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Abstract

We describe a model that enables us to analyze the running time of an algorithm in a computer with
a memory hierarchy with limited associativity, in terms of various cache parameters. Our model, an
extension of Aggarwal and Vitter’s I/O model, enables us to establish useful relationships between the
cache complexity and the I/O complexity of computations. Asa corollary, we obtain cache-optimal al-
gorithms for some fundamental problems like sorting, FFT, and an important subclass of permutations
in the single-level cache model. We also show that ignoring associativity concerns could lead to infe-
rior performance, by analyzing the average-case cache behavior of mergesort. We further extend our
model to multiple levels of cache with limited associativity and present optimal algorithms for matrix
transpose and sorting. Our techniques may be used for systematic exploitation of the memory hierarchy
starting from the algorithm design stage, and dealing with the hitherto unresolved problem of limited
associativity.

1 Introduction

Models of computation are essential for abstracting the complexity of real machines and enabling the design
and analysis of algorithms. The widely-used RAM model owes its longevity and usefulness to its simplic-
ity and robustness. While it is far removed from the complexities of any physical computing device, it
successfully predicts the relative performance of algorithms based on an abstract notion of operation counts.

The RAM model assumes a flat memory address space with unit-cost access to any memory location.
With the increasing use of caches in modern machines, this assumption grows less justifiable. On modern
computers, the running time of a program is as much a functionof operation count as of its cache reference
pattern. A result of this growing divergence between model and reality is that operation count alone is
not always a true predictor of the running time of a program, and manifests itself in anomalies such as a
matrix multiplication algorithm demonstratingO(n5) running time instead of the expectedO(n3) behavior
predicted by the RAM model [5]. Such shortcomings of the RAM model motivate us to seek an alternative
model that more realistically models the presence of a memory hierarchy. In this paper, we address the issue
of better and systematic utilization of caches starting from the algorithm design stage.
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A challenge in coming up with a good model is achieving a balance between abstraction and fidelity, so
as not to make the model unwieldy for theoretical analysis orsimplistic to the point of lack of predictiveness.
Memory hierarchy models used by computer architects to design caches have numerous parameters and
suffer from the first shortcoming [1, 26]. Early algorithmicwork in this area focussed on a two-layered
memory model[21]—a very large capacity memory with slow access time (secondary memory) and a limited
size faster memory (internal memory). All computation is performed on elements in the internal memory
and there is no restriction on placement of elements in the internal memory (fully associative).

The focus of this paper is on the interaction between main memory andcache, which is the first level
of memory hierarchy once the address is provided by the CPU. The structure of a single level hierarchy of
cache memory is adequately characterized by the following three parameters:Associativity,Block size, and
Capacity. Capacity and block size are in units of the minimum memory access size (usually one byte). A
cache can hold a maximum ofC bytes. However, due to physical constraints, the cache is divided intocache
framesof sizeB that containB contiguous bytes of memory—called amemory block. The associativityA
specifies the number of different frames in which a memory block can reside. If a block can reside in any
frame (i.e.,A = C

B ), the cache is said to befully associative; if A = 1, the cache is said to bedirect-mapped;
otherwise, the cache isA-way set associative.

For a given memory access, the hardware inspects the cache todetermine if the corresponding memory
element is resident in the cache. This is accomplished by using an indexing function to locate the appropriate
set of cache frames that may contain the memory block. If the memory block is not resident, a cache miss is
said to occur. From an architectural standpoint, cache misses can be classified into one of three classes [20].

• A compulsory miss(also called acold miss) is one that is caused by referencing a previously unref-
erenced memory block. Eliminating a compulsory miss requires prefetching the data, either by an
explicit prefetch operation or by placing more data items ina single memory block.

• A reference that is not a compulsory miss but misses in a fully-associative cache with LRU replace-
ment is classified as acapacity miss. Capacity misses are caused by referencing more memory blocks
than can fit in the cache. Restructuring the program to re-useblocks while they are in cache can reduce
capacity misses.

• A reference that is not a compulsory miss that hits in a fully-associative cache but misses in anA-way
set-associative cache is classified as aconflict miss. A conflict miss to block X indicates that block X
has been referenced in the recent past, since it is containedin the fully-associative cache, but at least
A other memory blocks that map to the same cache set have been accessed since the last reference to
block X. Eliminating conflict misses requires transformingthe program to change either the memory
allocation and/or layout of the two arrays (so that contemporaneous accesses do not compete for the
same sets) or the manner in which the arrays are accessed.

Conflict misses pose an additional challenge in designing efficient algorithms in the cache. This class of
misses is not present in the I/O models, where the mapping between internal and external memory is fully
associative.

Existing memory hierarchy models [4, 2, 3, 5] do not model certain salient features of caches, notably
the lack of full associativity in address mapping and the lack of explicit control over data movement and
replacement. Unfortunately, these small differences are malign in the effect.1 Theconflict missesthat they
introduce make analysis of algorithms much more difficult [16]. Carter and Gatlin [9] conclude a recent
paper saying

1See the discussion in [9] on a simple matrix transpose program.
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What is needed next is a study of “messy details” not modeled by UMH (particularly cache as-
sociativity) that are important to the performance of the remaining steps of the FFT algorithm.

In the first part of this paper, we develop a two-level memory hierarchy model to capture the interaction
between cache and main memory. Our model is a simple extension of the two-level I/O model that Aggarwal
and Vitter [4] proposed for analyzing external memory algorithms. However, it captures three additional
constraints of caches: lower miss penalties; lack of full associativity in address mapping; and lack of explicit
program control over data movement. The work in this paper shows that the constraint imposed by limited
associativity can be tackled quite elegantly, allowing us to extend the results of the I/O model to the cache
model very efficiently.

Most modern architectures have a memory hierarchy consisting of multiple cache levels. In the second
half of this paper, we extend the two-level cache model to a multi-level cache model.

The remainder of this paper is organized as follows. Section2 surveys related work. Section 3 defines
our cache model and establishes an efficient emulation scheme between the I/O model and our cache model.
As direct corollaries of the emulation scheme, we obtain cache-optimal algorithms for several fundamental
problems such as sorting, FFT, and an important class of permutations. Section 4 illustrates the importance
of the emulation scheme by demonstrating that a direct (i.e., bypassing the emulation) implementation of
an I/O-optimal sorting algorithm (multiway mergesort) is provably inferior, even in the average case, in the
cache model. Section 5 describes a natural extension of our model to multiple levels of caches. We present
an algorithm for transposing a matrix in the multi-level cache model that attains optimal performance in the
presence of any number of levels of cache memory. Our algorithm is not cache-oblivious,i.e., we do make
explicit use of the sizes of the cache at various levels. Next, we show that with some simple modifications,
the funnel-sort algorithm of Frigo et al. attains optimal performance in a single level (direct mapped) cache
in an oblivious sense,i.e., without prior knowledge of memory parameters. Finally, Section 6 presents
conclusions, possible refinements to the model, and directions for future work.

2 Related work

The I/O model assumes that most of the data resides on disk andhas to be transferred to main memory to do
any processing. Because of the tremendous difference in speeds, it ignores the cost of internal processing
and counts only the number of I/Os. Floyd [15] originally defined a formal model and proved tight bounds on
the number of I/Os required to transpose a matrix using two pages of internal memory. Hong and Kung [21]
extended this model and studied the I/O complexity of FFT when the internal memory size is bounded by
M . Aggarwal and Vitter [4] further refined the model by incorporating an additional parameterB, the
number of (contiguous) elements transferred in a single I/Ooperation. They gave upper and lower bounds
on the number of I/Os for several fundamental problems including sorting, selection, matrix transposition,
and FFT. Following their work, researchers have designed I/O-optimal algorithms for fundamental problems
in graph theory [13] and computational geometry [19].

Researchers have also modeled multiple levels of memory hierarchy. Aggarwalet al. [2] defined the
Hierarchical Memory Model(HMM) that assigns a functionf(x) to accessing locationx in the memory,
wheref is a monotonically increasing function. This can be regarded as a continuous analog of the multi-
level hierarchy. Aggarwalet al. [3] added the capability of block transfer to the HMM, which enabled them
to obtain faster algorithms. Alpernet al.[5] described theUniform Memory Hierarchy(UMH) model, where
the access costs differ in discrete steps. Very recently, Frigo et al. [18] presented an alternate strategy of
algorithm design on these models which has the added advantage that explicit values of parameters related
to different levels of the memory hierarchy are not required. Bilardi and Peserico [8] investigate further the
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complexity of designing algorithms without the knowledge architectural parameters.2 Other attempts were
directed towards extracting better performance by parallel memory hierarchies [32, 33, 14], where several
blocks could be transferred simultaneously.

Ladneret al. [23] describe a stochastic model for performance analysis in cache. Our work is different
in nature, as we follow a more traditional worst-case analysis. Our analysis of sorting in Section 4 provides
a better theoretical basis for some of the experimental workof LaMarca and Ladner [25].

To the best of our knowledge, the only other paper that addresses the problem of limited associativity in
cache is recent work of Mehlhorn and Sanders[27]. They show that for a class of algorithms based on merg-
ing multiple sequences, the I/O algorithms can be made nearly optimal by use of a simple randomized shift
technique. The emulation theorem in Section 3 of this paper not only provides a deterministic solution for
the same class of algorithms, but also works for a very general situation. The results in [27] are nevertheless
interesting from the perspective of implementation.

3 The cache model

The (two-level) I/O model of Aggarwal and Vitter [4] captures the interaction between a slow (secondary)
memory of infinite capacity and a fast (primary) memory of limited capacity. It is characterized by two
parameters:M , the capacity of the fast memory; andB, the size of data transfers between slow and fast
memories. Such data movement operations are calledI/O operationsor block transfers. The use of the
model is meaningful when the problem sizeN ≫ M .

The I/O model contains the following further assumptions.

1. A datum can be used in a computation iff it is present in fastmemory. All data initially resides in
slow memory. Data can be transferred between slow and fast memory (in either direction) by I/O
operations.

2. Since the latency for accessing slow memory is very high, the average cost of transfer per element can
be reduced by transferring a block ofB elements at little additional cost. This may not be as usefulas
it may seem at first sight, since theseB elements are not arbitrary, but are contiguous in memory. The
onus is on the programmer to use all the elements, as traditional RAM algorithms are not designed
for such restricted memory access patterns. We denote the map from a memory address to its block
address byB. The internal memory can hold at least three blocks, i.e.,M > 3 · B.

3. The computation cost is ignored in comparison to the cost of an I/O operation. This is justified by the
high access latency of slow memory.

4. A block of data from slow memory can be placed in any block offast memory.

5. I/O operations are explicit in the algorithm.

The goal of algorithm design in this model is to minimize the number of I/O operations.
We adopt much of the framework of the I/O model in developing acache model to capture the interac-

tions between cache and main memory. In this case, the cache is the fast memory, while main memory is
the slow memory. Assumptions 1 and 2 of the I/O model continueto hold in our cache model. However,
assumptions 3–5 are no longer valid and need to be replaced asfollows.

• The difference between the access times of slow and fast memory is considerably smaller than in
the I/O model, namely a factor of 5–100 rather than factor of 10000. We will useL to denoted the

2However, none of these models address the problem of limitedassociativity in cache.
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normalizedcache latency. This cost function assigns a cost of 1 for accessing an element in cache and
L for accessing an element in the main memory. This way, we alsoaccount for the computation in
cache.

• Main memory blocks are mapped into cache sets using afixedand pre-determined mapping function
that is implemented in hardware. Typically, this is a modulomapping based on the low-order address
bits. However, the results of this section will hold as long as there is afixedaddress mapping function
that distributes the main memory evenly in the cache. We denote this mapping from main memory
blocks to cache sets byS. We will occasionally slightly abuse this notation and apply S directly to a
memory addressx rather than toB(x).

• The cache is not visible to the programmer (not even at the assembly level). When a program issues
a reference to a memory locationx, an image(copy) of the main memory blockb = B(x) is brought
into the cache setS(b) if it is not already present there. The blockb continues to reside in cache until
it is evicted by another blockb′ that is mapped to the same cache set (i.e., S(b) = S(b′)). In other
words, a cache setc contains the latest memory block referenced that is mapped to this set.

To summarize, we use the notationC(M,B,L) to denote our three-parameter cache model, and the
notationI(M,B) to denote the I/O model with parametersM andB. We will usen andm to denoteN/B
andM/B respectively. The assumptions of our cache model parallel those of the I/O model, except as noted
above.3 The goal of algorithm design in the cache model is to minimizerunning time, defined as the number
of cache accesses plusL times the number of main memory accesses.

3.1 Emulating I/O algorithms

The differences between the two models listed above would appear to frustrate any efforts to naively map an
I/O algorithm to the cache model, given that we neither have the control nor the flexibility of the I/O model.
Our main result in this section establishes a connection between the I/O model and the cache model using a
very simple emulation scheme.

Theorem 3.1 (Emulation Theorem) An algorithmA in I(M,B) usingT block transfers andI processing
time can be converted to an equivalent algorithmAc in C(M,B,L) that runs inO(I + (L + B) · T ) steps.
The memory requirement ofAc is an additionalm + 2 blocks beyond that ofA.

Proof: Note thatI is usually not accounted for in the I/O model, but we will keeptrack of the internal
memory computation done inA in our emulation. The idea behind the emulation is as follows. We will
mimic the behavior of the I/O algorithmA in the cache model, using an arrayBuf of m blocks to play the
role of the fast memory. We will view the main memory in the cache model as an arrayMemof B-element
blocks. AlthoughBuf is also part of the memory, we are using different notations to make their roles explicit
in this proof. Likewise, we will view the cache as an array of sets and denote theith set byC[i].

As discussed above, we do not have explicit control on the contents of the cache locations. However, we
can control the memory access pattern through a level of indirection so as to maintain a 1-1 correspondence
betweenBuf and the cache. Wlog, we assume thatS maps blocki of Buf to cache setC[i] for i ∈ [1,m].

We divide the I/O algorithm into rounds, where in each round,the I/O algorithmA transfers a block
between the slow memory and the fast memory and (possibly) does some computations. The cache algorithm
Ac transfers the same blocks betweenMemandBuf and then does the identical computations inBuf. Figure
1 formally describes the procedure. Note that theB elements must be explicitly copied in the cache model.

3Frigoet al. [18] independently arrive at a very similar parameterization of their model.
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Round t of the emulation
I/O AlgorithmA Cache EmulationAc

1. Transfer blockbt from slow memory to
block at of the fast memory

1. Copy contents of theB locations of
Mem[bt] into Buf[at]

2. Perform computations in fast memory 2. Perform identical computations inBuf

Figure 1: The emulation scheme used in the proof of Theorem 3.1.

It must be obvious that the final outcome of algorithmAc is the same as algorithmA. The more inter-
esting issue is the cost of the emulation.

A block of sizeB is transferred into cache if its image does not exist in the cache at the time of reference.
The invariant that we try to maintain at the end of each round is that there is a 1-1 correspondence between
Buf andC. This will ensure that all theI operations are done within the cache at minimal cost.

Assume that we have maintained the above invariant at the endof roundt − 1. In roundt, we transfer
block Mem[bt] into Buf[at]. Accessing the memory blockMem[bt] will displace the existing block in cache
setC[q], whereq = S(bt). From the invariant, we know that the block displaced fromC[q] is Buf[q],
which must be restored to cache to restore the invariant. We can bring it back by a single memory reference
and charge this to the roundt itself, which isL. (Actually it will be brought back during the subsequent
reference, so the previous step is only to simplify the accounting.)

The cost of copyingMem[bt] to Buf[at] is L + B assuming thatMem[bt] andBuf[at] are not mapped to
the same cache set (S(bt) 6= S(at)). Otherwise it will cause alternate cache misses (thrashing) of the blocks
Mem[bt] andBuf[at] leading toL · B steps for copying. This can be prevented by transferring through an
intermediate memory blockMem[Y ] such thatS(Y ) 6= S(bt). Having two such intermediate buffers that
map to distinct cache sets would suffice in all cases. So, we first transferMem[bt] to Mem[Y ] followed by
Mem[Y ] to Buf[j]. The first copying has cost2L+B since both blocks must be fetched from main memory.
The second transfer is between blocks, one of which is present in the cache, so it has costL+ B. To this we
must also add costL for restoring the block ofBuf that was mapped to the same cache set asMem[Y ]. So,
the total cost of thesafemethod is4L + 2B.

The internal processing remains identical. IfIt denotes the internal processing cost of stept, the total
cost of the emulation is at most

∑T
t=1(It + 2(L + B) + 2L) = I + 4L · T + 2B · T . 2

Remark 1

• A possible alternative to using intermediate memory-resident buffers to avoid thrashing is to use
registers, since register access is much faster. In particular, if we haveB registers, then we can save
two extra memory accesses, bringing down the emulation costto 2L + 2B.

• We can make the emulation somewhat simpler by using a randomized mapping scheme. That is, if
we choose the starting location of arrayBuf randomly, then the probability thatMem[bt] andBuf[at]
have the same image is1/M . So the expected emulation cost isI + 2L · T + (B + (LB)/M) · T
without using any intermediate copying.

• The basic idea of copying data into contiguous memory locations to reduce interference misses has
been exploited before in some specific contexts like matrix multiplication [24] and bit-reversal per-
mutation [9]. Theorem 3.1 unifies these previous results within a common framework.
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The termO(B · T ) is subsumed byO(I) if computation is done on at least a constant fraction of the
elements in the block transferred by the I/O algorithm. Thisis usually the case for efficient I/O algorithms.
We will call such I/O algorithmsblock-efficient.

Corollary 3.2 A block-efficient I/O algorithm forI(M,B) that usesT block transfers andI processing can
be emulated inC(M,B,L) in O(I + L · T ) steps.

Remark 2 The algorithms for sorting, FFT, matrix transposition, andmatrix multiplication described in
Aggarwal and Vitter [4] are block-efficient.

3.2 Extension to set-associative cache

The trend in modern memory architectures is to allow limitedflexibility in the address mapping between
memory blocks and cache sets. Thek-way set-associative cache has the property that a memory block
can reside in any (one) ofk cache frames. Thus,k = 1 corresponds to the direct-mapped cache we have
considered so far, whilek = m corresponds to a fully associative cache. Values ofk for data caches are
generally small, usually in the range 1–4.

If all the k sets are occupied, a replacement policy like LRU is used (by the hardware) to find an as-
signment for the referenced block. The emulation techniqueof the previous section would extend to this
scenario easily if we had explicit control on the replacement. This not being the case, we shall tackle it indi-
rectly by making use of an useful property of LRU that Frigoet al. [18] exploited in the context of designing
cache-oblivious algorithms for a fully associative cache.

Lemma 3.1 (Sleator-Tarjan[30]) For any sequences, FLRU , the number of misses incurred by LRU with
cache sizenLRU is no more than(nLRU/(nLRU−nOPT +1)FOPT ), whereFOPT is the minimimum number
of misses by an optimal replacement strategy with cache sizenOPT .

We use this lemma in the following way. We run the emulation technique for only half the cache size,i.e.,
we choose the buffer to be of sizem/2, such that for everyk cache lines in a set, we have onlyk/2 buffer
blocks. From Lemma 3.1, we know that the number of misses in each each cache set is no more than twice
the optimal, which is in turn bounded by the number of misses incurred by the I/O algorithm.

Theorem 3.3 (Generalized Emulation Theorem)An algorithmA in I(M/2, B) usingT block transfers
and I processing time can be converted to an equivalent algorithmAc in thek-way set-associative cache
model with parametersM,B,L that runs inO(I + (L + B) · T ) steps. The memory requirement ofAc is
an additionalm/2 + 2 blocks beyond that ofA.

3.3 The cache complexity of sorting and other problems

Aggarwal and Vitter [4] prove the following lower bound for sorting and FFT in the I/O model.

Lemma 3.2 ([4]) The average-case and the worst-case number of I/O’s required for sortingN records and

for computing theN -input FFT graph inI(M,B) is Ω
(

N
B

log(1+N/B)
log(1+M/B)

)

.

Theorem 3.4 The lower bound for sorting inC(M,B,L) is Ω(N log N + LN
B

log N/B
log M/B ).

Proof: Any lower bound in the number of block transfers inI(M,B) carries over toC(M,B,L). Since
the lower bound is the maximum of the lower bound on number of comparisons and the bound in Lemma
3.2, the theorem follows by dividing the sum of the two terms by 2. 2
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Theorem 3.5 In C(M,B,L), N numbers can be sorted inO(N log N + L · N
B · log N/B

log M/B ) steps and this is
optimal.

Proof: TheM/B-way mergesort algorithm described in Aggarwal and Vitter [4] has an I/O complexity of
O(N

B
log N/B
log M/B ). The processing time involves maintaining a heap of sizeM/B andO(log M/B) per output

element. ForN elements, the number of phases islog N
log M/B , so the total processing time isO(N log N). From

Corollary 3.2, and Remark 2, the cost of this algorithm in thecache model isO(N log N +L · N
B · log N/B

log M/B ).
Optimality follows from Theorem 3.4. 2

Remark 3 TheM/B-way distribution sort (multiway quicksort) also has the same upper bound.

We can prove a similar result for FFT computations.

Theorem 3.6 The FFT ofN numbers can be computed inO(N log N + L · N log N/B
B log M/B ) in C(M,B,L).

Remark 4 The FFTW algorithm [17] is optimal only forB = 1. Barve [6] has independently obtained a
similar result.

The class of Bit Matrix Multiply Complement (BMMC) permutations include many important permutations
like matrix transposition and bit reversal. Combining the work of Cormenet al. [14] with our emulation
scheme, we obtain the following result.

Theorem 3.7 The class of BMMC permutations forN elements can be achieved inΘ
(

N + L · N
B

log M
log(M/B)

)

steps inC(M,B,L).

Remark 5 Many known geometric [13] and graph algorithms [19] in the I/O model, such as convex hull
and graph connectivity, can be transformed optimally into the cache model.

4 Average-case performance of mergesort in the cache model

In this section, we analyze the average-case performance ofk-way mergesort in the cache model. Of the
three classes of misses described in Section 1, we note that compulsory misses are unavoidable and that
capacity misses are minimized while designing algorithms for the I/O model. We are therefore interested
in bounding the number of conflict misses for a straightforward implementation of the I/O-optimalk-way
mergesort algorithm. It is easy to construct a worst-case input permutation where there will be a conflict
miss for every input element (a cyclic distribution suffices), so the average case is more interesting.

We assume thats cache sets are available for the leading blocks of thek runsS1, . . . , Sk. In other words,
we ignore the misses caused by heap operations (or equivalently ensure that the heap area in the cache does
not overlap with the runs).

We create a random instance of the input as follows. Considerthe sequence{1, . . . , N}, and distribute
the elements of this sequence to runs by traversing the sequence in increasing order and assigning elementi
to runSj with probability 1/k. From the nature of our construction, each runSi is sorted. We denotej-th
element ofSi asSi,j. The expected number of elements in any runSi is N/k.

During thek-way merge, the leading blocks are critical in the sense thatthe heap is built on theleading
elementof every sequenceSi. The leading element of a sequence is the smallest element that has not been
added to the merged (output) sequence. Theleading blockis the cache line containing the leading element.
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Let bi denote the leading block of runSi. Conflictcan occur when the leading blocks of different sequences
are mapped to the same cache set. In particular, aconflict missoccurs for elementSi,j+1 when there is at
least one elementx ∈ bk, for somek 6= i, such thatSi,j < x < Si,j+1 andS(bi) = S(bk). (We do not count
conflict misses for the first element in the leading block,i.e., Si,j andSi,j+1 must belong to the same block,
but we will not be very strict about this in our calculations.)

Let pi denote the probability of conflict for elementi ∈ [1, N ]. Using indicator random variablesXi to
count the conflict miss for elementi, the total number of conflict missesX =

∑

i Xi. It follows that the
expected number of conflict missesE[X] =

∑

i E[Xi] =
∑

i pi. In the remaining section we will try to
estimate a lower bound onpi for i large enough to validate the following assumption.

A1 The cache sets of the leading blocks,S(bi), are randomly distributed in cache sets1, . . . , s
independent of the other sorted runs. Moreover, the exact position of the leading element within
the leading block is also uniformly distributed in positions {1, . . . , sB}.

Remark 6 A recent variation of the mergesort algorithm (see [7]) actually satisfiesA1 by its very nature.
So, the present analysis is directly applicable to its average-case performance in cache. A similar observation
was made independently by Sanders [27] who obtained upper-bounds for mergesort for a set associative
cache.

From our previous discussion and the definition of a conflict miss, we would like to compute the proba-
bility of the following event.

E1 For somei, j, for all elementsx, such thatSi,j < x < Si,j+1, S(x) 6= S(Si,j).

In other words, none of the leading blocks of the sorted sequencesSj , j 6= i, conflicts withbi. The prob-
ability of the complement of this event (i.e., Pr[E1]) is the probability that we want to estimate. We will
compute an upper bound onPr[E1], under the assumption A1, thus deriving a lower bound onPr[E1].

Lemma 4.1 For k/s > ǫ, Pr[E1] < 1 − δ, whereǫ andδ are positive constants (dependent only ons and
k but not onn or B).

Proof: See Appendix A. 2

Thus we can state the main result of this section as follows.

Theorem 4.1 The expected number of conflict misses in a random input for doing a k-way merge in an
s-set direct-mapped cache, wherek is Ω(s), is Ω(N), whereN is the total number of elements in all the
k sequences. Therefore the (ordinary I/O-optimal)M/B-way mergesort in anM/B-set cache will exhibit

O(N log N/B
log M/B ) cache misses which is asymptotically larger than the optimal value ofO(N

B
log N/B
log M/B ).

Proof: The probability of conflict misses isΩ(1) whenk is Ω(s). Therefore the expected total number of
conflict misses isΩ(N) for N elements. The I/O-optimal mergesort usesM/B-way merging at each of the
log N/B
log M/B levels, hence the second part of the theorem follows. 2

Remark 7 Intuitively, by choosingk ≪ s, we can minimize the probability of conflict misses resulting
in an increased number of merge phases (and hence running time). This underlines the critical role of
conflict missesvis-a-viscapacity misses that forces us to use only a small fraction ofthe available cache.
Recently, Sanders [27] has shown that by choosingk to beO( M

B1+1/a ) in ana-way set associative cache with
a modified version of mergesort of [7], the expected number ofconflict misses per phase can be bounded by
O(N/B). In comparision, the use of the emulation theorem guarantees minimal worst-case conflict misses
while making good use of cache.
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5 The Multi-level Cache Model

Most modern architectures have a memory hierarchy consisting of multiple levels of cache. Consider two
cache levelsL1 andL2 preceding main memory, withL1 being faster and smaller. The operation of the
memory hierarchy in this case is as follows. The memory location being referenced is first looked up inL1.
If it is not present inL1, then it is searched for inL2 (these can be overlapped with appropriate hardware
support). If the item is not present inL1 but it is inL2, then it is brought intoL1. In case that it is not inL2,
then a cache line is brought in from main memory intoL2 and intoL1. The size of cache line brought into
L2 (denoted byB2) is usually no smaller than the one brought intoL1 (denoted byB1). The expectation is
that the more frequently used items will remain in the fastercache.

The Multi-level Cache Model is an extension to multiple cache levels of the previously introduced Cache
Model. LetLi denote thei-th level of cache memory. The parameters involved here are the problem size
N, the size ofLi which is denoted byMi, the frame size (unit of allocation) ofLi denoted byBi and the
latency factorli. If a data item is present in theLi, then it is present inLj for all j > i (sometimes referred
to as theinclusion property). If it is not present inLi, then the cost for a miss isli plus the cost of fetching
it from Li+1 (if it is present inLi+1, then this cost is zero). For convenience, the latency factor li is the ratio
of time taken on a miss from thei-th level to the amount of time taken for a unit operation.

Figure 2 shows the memory mapping for a two-level cache architecture. The shaded part of main mem-
ory is of sizeB1 and therefore occupies only a part of a line of theL2 cache which is of sizeB2. There is a
natural generalization of the memory mapping to multiple levels of cache.

We make the following assumptions in this section, which areconsistent with existing architectures.

A1. For all i, Bi, Li are powers of 2.
A2. 2Bi 6 Bi+1 and the number of Cache LinesLi ≤ Li+1.
A3. Bk ≤ L1 and4Bk ≤ B1L1 (i.e. B1 > 4) whereLk is the largest and slowest cache. This
implies that

Li · Bi > Bk · Bi (1)

This will be useful for the analysis of the algorithms and aresometimes termed astall cachein
reference to the aspect ratio.

5.1 Matrix Transpose

In this section, we provide an approach for transposing a matrix in the Multi-level Cache Model.
The trivial lower bound for matrix transposition of anN × N matrix in the multi-level cache hierarchy

is clearly the time to scanN2 elements, namely,

Ω(
∑

i

N2

Bi
li)

where
Bi is the number of elements in one cache line inLi cache;Li is the number of cache lines inLi cache,
which is Mi

Bi
; andli is the latency forLi cache.

Our algorithm uses a more general form of the emulation theorem to get the submatrices to fit into cache
in a regular fashion. The work in this section shows that it ispossible to handle the constraints imposed by
limited associativity even in a multi-level cache model.

We subdivide the matrix intoBk × Bk submatrices. Thus we get⌈n/Bk⌉ × ⌈n/Bk⌉ submatrices from
ann × n submatrix.
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Figure 2: Memory mapping in a two-level cache hierarchy
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A =

















a1 a2 . . . . . . an

an+1 an+2 . . . . . . a2n
...

...
...

...
...

...
...

...
...

...
an2−n+1 . . . . . . . . . an2

















=







A1 A2 . . . An/B
...

...
...

...
An2−nB/B . . . . . . An2/B2







Note that the submatrices in the last row and column need not be square as one side may have≤ B rows
or columns.

Let m = n/B then

AT =

















AT
1 AT

m+1 . . . . . . AT
m2−m+1

AT
2 AT

m+2 . . . . . . AT
2m

...
...

...
...

...
...

...
...

...
...

AT
m . . . . . . . . . AT

m2

















For simplicity, we describe the algorithm as transposing a square matrixA in another matrixB, i.e.
B = AT . The main procedure isRec Trans(A,B, s), whereA is transposed intoB by dividing A andB
into s2 submatrices and then recursively transposing the sub-matrices. LetAi,j (Bi,j) denote the submatrices
for 1 6 i, j 6 s. ThenB = AT can be computed asRec Trans( Ai,j, Bj,i, s

′) for all i, j and some
appropriates′ which depends onBk andBk−1. In general, iftk, tk−1, . . . , t1 denote the values ofs′ at the
1, 2 . . . level of recursion, thenti = Bi+1/Bi. If the submatrices areB1 × B1 (base case), then perform the
transpose exchange of the symmetric submatrices directly.We perform matrix transpose as follows, which
is similar to the familiar recursive transpose algorithm.
1. Subdivide the matrix as shown intoBk × Bk submatrices.
2. Move the symmetric submatrices to contiguous memory locations.
3. Rec Trans( Ai,j, Bj,i, Bk/Bk−1).
4. Write back theBk × Bk submatrices to original locations.

In the following subsections we analyze the data movement ofthis algorithm to bound the number of
cache misses at various levels.

5.2 Moving a submatrix to contiguous locations

To move a submatrix we will move it cache line by cache line. Bychoice of size of submatrices (Bk × Bk)
each row will be an array of sizeBk, but the rows themselves may be far apart.

Lemma 5.1 If two memory blocksx andy of sizeBk are aligned inLk-cache map to the same cache set in
Li-cache for some1 ≤ i ≤ k, thenx andy map to the same set in eachLj-cache for all1 ≤ j ≤ i.

Proof: If x andy map to the same cache set inLi cache then theiri-th level memory block numbers (to
be denoted bybi(x) andbi(y)) differ by a multiple ofLi. Let bi(x) − bi(y) = αLi. SinceLj |Li (both are
powers of two),bi(x) − bi(y) = βLj whereβ = α · Li/Lj . Let x′, y′ be thecorrespondingsub-blocks of
x andy at thej-th level. Then their block numbersbj(x′), bj(y′) differ by Bi/Bj · β · Lj, i.e., a multiple of
Lj asBj |Bi. Note that blocks are aligned across different levels of cache. Thereforex andy also collide in
Lj. 2
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Corollary 5.1 If two blocks of sizeBk that are aligned inLk-cache do not conflict in leveli they do not
conflict in any levelj for all i ≤ j ≤ k.

Theorem 5.2 There is an algorithm which moves a set of blocks of sizeBk (where there arek levels of
cache with block sizeBi for each1 ≤ i ≤ k) into a contiguous area in main memory in

O

(

∑ N

Bi
li

)

where N is the total data moved andli is the cost of a cache miss for theith level of cache.

Proof: Let the set of blocks of sizeBk beI (we are assuming that the blocks are aligned). Let the target
block in the contiguous area for each blocki ∈ I be in the corresponding setJ where each blockj ∈ J is
also aligned with a cache line inLk Cache.

Let block a map toRb,a, b = {1, 2, . . . , k} whereRb,a denote the set of cache lines in theLb-cache.
(Sincea is of sizeBk, it will occupy several blocks in lower levels of cache.)

Let theith block map to setRk,i of theLk Cache. Let the target blockj map to setRk,j. In the worst
case,Rk,j is equal toRk,i. Thus in this case the lineRk,i has to be moved to a temporary block sayx
(mapped toRk,x) and then moved back toRk,j. We choosex such thatR1,x andR1,i do not conflict and
alsoR1,x andR1,j do not conflict. Such a choice ofx is always possible because our temporary storage area
X of size4Bk has at least4 lines ofLk-cache (i andj will take up two blocks ofLk-cache, thus leaving at
least one block free to be used as temporary storage).This is why we have the assumption that4Bk ≤ B1L1.
That is, by dividing theL1-cache intoB1L1/Bk zones, there is always a zone free forx.

For convenience of analysis, we maintain the invariant thatX is always inLk-cache. By application of
the previous corollary on our choice ofx (such thatR1,i 6= R1,x 6= R1,j) we also haveRa,i 6= Ra,x 6= Ra,j

for all 1 ≤ a ≤ k. Thus we can movei to x andx to j without any conflict misses. The number of cache
misses involved is three for each level—one for getting theith block, one for writing thejth block, and one
to maintain the invariant since we have to touch the line displaced byi. Thus we get a factor of3.

Thus the cost of this process is

3

(

∑ N

Bi
li

)

whereN is the amount of data moved.
2

Remark 8 For blocksI that are not aligned inLk Cache, the constant would increase to 4 since we would
need to bring up to 2 cache lines for eachi ∈ I. The rest of the proof would remain the same.

Corollary 5.3 ABk×Bk submatrix can be moved into contiguous locations in the memory in O(
∑i=k

i=1
Bk

2

Bi
li)

time in a computer that hask levels of (direct-mapped) cache.

This follows from the preceding discussion. We allocate memory sayC of sizeBk ×Bk for placing the
submatrix and memory, say,X of size4Bk for temporary storage and keep both these areas distinct.

Remark 9 If we have set associativity (≥ 2) in all levels of cache then we do not need an intermediate
buffer x as linei andj can both reside in cache simultaneously and movement from one to the other will
not cause thrashing. Thus the constant will come down to two.Since at any point in time we will only be
dealing with two cache lines and will not need the linesi or j once we have read or written to them the
replacement policy of the cache does not affect our algorithm.
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Remark 10 If the capacity of the register file is greater than the size ofthe cache line (Bk) of the outermost
cache level (Lk) then we can move data without worrying about collision by copying from linei to registers
and then from registers to linej. Thus even in this case the constant will come down to two.

Once we have the submatrices in contiguous locations we perform the transpose as follows. For each of
the submatrices we divide theBr × Br submatrix (sayS) in levelLr (for 2 ≤ r ≤ k) further intoBr−1 ×
Br−1 size submatrices as before. EachBr−1 × Br−1 size subsubmatrix fits intoLr−1 cache completely
(sinceBr−1 · Br−1 6 Br−1 · Bk 6 Br−1 · Lr−1 from equation (1)). LetBr/Br−1 = kr.

Thus we have the submatrices as






S1,1 S1,2 . . . S1,kr

...
...

...
...

Skr,1 . . . . . . Skr,kr







So we perform matrix transpose of eachSi,j in place without incurring any misses as it resides com-
pletely inside the cache. Once we have transposed eachSi,j we exchangeSi,j with Sj,i. We will show that
Si,j andSj,i can not conflict inLr−1-cache fori 6= j.

SinceSi,j andSj,i lie in different parts of theLr-cache lines, they will map to different cache sets in the
Lr−1-cache. The rows ofSi,j andSj,i correspond to(iBr−1 + a1)kr + j and(jBr−1 + a2)kr + i where
a1, a2 ∈ {1, 2....Br−1} and

Br/Br−1 = kr.

If these conflict then

(iBr−1 + a1)kr + j ≡ (jBr−1 + a2)kr + i(modLr−1).

SinceBr−1 = 2u andBr = 2v andLr−1 = 2w (all powers of two)

kr = 2v−u

Thereforekr dividesLr−1 (becausekr = Br/Br−1 < Br ≤ Lr−1). Hence

j ≡ i(modkr).

Sincei, j ≤ kr the above implies
i = j.

Note thatSi,i’s do not have to be exchanged. Thus, we have shown that aBr × Br matrix can be di-
vided intoBr−1 × Br−1 which completely fits intoLr−1-cache. Moreover, the symmetric sub-matrices do
not interfere with each other. The same argument can be extended to anyBj × Bj submatrix forj < r.
Applying this recursively we end up dividing theBk × Bk size matrix inLk-cache toB1 × B1 sized sub-
matrices inL1-cache, which can then be transposed and exchanged easily. From the preceding discussion,
the corresponding submatrices do not interfere in any levelof the cache.

(Note that even though we keep subdividing the matrix at every cache level recursively and claim that
we then have the submatrices in cache and can take the transpose and exchange them, the actual movement,
i.e., transpose and exchange happens only at theL1-cache level, where the submatrices are of sizeB1×B1.)

The time taken by this operation is
∑ N2

Bi
li.

This is because eachSi,j andSj,i pair (such thati 6= j) has to be brought intoLr−1 Cache only once
for transposing and exchanging ofB1 × B1 submatrices. Similarly, at any level of cache, a block from the
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Figure 3: Positions of symmetric submatrices in Cache
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matrix is brought in only once. The sequence of the recursivecalls ensures that each cache line is used
completely as we move from sub-matrix to sub-matrix.

Finally, we move the transposed symmetric submatrices of sizeBk × Bk to their location in memory,
i.e., reverse the process of bringing in blocks of sizeBk from random locations to a contiguous block. This
procedure is exactly the same as in Theorem 5.2 in the previous section that has the constant 3.

Remark 11 The above constant of 3 for writing back the matrix to an appropriate location depends on the
assumption that we can keep the two symmetric submatrices ofsizeBk × Bk in contiguous locations at the
same time. This would allow us to exchange the matrices during the write back stage. If we are restricted to
a contiguous temporary space of sizeBk ×Bk only, then we will have to move the data twice, incurring the
cost twice.

Remark 12 Even though in the above analysis we have always assumed a square matrix of sizeN ×N the
algorithm works correctly without any change for transposing a matrix of sizeM ×N if we are transposing
a matrixA and storing it inB. This is because the same analysis of subdividing into submatrices of size
Bk × Bk and transposing still holds. However if we want to transposea M × N matrix in place then the
algorithm fails because the location to write back to would not be obvious and the approach used here would
fail.

Theorem 5.4 The algorithm for matrix transpose runs in

O

(

i=k
∑

i=1

N2

Bi
li

)

+ O(N2)

steps in a computer that hask levels of direct-mapped cache.

If we have temporary storage space of size2Bk ×Bk + 4Bk and assume block alignment of all subma-
trices then the constant is 7. This includes3 for initial movement to contiguous location,1 for transposing
the symmetric submatrices of sizeBk × Bk and3 for writing back the transposed submatrix to its original
location. Note that the constant is independent of the number of levels of cache.

Remark 13 Even if we have set associativity (≥ 2) in any level of cache the analysis goes through as before
(though the constants will come down for data copying to contiguous locations). For the transposing and
exchange of symmetric submatrices the set associativity will not come into play because we need a line only
once in the cache and are using only 2 lines at a given time. So either LRU or even FIFO replacement policy
would only evict a line that we have already finished using.

5.3 Sorting in multiple levels

We first consider a restriction of the model described above where data cannot be transferred simultaneously
across non-consecutive cache levels. We useCi to denote

∑j=i
j=1 Mj.

Theorem 5.5 The lower bound for sorting in the restricted multi-level cache model isΩ(N log N+
∑k

i=1 ℓi·
N
Bi

log N/Bi

log Ci/Bi
).

Proof: The proof of Aggarwal and Vitter can be modified to disregard block transfers that merely rearrange
data in the external memory. Then it can be applied separately to each cache level, noting that the data
transfer in the higher levels do not contribute for any givenlevel. 2
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These lower bounds are in the same spirit as those of Vitter and Nodine [32] (for the S-UMH model)
and Savage [28], that is, the lower bounds do not capture the simultaneous interaction of the different levels.

If we remove this restriction, then the following can be proved along similar lines as Theorem 3.4.

Lemma 5.2 The lower bound for sorting in the multi-level cache model is

Ω(
k

max
i=1

{N log N, ℓi ·
N · log N/Bi

Bi log Ci/Bi
}).

2

This bound appears weak ifk is large. To rectify this, we observe the following. Across each cache
boundary, the minimum number of I/Os follow from Aggarwal and Vitter’s arguments. The difficulty arises
in the multi-level model as a block transfer in leveli propagates in all levelsj < i although the block
sizes are different. The minimum number of I/Os from (the highest) levelk remains unaffected, namely,
N
Bk

log N/Bk

log Ck/Bk
. For levelk − 1, we will subtract this number from the lower bound ofNBk−1

log N/Bk−1

log Ck−1/Bk−1
.

Continuing in this fashion, we obtain the following lower bound.

Theorem 5.6 The lower bound for sorting in the multi-level cache model is

Ω



N log N +
k
∑

i=1

ℓi ·





N · log N/Bi

Bi log Ci/Bi
−





k
∑

j=i+1

N · log N/Bj

Bj log Cj/Bj











 .

2

If we further assume thatCi
Ci−1

>
Bi

Bi−1
> 3, we obtain a relatively simple expression that resembles

Theorem 5.5. Note that the consecutive terms in the expression in the second summation of the previous
lemma decrease by a factor of 3.

Corollary 5.7 The lower bound for sorting in the multi-level cache model with geometrically decreasing
cache sizes and cache lines isΩ(N log N + 1

2

∑k
i=1 ℓi ·

N ·log N/Bi

Bi log Ci/Bi
). 2

Theorem 5.8 In a multi-level cache, where theBi blocks are composed ofBi−1 blocks, we can sort in

expected timeO
(

N log N +
(

log N/B1

log M1/B1

)

·
∑k

i=1 ℓi ·
N
Bi

)

.

Proof: We perform aM1/B1-way mergesort using the variation proposed by Barveet al. [7] in the context
of parallel disk I/Os. The main idea is to shift each sorted stream cyclically by a random amountRi for the
ith stream. IfRi ∈ [0,Mk − 1], then the leading element is in any of the cache sets with equal likelihood.
Like Barveet al. [7], we divide the merging into phases where a phase outputsm elements, wherem is the
merge degree. In the previous section we counted the number of conflict misses for the input streams, since
we could exploit symmetry based on the random input. It is difficult to extend the previous arguments to a
worst case input. However, it can be shown easily that ifm

s < 1
m3 (wheres is the number of cache sets), the

expected number of conflict misses isO(1) in each phase. So the total expected number of cache misses is
O(N/Bi) in the leveli cache for all1 6 i 6 k.

The cost of writing a block of sizeB1 from levelk is spread across several levels. The cost of transferring
Bk/B1 blocks of sizeB1 from levelk is ℓk + ℓk−1

Bk
Bk−1

+ ℓk−2
Bk

Bk−1

Bk−1

Bk−2
+ · · · + ℓ1

Bk
B1

. Amortizing this

cost overBk/B1 transfers gives us the required result. Recall thatO
(

N/B1(
log N/B1

log M1/B1
)
)

B1 block transfers

suffice for(M1/B1)
1/3-way mergesort. 2
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Remark 14 This bound is reasonably close to that of Corollary 5.7 if we ignore constant factors. Extending
this to the more general emulation scheme of Theorem 3.1 is not immediate as we require the block transfers
across various cache boundaries to have a nice pattern, namely the sub-blockproperty. This is satisfied by
the mergesort and quicksort and a number of other algorithmsbut cannot be assumed in general.

5.4 Cache-oblivious sorting

In this section, we will focus on a two-level cache model thathas limited associativity. One of thecache-
oblivious algorithms presented by Frigoet al. [18] is the funnel sort algorithm. They showed that the
algorithm is optimal in the I/O model (which is fully associative). However it is not clear whether the
optimality holds in the cache model. In this section, we showthat, with some simple modification, funnel
sort is optimal even in the direct-mapped cache model.

The funnel sort algorithm can be described as follows.

• Split the input inton1/3 contiguous arrays of sizen2/3 and sort these arrays recursively.

• Merge then1/3 sorted sequences using an1/3-merger, where ak-merger works as follows.

A k-merger operates by recursively merging sorted sequences.Unlike mergesort, ak-merger stops
working on a merging sub-problem when the merged output sequence becomes “long enough” and resumes
working on another merging sub-problem (see Figure 4).

INVARIANT The invocation of ak-merger outputs the firstk3 elements of the sorted sequence obtained
by merging thek input sequences.

BASE CASE k = 2 producingk3 = 8 elements whenever invoked.
NOTE The intermediate buffers are twice the size of the output obtained by ak1/2 merger.
To outputk3 elements, thek-merger is invokedk3/2 times. Before each invocation thek-merger fills

each buffer that is less than half full so that every buffer has at leastk3/2 elements—the number of elements
to be merged in that invocation.

Frigoet al. [18] have shown that the above algorithm (that does not make explicit use of the various
memory-size parameters) is optimal in the I/O model. However, the I/O model does not account for conflict
misses since it assumes full associativity. This could be a degrading influence in the presence of limited
associativity (in particular direct-mapping).

5.4.1 Structure ofk-merger

It is sufficient to get a bound on cache misses in the cache model since the bounds for capacity misses in the
cache model are the same as the bounds shown in the I/O model.

Let us get an idea of what the structure of ak-merger looks like by looking at a 16-merger (see Figure 5).
A k-merger, unrolled, consists of 2-mergers arranged in a tree-like fashion. Since the number of 2-mergers
gets halved at each level and the initial input sequences arek in number there arelg k levels.

Lemma 5.3 If the buffers are randomly placed and the starting positionis also randomly chosen (since the
buffers are cyclic this is easy to do) the probability of conflict misses is maximized if the buffers are less than
one cache line long.

The worst case for conflict misses occurs when the buffers areless than one cache line in size. This is
because if the buffers collide then all data that goes through them will thrash. If however the size of the
buffers were greater than one cache line then even if some twoelements collide the probability of future
collisions would depend upon the data input or the relative movement of data in the two buffers. The
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probability of conflict miss is maximized when the buffers are less than one cache line. Then probability of
conflict is1/m, wherem is equal to the cache sizeM divided by the cache line sizeB, i.e., the number of
cache lines.

5.4.2 Bounding conflict misses

The analysis for compulsory and capacity misses goes through without change from the I/O model to the
cache model. Thus, funnel sort is optimal in the cache model if the conflict misses can be bounded by

N

B
×

log N/B

log M/B

Lemma 5.4 If the cache is 3-way or more set associative, there will be noconflict misses for a 2-way
merger.

Proof: The two input buffers and the output buffer, even if they map to the same cache set can reside
simultaneously in the cache. Since at any stage only one 2-merger is active there will be no conflict misses
at all and the cache misses will only be in the form of capacityor compulsory misses. 2

5.4.3 Direct-Mapped case

For an input of sizeN , aN1/3-merger is created. The number of levels in such a merger islog N1/3 ( i.e.,
the number of levels of the tree in the unrolled merger). Every element that travels through theN1/3-merger
seeslog N1/3 2-mergers (see Figure 6). For an element passing through a 2-merger there are 3 buffers that
could collide. Wechargean element for a conflict miss if it is swapped out of the cache before it passes
to the output buffer or collides with the output buffer when it is being output. So the expected number of
collisions is3C2 times the probability of collision between any two buffers (two input and one output). Thus
the expected number of collisions for a single element passing through a 2-merger is3C2 × 1/m ≤ 3/m
wherem = M/B.

If xi,j is the probability of a cache miss for elementi in level j then summing over all elements and all
levels we get

E





N
∑

i=1

N1/3

∑

j=1

xi,j



 =

N
∑

i=1

log N1/3

∑

j=1

E(xi,j)

≤

N
∑

i=1

log N1/3

∑

j=1

3

m
=

3N

m
× log N1/3

= O

(

N

m
× log N

)

Lemma 5.5 The expected performance of funnel sort is optimal in the direct-mapped cache model iflog M
B ≤

M
B2 log B

. It is also optimal for a 3-way associative cache.

Proof: If M andB are such that

log
M

B
≤

M

B2 log B
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we have the total number of conflict misses

N log N

m
=

N log N

B log B M
B2 log B

≤
N

B
×

log N/B

log M/B

Note that the condition is satisfied forM > B2+ǫ for any fixedǫ > 0 which is similar to thetall-cache
assumption made by Frigoet al..

The set associative case is proved by Lemma 5.4. 2

The same analysis is applicable between successive levelsLi andLi+1 of a multi-level cache model.
This yields an optimal algorithm for sorting in the multilevel cache model.

Theorem 5.9 In a multi-level cache model, the number of cache misses at levelLi in the funnel sort algo-
rithm can be bounded byN log(N/Bi)

Bi log(Mi/Bi)
.

This bound matches the lower bound of Lemma 5.5 within a constant factor, which makes it an optimal
algorithm when simultaneous transfers are not allowed across multiple levels.

6 Conclusions

We have presented a cache model for designing and analyzing algorithms. Our model, while closely related
to the I/O model of Aggarwal and Vitter, incorporates three additional salient features of cache: lower miss
penalty, limited associativity, and lack of direct programcontrol over data movement. We have established
an emulation scheme that allows us to systematically convert an I/O-efficient algorithm into a cache-efficient
algorithm. This emulation provides a generic starting point for cache-conscious algorithm design; it may
be possible to further improve cache performance by problem-specific techniques to control interference
misses. We have also demonstrated the relevance of the emulation scheme by demonstrating that a direct
mapping of an I/O-efficient algorithm does not guarantee a cache-efficient algorithm. Finally, we have
extended our basic cache model to multiple cache levels.

Our single-level cache model is based on a blocking direct-mapped cache that does not distinguish
between reads and writes. Modeling a non-blocking cache or distinguishing between reads and writes would
appear to require queuing-theoretic extensions and does not appear to be appropriate at the algorithm design
stage. Thetranslation lookaside bufferor TLB is another important cache in real systems that cachesvirtual-
to-physical address translations. Its peculiar aspect ratio and high miss penalty raise different concerns for
algorithm design. Our preliminary experiments with certain permutation problems suggests that TLBs are
important to model and can contribute significantly to program running times.

We have begun to implement some of these algorithms to validate the theory on real machines, and
also using cache simulation tools likefast-cache, ATOM, or cprof. Preliminary observations indicate that
our predictions are more accurate with respect to miss ratios than actual running times (see [12]). We have
traced a number of possible reasons for this. First, becausethe cache miss latencies are not astronomical, it
is important to keep track of the constant factors. An algorithmic variation that guarantees lack of conflict
misses at the expense of doubling the number of memory references may turn out to be slower than the
original algorithm. Second, our preliminary experiments with certain permutation problems suggests that
TLBs are important to model and can contribute significantlyto program running times. Third, several
low-level details hidden by the compiler related to instruction scheduling, array address computations, and
alignment of data structures in memory can significantly influence running times. As argued earlier, these
factors are more appropriate to tackle at the level of implementation than algorithm design.

Several of the cache problems we observe can be traced to the simple array layout schemes used in
current programming languages. It has shown elsewhere [10,11, 31] that nonlinear array layout schemes
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based on quadrant-based decomposition are better suited for hierarchical memory systems. Further study of
such array layouts is a promising direction for future research.
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A Approximating probability of conflict

Let µ be the number of elements betweenSi,j and Si,j+1, i.e., one less than the difference in ranks of
Si,j andSi,j+1. (µ may be 0, which guarantees event E1.) LetEm denote the event thatµ = m. Then
Pr[E1] =

∑

m Pr[E1 ∩ Em], sinceEm’s are disjoint. For eachm, Pr[E1 ∩ Em] = Pr[E1|Em] · Pr[Em].
The eventsEm correspond to a geometric distribution,i.e.,

Pr[Em] = Pr[µ = m] =
1

k

(

1 −
1

k

)m

. (2)

To computePr[E1|Em], we further subdivide the event into cases about how them numbers are dis-
tributed into the setsSj, j 6= i. Wlog, let i = 1 to keep notations simple. Letm2, . . . ,mk denote the
case thatmj numbers belong to sequenceSj (

∑

j mj = m). We need to estimate the probability that for
sequenceSj, bj does not conflict withS(b1) (recall that we have fixedi = 1) during the course thatmj

elements arrive inSj. This can happen only ifS(bj) (the cache set position of the leading block ofSj right
after elementS1,t) does not lie roughly⌈mi/B⌉ blocks fromS(b1). From assumption A1 and some careful

counting this is1 −
mj−1+B

sB for mj > 1. For mj = 0, this probability is 1 since no elements go intoSj

and hence there is no conflict.4 These events are independent from our assumption A1 and hence these can
4The reader will soon realize that this case leads to some non-trivial calculations.
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be multiplied. The probability for a fixed partitionm2, . . . ,mk is the multinomial m!
m2!···mk! ·

(

1
k−1

)m
(m is

partitioned intok − 1 parts). Therefore we can write the following expression forPr[E1|Em].

Pr[E1|Em] =
∑

m2+···+mk=m

m!

m2! · · ·mk!
·

(

1

k − 1

)m
∏

mi 6=0

(

1 −
mj − 1 + B

sB

)

(3)

In the remainder of this section, we will obtain an upper bound on the right hand side of equation (3).
Let nz(m2, . . . ,mk) denote the number ofjs for whichmj 6= 0 (non-zero partitions). Then equation (3)
can be rewritten as the following inequality.

Pr[E1|Em] 6
∑

m2+···+mk=m

m!

m2! · · ·mk!
·

(

1

k − 1

)m(

1 −
1

s

)nz(m2...mk)

(4)

since
(

1 −
mj−1+B

sB

)

6
(

1 − 1
s

)

for mj > 1. In other words, the right side is the expected value of
(

1 − 1
s

)NZ(m,k−1)
, whereNZ(m,k − 1) denotes the number of non-empty bins whenm balls are thrown

into k− 1 bins. Using equation (2) and the preceding discussion, we can write down an upper bound for the
(unconditional) probability ofE1 as

∞
∑

m=0

1

k

(

1 −
1

k

)m

· E

[

(

1 −
1

s

)NZ(m,k−1)
]

(5)

We use known sharp concentration bounds for the occupancy problem to obtain the following approxi-
mation for the expression (5) in terms ofs andk.

Theorem A.1 ([22]) Letr = m/n, andY be the number of empty bins whenm balls are thrown randomly
into n bins. Then

E[Y ] = n

(

1 −
1

m

)m

∼ ne−r

and forλ > 0

Pr[|Y − E[Y ]| > λ] 6 2 exp

(

−
λ2(n − 1)/2

n2 − µ2

)

.

2

Corollary A.2 LetNZ be the number of non-empty bins whenm balls are thrown intok bins. Then

E[NZ] = k(1 − e−m/k)

and
Pr[|NZ − E[NZ]| > α

√

2k log k] 6 1/kα.

2

So in equation (4),E[
(

1 − 1
s

)NZ(m,k−1)
] can be bounded by

1/kα (1 − 1/s) +

(

1 −
1

s

)k(1−e−m/k−α
√

2k log k/k)

(6)

for anyα andm > 1.
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Proof: (of Lemma 4.1): We will split up the summation of (5) into two parts, namely,m 6 e/2 · k and
m > e/2 · k. One can obtain better approximations by refining the partitions, but our objective here is to
demonstrate the existence ofǫ andδ and not necessarily obtain the best values.

∞
∑

m=0

1

k

(

1 −
1

k

)m

· E[

(

1 −
1

s

)NZ(m,k−1)

] =

ek/2k
∑

m=0

1

k

(

1 −
1

k

)m

· E[

(

1 −
1

s

)NZ(m,k−1)

]

+
∞
∑

m=ek/2+1

1

k

(

1 −
1

k

)m

· E[

(

1 −
1

s

)NZ(m,k−1)

] (7)

The first term can be upper bounded by

ek/2
∑

m=0

1

k

(

1 −
1

k

)m

which is∼ 1 − 1
ee/2 ∼ 0.74.

The second term can be bounded using equation (6) usingα > 2.

∞
∑

m=ek/2+1

1

k

(

1 −
1

k

)m

· E[

(

1 −
1

s

)NZ(m,k−1)

] 6

∞
∑

m=ek/2+1

1

k

(

1 −
1

k

)m

· 1/k2 (1 − 1/s)

+

∞
∑

m=ek/2+1

1

k

(

1 −
1

k

)m

·

(

1 −
1

s

)k(1−e−m/k−α
√

2k log k/k)

(8)

The first term of the previous equation is less than1/k and the second term can be bounded by

∞
∑

m=ek/2+1

1

k

(

1 −
1

k

)m

·

(

1 −
1

s

)0.25k

for sufficiently largek (k > 80 suffices). This can be bounded by∼ 0.25e−0.25k/s, so equation (8) can be
bounded by1/k + 0.25e0.25k/s. Adding this to the first term of equation (7), we obtain an upper bound of

0.75 + 0.25e−0.25k/s for k > 100. Subtracting this from 1 gives us1−e−0.25k/s

4 , i.e., δ >
1−e−0.25k/s

4 . 2
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