
Output-Sensitive Algorithms for Uniform Partitions of Points�Pankaj K. Agarwaly Binay K. Bhattacharyaz Sandeep SenxOctober 19, 1999AbstractWe consider the following one and two-dimensional bucketing problems: Given aset S of n points in R1 or R2 and a positive integer b, distribute the points of S intob equal-size buckets so that the maximum number of points in a bucket is minimized.Suppose at most (n=b)+� points lies in each bucket in an optimal solution. We presentalgorithms whose time complexities depend on b and �. No prior knowledge of � isnecessary for our algorithms.For the one-dimensional problem, we give a deterministic algorithm that achieves arunning time of O(b4(�2 + logn) + n). For the two-dimensional problem, we present aMonte-Carlo algorithm that runs in sub-quadratic time for certain values of b and �.The previous algorithms, by Asano and Tokuyama [1], searched the entire parameterizedspace and required
(n2) time in the worst case even for constant values of b and �.We also present a subquadratic algorithm for the special case of the two-dimensionalproblem when b = 2.1 IntroductionWe consider geometric optimization problems that do not seem to have any nice propertieslike convexity and that have a large number of distinct global optimal solutions. Conse-quently, it is hard to develop a search strategy that will avoid considering all the optimumsolutions (or more likely near-optimal solutions). However, if the number of optimal solu-tions are few, we may be able to prune the search-space. This may lead to more e�cientalgorithms that are \output-sensitive" where the notion of output is related to the number�Work by the �rst author was supported by Army Research O�ce MURI grant DAAH04-96-1-0013, bya Sloan fellowship, by NSF grants EIA{9870724, and CCR{9732787, and by a grant from the U.S.-IsraeliBinational Science Foundation. Work by the second author was supported by an NSERC grant. Part ofthis work was done while the last two authors were visiting Department of Computer Science, University ofNewcastle, Australia.yCenter for Geometric Computing, Department of Computer Science, Box 90129, Duke University,Durham, NC 27708-0129, USA. E-mail: pankaj@cs.duke.eduzSchool of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada. E-mail:binay@cs.sfu.caxDepartment of Computer Science and Engineering, IIT Delhi, New Delhi 110016, India. E-mail:ssen@cs.unc.edu 1

Introduction 2of optimal solutions. Since we do not know the optimum solution to begin with, we can tryto estimate the optima by some means, say, random-sampling, and then use that to prunethe search space. The success of such an approach depends on how e�ectively we estimatethe optima.In this paper we consider the problem of partitioning a set of points in R1 or R2 intoequal-size buckets, so that the maximum number of points in a bucket is minimized. The�rst problem that we consider is the following: Given a set S of n real numbers and aninteger 1 � b � n, partition S uniformly into b equal sized buckets, i.e., each bucket has thesame width. The buckets are de�ned by real numbers �i = L + i � w, for 0 � i � b whereL is the left endpoint of the left-most bucket and w is the width (size) of the buckets. Theith bucket Bi is de�ned by the interval [�i; �i+1) and S\Bi is the content of the ith bucket(for a �xed choice of L and w). We wish to minimize the maximum size of the contents inbuckets. Two version of this problem are studied: (i) the tight case in which B1 and Bb arerequired to be nonempty, and (ii) the relaxed case in which they are allowed to be empty.
β β β β βo 1 2 3 4

B B B B1 2 3 4
(i) (ii) (iii)Figure 1: (i) One-dimensional bucketing problem; (ii) uniform-projection problem; (iii) two-dimensional partitioning problem.Next, we consider the two-dimensional problem. Given a set S of n points in R2 and aninteger b � n, we again wish to partition S into b equal-size buckets so that the maximumnumber of points in a bucket is minimized. We consider two types of buckets. First, weconsider the case in which the buckets are formed by equally spaced b + 1 parallel lines,`0; : : : ; `b, with orientation �, for some � 2 S1. We require S to lie between `1 and `band each of `1; `b to contain at least one point of S. The buckets are b strips de�ned byconsecutive lines `i�1 and `i (1 � i � b); see Figure 1 (ii). This bucketing problem is knownas the uniform-projection problem. We next de�ne buckets to be the regions formed by twofamilies of equally-spaced pb+ 1 lines. The extremal lines in both families are required tocontain at least one point of S; see Figure 1 (iii). This problem is called the two-dimensionalpartition problem.Asano and Tokuyama [1] describe O(n2) and O(b2n2)-time algorithms for the tight andrelaxed cases of the one-dimensional problem. We are able to obtain an O(b4(�2+logn)+n)-time deterministic algorithm for the tight case and O(b5(�2 + logn) + bn)-time algorithmfor the relaxed case. The algorithm itself does not require the value of �; the value isrequired only for the analysis. This problem has applications to construction of optimal

Optimal One-Dimensional Cuts 3hash functions [1].Comer and O'Donnell [4] described an algorithm for the uniform-projection problemthat runs in O(bn2 log n) time using O(n2 + bn) spce. Asano and Tokuyama [1] gave anO(n2 log n)-time algorithm, which uses O(n) space, by exploiting the dual transformation ofthe problem. They also give alternative implementations that could be better for smaller b,but the worst-case running time is
(n2) even for constant values of b. Bhattacharya [2] alsogave an alternate approach for this problem, using the angle-sweepmethod. We �rst describea deterministicO(n4=3 log3=2 n)-time algorithm for b = 2 for the uniform-projection problem,thus improving the quadratic upper-bound. For larger values of b, we describe a Monte Carloalgorithm that computes an optimal solution in time O(minfb �n5=3 log n+b2�n logn; n2g),with probability at least 1�1=n. The dependence of running time on � is borne out by thefact that the number of possible optimal con�gurations (having the same value) dependson �.The overall approaches for both the problems are similar. Namely, we use a sample to\localize" the search for the global optimum. Although intuitively, this is a good heuristic,analyzing the bound on the number of \potential" candidates for the global optimum, fromthe optima of the sample, is rather technical. In the one-dimensional problem, we cansimply choose a a \deterministic" sample because the elements are linearly ordered, but thetwo-dimensional algorithms rely on random sampling.2 Optimal One-Dimensional CutsFor a set S = fx1; : : : ; xng of real numbers and an integer 1 � b � n, a pair c = (w;L)is called a cut if the set of b + 1 real numbers �j = L + j � w, 0 � j � b, are such that�0 � x1 � xn < �b. The interval [�j�1; �j) is called the jth bucket and the set of xi's lying(strictly) in this interval is the contents of the jth bucket. We will denote the jth bucketby Bj and the size of its contents, jBj \ Sj, by jBcj j for a cut c. Let�(c; S) = max1�j�b jBcj jdenote the cut-value of c. Let C be the set of all cuts. The optimal cut value, �(S), isde�ned as �(S) = minc2C �(c; S):Any cut that achieves this cut value is an optimal cut. If we restrict the cuts to satisfy thecondition that jB1j; jBbj � 1, i.e., the �rst and the last buckets cannot be empty, then it iscalled a tight cut. An optimal tight cut is de�ned analogously as above, restricted to the setof tight cuts. We will �rst describe an algorithm for �nding an optimal tight cut.De�nition 2.1 Two cuts c1 and c2 are combinatorially distinct if there is an i, 1 � i � b,such that jBc1i j 6= jBc2i j.

Optimal One-Dimensional Cuts 4

Figure 2: An arrangement of lines, with one cell shaded.De�nition 2.2 The arrangement of a set L of lines in the plane, denoted A(L), is theplanar subdivision induced by the lines of L; that is, A(L) is a planar map whose vertices arethe intersection points of lines in L, whose edges are maximal (relatively open) connectedportions of the lines that do not contain a vertex, and whose faces are the connectedcomponents of R2 �SL; see Figure 2.We parameterize the problem as follows. We represent each cut c = (w;L) as a pointin the plane. Abusing the notation slightly, we will use the term \cut" to denote a point inthe (w;L)-plane as well as the set of buckets induced by that cut. LetL = fxi = L+ jw j 1 � i � n; 0 � j � bgbe the set of (b + 1)n lines in the (w;L)-plane, which we refer to as the event lines. Lconsists of b + 1 families of parallel lines (one for each �xed j), each family containing nlines; see Figure 3 (i). Hence, every face in A(L) contains at most 2(b + 1) edges. Forall cuts c = (w;L) lying in the same face f of A(L), the cut value remains the same; wewill denote this value by �(f; S). Let �j(f; S) = jBcj(S)j for any c 2 f . The non-emptycondition of extreme buckets implies that we have to consider only those cuts (w;L) thatlie in the quadrilateral Q de�ned by the intersection of the following four constraints; seeFigure 3. Q : x1 � L > x1 �w and xn � x1b < w < xn � x1b� 1 : (2.1)The above constraint leads to the following lemma.Lemma 2.3 For every point xi 2 S, there exists an integer 1 � j � b� 1, so that xi liesin one of the two buckets Bj or Bj+1 for any tight cut.Proof: A point xi 2 S lies in the bucket Bj of a cut c = (w;L) if and only ifL+ w � (j � 1) � xi < L+ w � j:

Optimal One-Dimensional Cuts 5Suppose there are two cuts c1 = (w1; L1) and c2 = (w2; L2) and two integers 1 � k1 <k1 + 1 < k2 � b such that xi lies in the bucket Bk1 of the cut c1 and in the bucket Bk2 ofc2. Then we have the following two inequalities:xi � x1 < k1 � w1 and xi � x1 > (k2 � 1) � w2 � (k1 + 1)w2:Therefore, w2w1 < k1k1 + 1 = 1� 1k1 + 1 : (2.2)On the other hand, by (2.1),w2w1 > xn � x1b � b� 1xn � x1 = 1� 1b : (2.3)Comparing (2.2) and (2.3), we obtain k1 > b � 1, which contradicts the assumption thatk1 < k2 � 1 � b� 2. Hence, the lemma is true. 2This lemma immediately implies that at most n lines of L intersect Q, and that Qintersects O(n2) faces of A(L). The lines of L that intersect Q can be determined in O(bn)time. We can therefore search over Q \ A(L) in O(n2) time to �nd all combinatoriallydistinct optimal cuts.Lemma 2.4 For a set of m points, all the combinatorially distinct optimal cuts can becomputed in O(m2) time.

(i) (ii)

4 1xx x4 1x

x4

1

w

L

x

x

x

x

1

2

3

4

w

L

x

2

3

x

x

Q

(-)/b (-)/(b-1)

Figure 3: (i) Set L and the feasible region Q; (ii) Shaded regions denote C22; C23, and C24, and thedark region denotes C(2; 4; 2), the set of cuts for which fx2; x3; x4g lie in the second bucket B2.For an integer r � 1, let R � S be the subset of r points obtained by choosing everyn=rth point of S. From our previous observation about directly solving the problem, wecan compute the optimal solution for R in O(r2) time.

Optimal One-Dimensional Cuts 6Lemma 2.5 Let no; ro be the maximum size of a bucket in an optimal solution for S andR, respectively. Then ���non � ror ��� < 1r :Proof: Let c be an optimal cut for R. Each bucket of c contains at most ro points.Since R is chosen by selecting every (n=r)th point of S, each bucket of c contains at most(ro + 1)n=r � 1 points of S. Therefore no < (ro + 1)n=r, ornon � ror < 1r :Conversely, let c0 be an optimal cut for S. Then each bucket of c contains at most no pointsof S, which implies that each bucket contains at most (no + (n=r) � 1)r=n points of R.Hence, ro < �no + nr � rn or ror � non < 1r :This completes the proof of the lemma. 2We now describe the algorithm for computing an optimal solution for S, assuming thatwe have already computed the value of ro. Let Cij denote the set of points c = (w;L) inthe (w;L)-plane so that the point xj 2 S lies in the bucket Bi of the cut c. ThenCij = f(w;L) j L+ (i� 1)w � xj < L+ iwgis the cone with apex at (0; xj); see Figure 3 (ii). Given three integers 1 � l � r � n and1 � i � b, the set of points in the (w;L)-plane for which the subset fxl; xl+1; : : : ; xrg of Slies in the ith bucket Bi is C(l; r; i) = Trj=l Cij. C(l; r; i) is a cone formed by the intersectionof the halfplanes L+ (i� 1)w � xl and L+ iw > xr.By Lemma 2.5, (ro � 1)nr < no < (ro + 1)nr : (2.4)Set m = (ro + 1)n=r > no. We will use this inequality to compute no e�ciently. De�neno = (n=b) + � and m = (n=b) + �. Using (2.4), we obtain that � < �+ 2n=r.
������
������
������

������
������
������

������
������
������

������
������
������

������
������
������

������
������
������i-1S Si Si+1

r
il

i β
i

r
i+1β

i+1
l
i+1β

i-1
r
i-1

l
i-1Figure 4: The boundary �i can lie in the shaded interval [li; ri).If b2� � n, then we use the O(n2)-time algorithm described earlier to compute an optimalcut, so assume that b2� < n. If each bucket Bi in a cut c contains at most m points of S,then, for any 1 � i � b, the �rst i buckets in c contain at most ri = mi points, therefore�i < xri . Similarly, the last b � i buckets in c contain at most (b � i)m points, therefore

Optimal One-Dimensional Cuts 7�i � xli , where li = n �m(b � i). Hence, �i 2 [xli ; xri). Set r0 = 1; see Figure 4. Notethat ri � li = b� for 1 � i � b. This implies that the subset Si = fxj j ri�1 � j < ligalways lies in the ith bucket Bi (see Figure 4), for all 1 � i � b. Hence, if there is a cut� = (w;L) so that all buckets in � contain at most m points, then � lies in the regionP (m) = Tbi=1 C(ri�1; li � 1; i), which is the intersection of b cones and is thus a convexpolygon with at most 2b edges. For all cuts � 62 P (m), �(�; S) > m. It thus su�ces tosearch for an optimal cut within P (m).Let Hi � L be a set of li � ri = b� lines de�ned asHi = fL+ iw = xj j li � j < rig:Set H = Sbi=1Hi; jHj = b2�. The same argument as in Lemma 2.3 shows that no line ofH n L intersects the interior of the polygon P (m). We construct the arrangement A(H)within the polygon P (m) in O(b4�2) time. (Actually, we can clip A(H) inside P (m) \ Q,where Q is the quadrilateral de�ned in (2.1).) Let AP (H) denote this clipped arrangement.By the above discussion, AP (H) is the same as A(L) clipped within P (m). Therefore, forany two points � and �0 in a face f 2 AP (H), the contents of all buckets in the cuts � and�0 are the same. Let '(f) = h�1(f; S); : : : ;�b(f; S)i:If f and f 0 are two adjacent faces of AP (H) separated by a line L+ iw = xj , then the onlydi�erence in the two cuts � 2 f and �0 2 f 0 is that xj lies in Bi�1 in one of them and it liesin Bi in the other. Therefore '(f 0) and �(f 0; S) can be computed from '(f) and �(f; S)in O(1) time.We compute an Eulerian tour � = hf0; f1; : : : ; fui, u = O(b4�2), of the dual graph ofAP (H) in time O(b4�2). We compute '(f0) and �(f0; S) in O(n) time. We then visitthe faces of AP (H) along �, and for each i � 1, compute '(fi) and �(fi; S) from '(fi�1)and �(fi�1; S) in O(1) time. We can thus compute no = �(S) = minf2AP (H) �(f; S) inO(b4�2 + n) time. The total time spent in computing an optimal cut isO�r2 + b4 ��+ nr �2 + n� :Choosing r = dbpn e, we obtain the following.Lemma 2.6 An optimal tight cut for n points into b buckets can be found in O(b4�2+b2n)time.Instead of using the quadratic algorithm for computing ro, we can compute ro recursively.Let T (r) denote the maximum running time of the algorithm for computing an optimal cutfor the subset of S size r chosen by selecting every (n=r)th point of S, then we have thefollowing recurrence:T (n;�) = (T (r;�0) +O �b4 ��+ nr �2 + n� if b2(� + 2nr) � n;O(n2) otherwise:

The Uniform-Projection Problem 8Choosing r = dn=2e and using the fact that ro � nor=n+ 1, we obtain thatro � rb + �2 + 1; i.e., �0 � �=2 + 1Hence, we can show that T (n;�) = O(b4(�2 + log n) + n):Theorem 2.7 Given a set S of n points in R and an integer 1 � b � n, an optimal tightcut for S with b buckets can be computed in O(b4(�2 + log n) + n) time.We can use a similar analysis for �nding optimal cuts, including relaxed cuts. We simplyreplace n by bn as there are bn event lines. Another way to view this is that the optimalcut can be determined by trying out all non-redundant cuts for � buckets for 2 � � � b andselecting the best one.Corollary 2.8 An optimal relaxed cut for a set of n points in R with b buckets can be foundin O(b5(�2 + logn) + bn) time.3 The Uniform-Projection ProblemIn this section we describe the algorithms for the uniform projection problem. Let S =fp1; : : : ; png be a set of n points in R2 and 1 � b � n an integer. We want to �nd b + 1equally spaced parallel lines so that all points of S lie between the extremal lines, theextreme lines contain at least one points of S, and the maximum number of points in abucket is minimized; see Figure 1 (ii). If the lines have slope �, we refer to these bucketsas the �-cut of S. For each �, there is unique �-cut of S. We �rst describe a subquadraticalgorithm for b = 2. Next, we show how the running time of the algorithm by Asano andTokuyama can be improved, and then we describe a Monte Carlo algorithm that computes�(S), the optimum value, with high probability, in subquadratic time for certain values ofb and �.
h* a*

b*

b

a

primal dual

h

σ*

σ

Figure 5: The duality transform in two dimensions. Vertical segment �� is the dual of the strip �.

The Uniform-Projection Problem 9It will be convenient to work in the dual plane. The duality transform maps a pointp = (a; b) to the line p� : y = �ax+ b and a line ` : y = �x+ � to the point `� = (�; �); seeFigure 5. Let `i denote the line dual to the point pi 2 S, and let L = f`i j 1 � i � ng. Thedual of a strip � bounded by two parallel lines `1 and `2 is the vertical segment �� = `�1`�2;a point p lies in � if and only if the line �� intersects the segment ��.
Figure 6: The 2-level in a line arrangement.Let A(L) be the arrangement of L as de�ned in Section 2. We de�ne the level of apoint p 2 R2 with respect to L, denoted by �(p;L), to be the number of lines in L thatlie below p. The level of all points within an edge or a face of A(L) is the same. For aninteger 0 � k < n, we de�ne the k-level of A(L), denoted by Ak(L), to be the closure ofthe set of edges of A(L) whose levels are k see Figure 6. Ak(L) is an x-monotone polygonalchain with at most O(n(k + 1)1=3) edges [5]. The lower and upper envelopes of A(L) arethe levels A0(L) and An�1(L), respectively. The total number of vertices on the upper andlower envelopes of A(L) is n because every such vertex is the dual of the line supporting anedge of the convex hull of S.Since we require the extreme bucket boundaries to contain a point of S, the points dualto the extreme lines lie on the upper and lower envelopes of L. For a �xed x-coordinate�, let s(�) denote the vertical segment connecting the points on the lower and upper en-velopes of L with the x-coordinate �. We can partition s(�) into b equal-length subsegmentss1(�); : : : ; sb(�). Let �0(�); : : : ; �b(�) be the endpoints of these segments. These endpointsare dual of the bucket boundaries of the �-cut, and si(�) is the dual of the jth bucket inthe �-cut. The line `j intersects si(�), i � b, if and only if the point pj lies in the bucketBi corresponding to the �-cut. Let �i denote the path traced by the endpoint �i(�) as wevary � from �1 to +1. If we vary �, �i(�), for 0 � i � b, traces along a line segment,as long as the endpoints of s(�) do not pass through a vertex of upper or lower envelopes.Therefore each �i is an x-monotone polygonal chain with at most n vertices; see Figure 7for an illustration. Since we will be looking at the problem in the dual plane from now, wewill call �i's bucket lines. Let B = f�0; : : : ; �bg. The intersection of a bucket line �i with aline `j is an event at which the point pj switches from Bj�1 to Bj or vice-versa.For an x-coordinate � and a subset A � L, let �i(A; �) denote the number of lines of Athat intersect the vertical segment si(�); �i(A; �) denotes the set of points dual to A that liein the ith bucket of the �-cut. Let �(A; �) = max1�i�b �i(A; �): Set no = �(S) = �(L) =

The Uniform-Projection Problem 10
β0

1β

2β

3β

4β

Upper envelope

Lower envelopeFigure 7: The uniform-projection problem and the bucket lines in the dual setting.min� �(L; �).3.1 Partitioning into two bucketsWe will �rst describe a deterministic scheme that takes subquadratic time to �nd an optimalsolution for partitioning S into two buckets. By our convention, �0; �2 denote the upperand lower envelopes of L, respectively. To determine no, we will search for an x-coordinate�o, where �1(�0) is closest to the dn=2e-level of A(L). First, we compute � = Adn=2e(L)in O(n4=3 log1+" n) time [3], for any " > 0, and check whether �1 intersects �. If a point�1(�o) lies on �, then we return the �o-cut. If �1 lies below �, we compute the highestlevel in the interval [1; dn=2e � 1] of A(L) that �1 intersects, and set �o to this level.This can be accomplished in O(n4=3 log2+" n) by performing a binary search on the levels.Similarly, if �1 lies above �, we �nd in O(n4=3 log2+" n) time the smallest level in the interval[dn=2e+1; n�1] that �1 intersects and set �o to this level. If �1(�o) is an intersection pointof �1 and A�o(L), then we return the �o-cut. Chan's algorithm computes the edges of alevel incrementally from left to right, so we can actually detect whether �1 intersects thelevel while computing the level itself in O(n4=3 log1+" n) time using O(n) space. Hence, weobtain the following.Lemma 3.1 The optimal uniform projection of n points in R2 into two buckets can becomputed in O(n4=3 log2+" n) steps, for any " > 0, using O(n) space.3.2 A deterministic algorithmIn this section we present a deterministic algorithm for the uniform-projection problem thathas O(bn logn+K log n) running time and uses O(n) storage, where K denotes the numberof event points, i.e., the number of intersection points between L and B. This improves therunning times of O(n2+ bn+K log n) for general b and O(b0:610n1:695+K log n) for b < pnin [1].As in Asano-Tokuyama's algorithm, we will sweep a vertical line through A(L), butunlike their approach we will not stop at every intersection point of L and B. We �rst

The Uniform-Projection Problem 11compute the lower and upper envelopes of L, which are the bucket lines �0 and �b, respec-tively. We can then compute rest of the bucket lines �1; : : : ; �b�1 in another O(bn) time.We preprocess each �i for answering ray-shooting queries in O(n log n) time so that a querycan be answered in O(logn) time [8]. The total spaced used is O(bn).We sweep a vertical line from x = �1 to x = +1, stopping at the intersection pointsof L and the bucket lines. At each x-coordinate �, for 1 � i � b, we maintain �i(�), andfor 1 � j � n, the index of the bucket �j that contains the line `j in the �-cut. Thesequantities remain the same for all x-coordinates between two consecutive event points. Wealso maintain an event queue Q that stores some of the event points that lie to the right ofthe sweep line, but it is guaranteed to contain the next event point. Suppose we are at anevent point �i(�) = �i \ `j and `j lies above �i to the right of �i(�). Then `j moves fromBi to Bi+1 at �. We therefore decrease �i(�) by 1, increase �i+1(�) by 1, and set �j to i.The next intersection point of ` and B, if it exists, lies on either �i or �i+1. We compute inO(log n) time the intersection points of ` with �i and �i+1 that lie immediately after �i(�),using the ray-shooting data structure and add them to Q.On the other hand, if `j lies below �i to the right of �i(�), `j moves from Bi+1 to Bi at�. We decrease �i+1(�) by 1, increase �i(�) by 1, compute the next intersection points of`j with �i and �i�1, and add the two intersection points (if they exist) to Q.We spendO(log n) at each event point. Therefore the total running time of the algorithmis O((bn +K) log n). Q uses O(K) space and the ray-shooting data structures use O(bn)space. The size of Q can be reduced to O(n) using the standard technique, namely, foreach line `j , store only one intersection point of `j with the bucket lines [6]. In particular,suppose we want to insert a point � 2 `j to Q. We check whether Q already contains apoint �0 on `j. If x(�) � x(�0), we do not insert � into Q. Otherwise, we insert � into Qand delete �0 from it. The total time spent at each event point is still O(log n), but thesize of Q is now O(n). However, the ray-shooting data structure still requires O(bn) space.In order to reduce the overall storage to O(n), we partition the plane into u � 2b verticalstrips W1; : : : ;Wu so that each Wi contains at most n vertices of the bucket lines. Notethat each �j contains at most n=� vertices inside Wi. We now run the above sweep-linealgorithm in each Wi separately. While sweeping a vertical line through Wi, we have topreprocess only �i \W for ray shooting, for each 0 � i � b. Since each �i has at most n=bvertices inside Wi, the total space used by the ray-shooting data structures is O(n). Theasymptotic running time is still O((bn+K) log n). Hence, we obtain the following.Theorem 3.2 An optimum partitioning in the tight case can be determined in O((bn +K) log n) time using O(n) storage, where K is the number of event points.3.3 A Monte-Carlo algorithmWe now present a Monte-Carlo algorithm that runs in sub-quadratic time, with high prob-ability, for small values of b and �, where no = (n=b) + �. The overall idea is quitestraightforward and similar to Section 2. From the given set L of n lines, we choose arandom subset R of size r > 20 log n (a value that we will specify during the analysis).

The Uniform-Projection Problem 12Let �R be the x-coordinates of all the intersection points of R and B, the set of bucketlines with respect to L. We compute ro = min�2�R �(R; �). Note that we are not com-puting �(R) since we are considering buckets lines with respect to L. B can be computedin O(n logn + bn) time and ro can be computed in additional O(r(b + n)) = O(rn) time.We use ro to estimate the overall optimum no with high likelihood. In the next phase, weuse this estimate and the ideas used in the one-dimensional algorithm to sweep only thoseregions of B that \potentially" contain the optimal solution. In our analysis, we will showthat the number of such event points is o(n2) if b and � are small. The reader can also viewthis approach as being similar to the randomized selection algorithm of Floyd and Rivest.We choose two parameters r and Var = Var(r) whose values will be speci�ed in theanalysis below. An event point with respect to L (resp. R) is a vertex of B or an intersectionpoint of a line of L (resp. R) with a chain in B. The event points with respect to R partitionthe chains of B into disjoint segments, which we refer to as canonical intervals. Beforedescribing the algorithm we state a few lemmas, which will be crucial for our algorithm.In the following, we will assume that R is a random subset of L of size r > 20 log n. Our�rst lemma establishes a relation between the event points of A(L) and those of A(R).Lemma 3.3 Let � > 0 be a constant and let 1 � i � b be an integer. With probability atleast 1� 1=n�, at most O((n=r) log n) event points of A(L) lie on any canonical interval of�i.Proof: The proof follows along the lines of a standard random-sampling argument. Con-sider any event point of A(L). The probability that more than c(n=r) log n lines of L arenot chosen before the �rst line is chosen to its right is no more than (1� rn)cn log n=r � n�c.The probability that this holds for any event point of A(L) (and hence for A(R)) is lessthan K � n�c. Since K = O(n2), by choosing c = �+ 2, the lemma follows. 2Using a classical result by Vapnik and Chervonenkis (see e.g. [11, Chapter 16]), whichcan also be proved using Cherno�'s bound, we can establish a relationship between thenumber of lines of L and of R intersecting a vertical segment.Lemma 3.4 Let e be a vertical segment and let Le � L be the subset of ne lines thatintersect e. There is a constant c such that with probability exceeding 1� 1=n2,����nen � jLe \Rjr ���� � cr log nr :An immediate corollary of the above lemma is the following.Corollary 3.5 There is a constant c so that, with probability exceeding 1� 1=n,���non � ror ��� � cr log nr :

The Uniform-Projection Problem 13Proof: Suppose the �-cut is an optimal cut for R. Apply Lemma 3.4 to the segmentss1(�); : : : ; sb(�). Since b � n and each segment si(�) intersects less than n lines of L, theclaim follows. 2Corollary 3.6 Let � be a �-cut so that every bucket of � contains at most m points of S.For 1 � i � b� 1, letli = r � (b� i)mrn � cpr log n and ri = im rn + cpr log n;where c is an appropriate constant. Then with probability exceeding 1� 1=n,li � �(�i(�); R) � ri: (3.1)Proof: If each bucket of � at most m points, then the �rst i-buckets of � contain at most mipoints of S and the last (b� i) buckets of � contain at most (b� i)m points of S. The lemmanow follows by an application of Lemma 3.4 to the segments �0(�)�i(�) and �i(�)�b(�). 2We also need the following result by Matou�sek on simplex range searching.Lemma 3.7 (Matou�sek [9]) Given a set P of points and a parameter m, n � m � n2,one can preprocess P for triangle range searching in time O(m log n), to build a data-structure of O(m) space and then report queries in O((n log2 n)=pm+K) time, for outputsize K, where K is number of points in the query triangle.Remark. If m =
(r2 log2 n) and K � (n=r) log n, then the output size dominates thequery time, so the query time becomes O(K) in this case.We now describe the algorithm in detail. We �rst compute in O(n logn + bn) timethe upper and lower envelopes of L and the bucket lines �0; : : : ; �b. Next, we choose arandom sample R of size r, where r > 20 log n is a parameter to be �xed later, and computero = min� �(R; �), where � varies over the x-coordinates of all the event points of B withrespect to R. As mentioned earlier, we are not computing an optimal solution for R, sincethe bucket lines are de�ned by L. We can compute ro in O(rn) time as described in [1].This completes the �rst phase of the algorithm. The total time required by this phase isO(n log n+ bn) +O(rn) = O((r + b)n): (3.2)In the following we assume that the set R satis�es Lemmas 3.3 and 3.4 and Corollaries 3.5and 3.6. This holds with probability exceeding 1� 1=n. By Corollary 3.5,ronr � cnr lognr � no � ronr + cnr lognr :Set mL = max(ronr � cnr log nr ; nb).

The Uniform-Projection Problem 14We �rst �nd the smallest 0 � i � dlogne, by testing for i = 0; 1; : : : in increasing order,such that mL + 2i < no � mL + 2i+1. We then perform a binary search in the interval[mL+2i;mL+2i+1] to compute the optimal value no. We thus need a procedure that, givenan integer m 2 [mL + 2i;mL + 2i+1], can determine whether no � m or no > m. Supposeno = (n=b) + � and m = (n=b) + �. Since mL � n=b and mL + 2i < no, we have � > 2i.Therefore m � mL + 2i+1 � no + 2i < nb + 2�: (3.3)We run the decision algorithm O(log n) times.
X

2

β1

β

Figure 8: �1; �2, and X . Solid lines belong to R and dashed lines belong to L nR. Shaded regionsdenote the segments s1(�) for � 2 X . Large (small) bullets are the intersection points of L withthe bucket lines that lie (resp. do not lie) inside X � R. Arrowed segments represent the canonicalintervals in I1.We now describe the decision algorithm. If each bucket of a �-cut contains at most mpoints of S, then by Corollary 3.6, li � �(�i(�); R) � ri. For each 1 � i < b, letXi = f� j li � �(�i(�); R) � rig:Let X = Tb�1i=1 Xi, and let jXj be the number of connected components inX. For any � 62 X,at least one of the �i does not satisfy (3.1), so �(L; �) > m for any such �-cut. We thereforerestrict our search to the �-cuts for which � 2 X and compute mo = min�2X �(L; �). Ifmo � m, then no � m. Otherwise, we conclude that no > m. Hence, it su�ces to describean algorithm for computing mo.For each 0 � i � b, let Ii be the set of canonical intervals of �i whose x-projectionsintersect X (see Figure 8), and let�i = f� 2 X j �i(�) is an event point with respect to Lg:Set I = Sbi=0 Ii, � = jIj, and � = Sbi=0�i. Since every event point whose x-coordinate isin �i lies on a canonical interval in Ii, by Lemma 3.3, j�j = O(�(n=r) log n).Since the contents of buckets change only at the event points,mo = min�2X �(L; �) = min�2� �(L; �):

The Uniform-Projection Problem 15It thus su�ces to compute �(L; �) for all � 2 �. We will describe later how to compute Xand I, but we �rst describe how to compute � and an optimal cut from X and I.We preprocess S in O(r2 log2 n) time into a data structure of size O(r2 log n) for answer-ing triangle range queries using Lemma 3.7. For each canonical interval I 2 Ii, we computethe subset LI � L of lines that intersect I in O((n=r) log n) time using the range-searchingdata structure, because, in the primal plane, I corresponds to a double-wedge and it con-tains a point of pi 2 S if and only if I intersects `i. We then compute the intersectionpoints of I and LI | these are the event points with respect to L that lie on I. We repeatthis step for all intervals in I. The total time spent in computing these intersection pointsis O(r2 log2 n+ �(n=r) log n). We discard those event points whose x-projections do not liein X. � is the set of the remaining event points. We sort � in an increasing order in timeO(j�j log n). The total time spent in computing and sorting � isO(r2 log2 n+ �(n=r) log n) +O(j�j log n) = O(r2 log2 n+ �(n=r) log2 n): (3.4)We sweep a vertical line over X from left to right, stopping at the x-values in �. For a� 2 X, we maintain �(�) = h�1(L; �); : : : ; �b(L; �)i:The vector �(�) remains the same for all x-values in X lying between two consecutivevalues in �. Suppose we are at a point � 2 �, which belongs to �i. Let I be the connectedcomponent of X that contains �. If � is the leftmost event point in I, we compute thenumber of lines if L intersecting the vertical segment si(�) (i.e., the points of S lying inthe ith bucket of the �-cut), for 1 � i � b, using the range-searching data structure in timeO((n=r) log n), and set �i(L; �) to this value. We can therefore compute �(�) for such anevent point in O(b(n=r) log n) time. If � is not the �rst event point in I, then we update�(�) as follows. Suppose �i(�) = �i \ `j and `j lies above �i after �i(�). Then the point pjmoves from the bucket Bi to Bi+1 at �, We decrease �i(L; �) by 1 and increase �i+1(L; �) by1. Similarly, if `j lies below �i to the right of �i(�), we increase �i(L; �) by 1 and decrease�i+1(L; �) by 1. The total time spent by the sweep-line algorithm isO�bnr log n� � jXj+O(j�j) = O �(bjXj + �)nr log n� : (3.5)Finally, we describe how to compute X and Ii. Setli = r � (b� i)mrn � cpr log n andri = im rn + cpr logn:

The Uniform-Projection Problem 16De�ne � = ri � li = bmrn � r + 2cpr logn� brn �nb + 2��� r + 2cpr log n(by equation (3.3))� 2b� rn + 2cpr log n:
iβ

il

ir

Figure 9: �i and the planar subdivision Mi; the shaded region denotes Mi; the thick shaded line isthe clipped �i.Recall that Xi is the x-projection of the portion of �i that lies between Ali(R) andAri(R). We compute Ali(R) and Ari(R) and clip the portion of �i between these two levels;see Figure 9. Xi consists of O(n+r4=3) connected components and can be computed withinthis bound. We set X = Tb�1i=1 Xi; jXj = O(b(n+r4=3)). Next, we compute the levels Aj(R),li � j � ri. Let Mi be the resulting planar subdivision induced by the edges and verticesof Ali(R); : : : ;Ari(R). By a result of Dey [5],jMij = O(r4=3(ri � li)2=3) = O(r4=3�2=3):Mi can be computed in time O(r log r+ jMij) = O(r4=3�2=3) [7]. Since �i is an x-monotonepolygonal chain andMi consists of � edge-disjoint x-monotone polygonal chains, the numberof intersection points between �i and Mi is O(n� + jMij) = O(n� + r4=3�2=3), and theycan be computed within that time bound. We can thus compute the set I 0i of all canonicalintervals of �i whose x-projections intersect Xi in time O(n�+ r4=3�2=3). We discard thosecanonical intervals of I 0i whose x-projections do not intersect X. The remaining intervalsof I 0i gives the set Ii. Therefore� �Xi jI 0ij = O(b(n� + r4=3�2=3)):Repeating this procedure for all bucket lines, the total time in computing jXj and I isO(b(n� + r4=3�2=3)): (3.6)

Two-Dimensional Partitioning 17Summing up (3.2), (3.4), (3.5), and (3.6); substituting the values of � and X; and usingthe fact that we run the decision algorithm O(log n) times, the total time in computing nois thusT (n) = O((r + b)n) +O(r2 log3 n) + b(n� + r4=3�2=3)nr log3 n+O(b2(n+ r4=3) � nr log2 n+ b(n� + r4=3�2=3)) � nr log2 n+O(b(n� + r4=3�2=3)) log n= O(rn) +O(b(n� + r4=3�2=3))nr log3 n+O(b2(n+ r4=3) � nr log2 n):In the last equality, we use the fact that b � n1=3 and that we will be choosing r � b2=3n2=3.Substituting the value of �, we obtainT (n) = O(rn) +O�bn2r log3 n� � �b� rn +pr logn�+O(br1=3n log3 n) ���brn +pr log n�2=3 +O�b2�n2r + nr1=3� � log2 n�= O((b2�)n log3 n) +O�rn+ bn2pr log7=2 n+ br2=3n log10=3 n�+O�b2�n2r + nr1=3� � log2 n� :Setting r = lb2=3n2=3 log7=3 nm, we obtain the following.Theorem 3.8 There is a Monte Carlo algorithm to compute the optimal uniform projectionof a set of n points in R2 onto b equal-sized buckets in timeO(minfbn5=3 log7=3 n+ (b2�)n log3 n; n2g);with probability at least 1 � 1=n, where the optimal value is (n=b) + �. In particular,our algorithm can detect whether there is a uniform projection (i.e., with � = 0) inO(minfbn5=3 log7=3 n; n2g) time; if there exsits a uniform projection, the algorithm returnsone.4 Two-Dimensional PartitioningIn this section we consider the problem of partitioning a set S of n points in R2 into\rectangular" buckets. More precisely, given S and an integer b � 1, we want to computetwo families of equally spaced pb + 1 lines L = f`0; : : : ; `pbg and L0 = f`01; : : : ; `0pbg, sothat the following conditions hold(i) If the orientation of the lines in L is � 2 [0; �=2), then the orientation of the lines inL0 is �=2 + �.

Two-Dimensional Partitioning 18(ii) S lies between `0 and `pb as well as between `00 and `0pb.(iii) Each of the extreme lines `0; `00; `pb; `0pb contains at least one point of S.(iv) The buckets are rectangles Bij de�ned by `i�1; `i; `0j�1; `0j , for any pair 1 � i; j � pb.The maximum number of points in a bucket is minimum.See Figure 1 (iii) for an example. If the slope of lines in L is � (and of lines in L0 is �1=�),we refer to the resulting buckets as the �-cut. Let �ij(L; �) be the number of points in thebucket Bij of the �-cut.In the dual setting, the strip formed by the lines `i�1 and `i of the �-cut is the verticalsegment si(�) as de�ned in the previous section. Similarly, the dual of the strip formed by`0j�1 and `0j is the segment sj(�1=�). Hence, a point pk belongs to the bucket Bij of the�-cut if `k intersects both si(�) and sj(�1=�). Let B = f�0; : : : ; �pbg be the set of bucketlines as de�ned in Section 3.2 (a vertical segment s(�) whose endpoints lie on the lower andvertical envelopes of A(L) is partitioned into pb equal segments s1(�); : : : ; spb(�)).As noted by Asano and Tokuyama, we can still compute an optimal solution by a sweep-line algorithm. We sweep two vertical lines L and L0. L sweeps the plane from x = 0 tox = +1. When L is at x = �, L0 is at x = �1=�. We stop when either L or L0 crosses anintersection point of L and B. At each �, we maintain, for every 1 � i; j � pb, the numberof points of S that lie in the bucket Bij of the �-cut, and for each line `k 2 L, the pair(i; j) if pk 2 Bij . If L passes through an event point lying on �i, then a line moves froma bucket Bij to B(i+1)j at �, or vice-versa. Similarly, if L0 passes through an event pointlying on �j, then a lines moves from a bucket Bij to the bucket Bi(j+1) at �, or vice-versa.As in Section 3.2, we can update the invariant and the event queue at each event point inO(log n) time. Hence, we conclude the following:Theorem 4.1 An optimum two-dimensional partitioning in the tight case can be deter-mined in O((bn+K) logn) time using O(n) storage, where K is the number of event points.We can also extend the Monte-Carlo algorithm to this problem. If �(S; �) � m, thenthe strips de�ned by two consecutive lines of L (or L0) contain at most pbm points. If wechoose a random sample R as in Section 3.3, de�ne ro = min�maxi;j �ij(R; �), and computeit using the deterministic algorithm, then Lemmas 3.3 and 3.4 and Corollary 3.5 still hold.Corollary 3.6 can now be re-stated as follows.Corollary 4.2 Let � be a �-cut so that every bucket of � contains at most m points of S.For 1 � i � pb� 1, letli = r � (pb� i)pbmrn � cpr log n and ri = ipbm rn + cpr logn;where c is an appropriate constant. Then with probability exceeding 1� 1=n,li � �(�i(�); R); �(�i(�1=�); R) � ri: (4.1)

References 19We can now proceed along the same lines as in Section 3.3. In order to determinewhether no � m for a given integer m, we �rst de�ne the setX = f� j li � �(�i(�); R); �(�i(�1=�); R) � ri; 81 � i �p�g:We sweep two vertical lines through X as in the deterministic algorithm, but using the ideasfrom Section 3.3 to compute event points, to move directly from one connected componentof X to another, and to compute X and I. Since there are pb+1 bucket lines in this case,we have � =Ppbi=0 jIij = O(pb(n�+ r4=3�2=3)), where � = ri� li � 2b�(r=n) + 2cpr logn.Carrying out the analysis of Section 3.3 with the new value of �, we can conclude thefollowing.Theorem 4.3 Given a set of n points in the plane and an integer b, there exists a Monte-Carlo algorithm to �nd an optimal two-dimensional partition in time O(minfb1=2n5=3 log7=3 n+(b3=2�)n log3 n; n2g), with probability at least 1�1=n, where the optimal value is (n=b)+�.References[1] T. Asano and T. Tokuyama, Algorithms for projecting points to give the most uniform distri-bution and applications to hashing, Algorithmica 9 (1993), 572{590.[2] B. Bhattacharya, Usefulness of angle sweep, Proc. of Foundations of Software Technology andTheoretical Computer Scienc, 1991, pp. ???.[3] T. Chan, A remark on computing the level in line arrangements, manuscript, 1999.[4] D. Comer and M.J. O'Donnell, Geometric problems with applications to hashing, SIAMJournal on Computing 11 (1982), 217{226.[5] T. K. Dey, Improved bounds on planar k-sets and related problems, Discrete Comput. Geom.,19 (1998), 373{382.[6] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg, 1987.[7] S. Har-Peled, Talking a walk in a planar arrangement, Proc. 40th IEEE Annual Sympos. Foun-dations of Computer Science, 1999, to appear.[8] J. Hershberger and S. Suri, A pedestrian approach to ray shooting: Shoot a ray, take a walk,J. Algorithms, 18 (1995), 403{431.[9] J. Matous�ek, E�cient Partition trees, Discrete and Computational Geometry 8 (1992), 315{334.[10] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press, New York,1995.[11] J. Pach and P. K. Agarwal, Combinatorial Geometry, John Wiley and Sons, New York, 1995.

