at the expense of doubling the number of memory refesemay turn out to be slower than the
original algorithm. Second, our preliminary experimenithveertain permutation problems suggests that
TLBs are important to model and can contribute significatdyprogram running times. Third, several
low-level details hidden by the compiler related to instimt scheduling, array address computations, and
alignment of data structures in memory can significantlyugfice running times. As argued earlier, these
factors are more appropriate to tackle at the level of impletation than algorithm design.

Several of the cache problems we observe can be traced tontpke sarray layout schemes used in
current programming languages. It has shown elsewhef€lfiL{B1] that nonlinear array layout schemes
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based on quadrant-based decomposition are better suiteefarchical memory systems. Further study of
such array layouts is a promising direction for future reslea
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A Approximating probability of conflict

Let ;. be the number of elements betwegy); and S; ;11, i.e, one less than the difference in ranks of
S;; andS; j11. (v may be 0, which guarantees event E1.) Egt denote the event that = m. Then
Pr[El] = )", Pr[E1N E,], sinceE,,’s are disjoint. For eacim, Pr[E1 N E,,,| = Pr[E1|E,,] - Pr[E,,].
The eventdr,,, correspond to a geometric distributiare.,

PrE,] = Pr{ = m] = %(1 - %)m @)

To computePr[E1|E,,|, we further subdivide the event into cases about howstheumbers are dis-
tributed into the sets;,j # . WIlog, leti = 1 to keep notations simple. Leto,...,m; denote the
case thain; numbers belong to sequensg (Ej m; = m). We need to estimate the probability that for
sequences;, b; does not conflict wittS(b;) (recall that we have fixed = 1) during the course that;
elements arrive ity;. This can happen only 8(b;) (the cache set position of the leading blockSgfright
after elements; ;) does not lie roughlym; /B blocks fromS(b;). From assumption Al and some careful
counting this isl — "”%;B for m; > 1. Form; = 0, this probability is 1 since no elements go irfip
and hence there is no conflftThese events are independent from our assumption Al ane tieese can

“The reader will soon realize that this case leads to somemaalcalculations.
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be multiplied. The probability for a fixed partitions, . . . , m;, is the multinomial—2— - (ﬁ)m (mis

ma!---my!

partitioned intok — 1 parts). Therefore we can write the following expressionHoE'1|E,,,].

m)! " —1+B
Pr[E1|E,,] = Z gl -l <ki1> H <1_ %) @)

mo+---+mp=m m;7#0

In the remainder of this section, we will obtain an upper ltbon the right hand side of equatidd (3).

Let nz(ma, ..., my) denote the number gfs for whichm; # 0 (non-zero partitions). Then equatidi (3)
can be rewritten as the following inequality.
< . _z
e <k_1> (1 ) @)

mo—+--+mp=m

since (1 - "”%;B) < (1-1) for m; > 1. In other words, the right side is the expected value of

(1- 1)NZ(m A , whereN Z(m, k — 1) denotes the number of non-empty bins wherballs are thrown
into k£ — 1 bins. Using equatiorf}2) and the preceding discussion, wevcie down an upper bound for the

(unconditional) probability of£1 as
1\ NZ(m.k—1)
(1 - g> ] )

We use known sharp concentration bounds for the occupattygon to obtain the following approxi-
mation for the expressiof](5) in terms oandk.

SI(E

m=0

Theorem A.1 ([22]) Letr = m/n, andY be the number of empty bins whenballs are thrown randomly

into n bins. Then N
E[Y] = n(l - —> ~ne "

m
and forA > 0
N(n—1)/2
[[Y —E[Y]] > \] < 2exp < poR— >
O
Corollary A.2 Let NZ be the number of non-empty bins wherballs are thrown intdk bins. Then
EINZ] = k(1 — e~ ™/
and
Pr[|[NZ — EINZ]| > ay/2klog k] < 1/k“.
O

)NZ(mk 1)]

So in equation[{4)E[(1 — can be bounded by

(6)

1 > k(1—e~™/k—an/2kTog k/k)
S

1/E*(1—1/s) + <1 -
foranya andm > 1
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Proof: (of Lemma[4.]1): We will split up the summation df (5) into twargs, namelyn < e/2 - k and
m > e/2 - k. One can obtain better approximations by refining the pamst but our objective here is to
demonstrate the existenceedndd and not necessarily obtain the best values.

> 4 1\ 1\ NZ(mk=1) ek/%l 1\ 1\ NZ(mk=1)
Sileg) om0 = () ()
00 1 1\™ 1 NZ(m,k—1)
+ > E(l—%> -E[(l—;) ] (7)
m=ek /241

The first term can be upper bounded by

Ei-1)

m:Ok k

which is~ 1 — —5 ~ 0.74.
The second term can be bounded using equafjon (6) using.

00 1 1\™ 1 NZ(m,k—1) 0 1 1\™
S ) e S ) e
m=ek/2+1 m=ek/2+1
00 1 1\™ 1 k(1—e~™/k—an/2kTog k/k)
- 3 q(mg) (-0 ®
m=ek/2+1

The first term of the previous equation is less th@h and the second term can be bounded by
o0 m 0.25k
Z 1 1— LA 1— 1
k k s
m=ek/2+1

for sufficiently largek (k > 80 suffices). This can be bounded by0.25¢~0-25%/5 50 equation[{8) can be
bounded byl /k + 0.25¢%-25%/5 . Adding this to the first term of equatiofi (7), we obtain anemipound of

—0.25k/s

0.75 + 0.25¢~9-25%/s for k > 100. Subtracting this from 1 gives L}s‘fzﬂ ie,d >l — O

27



