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Abstract

We describe an efficient parallel algorithm for hidden-
surface removal for terrain maps. The algorithm runs in
O(log4 n) steps on the CREW PRAM model with a work
bound of O((n + k)polylog(n)) where n and k are the
input and output sizes respectively. In order to achieve
the work bound we use a number of techniques, among
which our use of persistent data-structures is somewhat
novel in the context of parallel algorithms. To the best of
our knowledge this is the most efficient parallel algorithm
for hidden-surface removal for an important class of 3-D
scenes.

1. Introduction
1.1. The Problem

The hidden-surface elimination problem (see [24] for
early history) has been a fundamental problem in computer
graphics and can be stated as - given n polyhedral faces in
R
3 and a projection plane, we wish to determine which por-

tions of the faces are visible when viewed in a given direc-
tion. We are interested in an object-space solution (inde-
pendent of the display device) for this problem. That is, we
are interested in a combinatorial description of the visible
scene which can then be rendered on any display device.
The image-space solutions compute the visibility informa-
tion at every pixel which makes them device dependent. It
has been shown that the worst case output size for hidden
surface elimination can be
(n2) forn segments, and hence,
the worst case optimal algorithms for these problems will
have a running time of 
(n2).

There are algorithms whose running times are sensitive
to the number of intersections, I, (of the projections of the
segments) in the image plane. However, in practice, the size
of the displayed image can be far less than the number of in-
tersections in the image plane. By size, we mean the num-
ber of vertices and edges of the displayed image as a (planar)

graph. This would happen when a large number of these in-
tersections are occluded by the visible surfaces.

We will study a special class of surfaces called polyhe-
dral terrains which occur frequently in practice. A terrain is
a three-dimensional polyhedral surface which can be repre-
sented as a function of two variables.

Most geographical features can be represented in this
manner. A large number of scenes in graphics applications
can be modelled efficiently and effectively by polyhedral
terrains. The term (upper) profile will refer to the piece-wise
linear function Z(y), which is the point-wise maximum in
+z direction of the projection of edges onto the z�y plane.
Other commonly used terms for upper-profile are upper-
envelope and silhouette. Therefore, a profile is a monotone
polygon with respect to the y�axis. In fact, monotonicity
turns out to be a very useful property in making the algo-
rithm somewhat simpler than hidden-surface removal algo-
rithm for general surfaces. However, even for terrains, it is
known that the maximum size of the visible image can be

(n2). Our aim is to design a fast output-sensitive (we will
often use output-sensitive instead of output-size sensitive)
parallel algorithmfor terrains, which computes a description
of the output in a device-independent manner.

1.2. Sequential algorithms
Several sequential algorithms exist for the problem. (See

[13, 5, 14, 22, 7, 8, 2, 11, 19, 18, 15, 4, 16]).
For the class of polyhedral terrains, Reif and Sen [19]

designed the first efficient algorithm whose running time is
O((k + n) log2 n) where k is the output size.

1.3. Parallel algorithms
Relatively little work has been done in the context of par-

allel algorithms for hidden-surface removal. Reif and Sen
[19] had proposed a parallelization of their algorithm with
polylog(n) running time. The more challenging theoreti-
cal goal was to keep the work bound close to the output-
sensitive sequential algorithm. The resulting algorithm was
quite complex and required parallel (dynamic) updates on a
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shared nested data structure that were not onlyhard to imple-
ment but also difficult to analyze. Here, we exploit some of
their ideas but adopt a different strategy to build the parallel
data-structure. The resulting algorithm is relatively simpler
and also easier to analyze. The main reason for this is that
the underlying data-structure is static although it has to be
rebuilt a (small) number of times. Our bounds are also su-
perior in the sense that we are able to match the bounds of
[19] in a standard PRAM model (processor allocation was
assumed to be free in the model used by [19]).

Goodrich, Ghouse and Bright [12] presented parallel al-
gorithms for hidden-surface elimination. For the general
scenes, their algorithm computes all the I pairwise intersec-
tions on the projection plane. For the case of iso-oriented
rectangles inR3, their algorithm is output-sensitiveand runs
inO(log2 n) time usingO((n+k) logn) total parallel oper-
ations. The crux of their method is a parallel data-structure
called array-of-trees introduced by Atallah, Goodrich and
Kosaraju [10], that has some flavour of persistent data-
structures. In this paper, we make more direct use of per-
sistent data-structures in our parallel algorithm.

The importance of output-size sensitivity for parallel al-
gorithms cannot be over-emphasized for the following sim-
ple reason. The advantage of using extra processors will be
lost otherwise (for small output-size) as compared to an ef-
ficient output-sensitive sequential algorithm. The rest of the
paper is organized as follows. In section 2, we give a brief
overview of our approach. In section 3, we describe some
of the basic parallel routines used frequently in the main al-
gorithm. Section 4 forms the crux of the paper. Since the al-
gorithm is somewhat involved, we give a top-down descrip-
tion of the algorithm and the data-structures accompanied by
analysis.

2. An overview of our algorithm
Recall from the introduction that terrains in this paper re-

fer to piecewise linear surfaces which meet a vertical line
in exactly one point. Assume that the surface is a function
z = f(x; y), it is being viewed from x = 1 and the view-
ing plane is the z � y plane. We are viewing the scene in
a direction perpendicular to the projection plane, however
the algorithm works for perspective projection as well. A
characteristic of these surfaces is that the upper boundary
of the projection of the line segments on the z � y plane is
monotone with respect to the y�axis. We assume that the
terrain is available as a graph G whose vertices are 3-tuples
(x; y; z) of coordinates such that z = f(x; y) and whose
edges correspond to the segments of the polyhedral surface.
The terms edges and segments have therefore been used in-
terchangeably. We also assume that only the top part of the
surface is visible, i.e., the faces closest to the observer rise
from the ground level. A key property that allows one to
solve the visibility problem efficiently is that the edges can
be ordered from ‘front’ to ‘back’ using the following obser-

vation. Project G on the x� y plane (call it Gxy) and now
the ordering of the segments in the scene in the increasing
distance from the viewer corresponds to the ordering of the
edges of Gxy along x. That is, we can define a partial order
on the edges as follows : edge ei � ej if there is a ray in the
viewing direction that intersects ei before ej . The projection
of the edges on the x� y plane preserves this ordering.

In the sequential algorithm, the edges are processed one
by one sequentially in order. The algorithmmaintains an up-
per profile of the edges processed so far and tests the visibil-
ity of the next edge being processed by determining its in-
tersection with the current profile. Since the edges are pro-
cessed in the order of increasing distance from the viewer,
the profile lies in front of the next edge and therefore oc-
cludes the portion of the edge which lies behind it. Thus the
portion of the projected edge lying below the profile (which
is a simple monotone polygon) is not visible and hence is
discarded. The upper profile is updated with the visible por-
tions of the edge . Clearly, the portion of an edge declared
visible is visible in the final image (i.e. it cannot be occluded
by edges processed later). Some vertices and edges of the
profile may be deleted at this point which only means that
they are no longer part of the ‘upper boundary’ of the final
image but they are very much visible in the final image and
therefore are remembered. Finally, we have all the vertices
and edges of the final image which can be used by the ren-
dering procedure to draw it on the screen.

2.1. An overview of the parallel algorithm
In the parallel scenario the above sequential algorithm

has two major stumbling blocks. First, the edges are pro-
cessed sequentially and the upper profiles are computed in-
crementally. We overcome this problem with the help of
a Separator Tree and computing profiles using an approach
similar to systolic implementation of parallel prefix compu-
tation. Separator tree provides a way to order the edges in
the increasing distance from the viewer in parallel and also
allows one to process them concurrently. Second, the in-
tersections of an edge with a profile are computed sequen-
tially. We use the divide-and-conquer approach to detect
the intersections efficiently in parallel. We order the edges
using a separator tree. Let e1; e2 : : : en be the ordered set
of input edges. Let Pi denote the ith profile, i.e. the up-
per profile of the edges e1; e2 : : : ei. Our aim is to compute
Pi 8 i = 1 : : :n. We call them actual profiles (however we
will omit ‘actual’ most of the times and mention it only if it
is not clear from the context).

We compute these profiles in two phases. In phase 1 we
compute in parallel, for all the nodes of the separator tree the
upper profile of the edges in the leaves of the subtree rooted
at the node (the edges in the leaves of the separator tree are
sorted in the increasing distance from the viewer). Call the
resulting tree as the ‘profile computation tree’ (PCT). No-
tice that these profiles are not the actual profiles we are look-



ing for. These are only intermediate profiles which are used
to compute the actual profiles in phase 2. In phase 2 we
compute the actual profiles using an approach similar to the
systolic implementation of parallel prefix computation [9].
Starting from the root of the profile computation tree the
computation proceeds towards the leaves level by level. In
this phase, at any node, the computation involves ‘merging’
of two profiles - an (actual) profile inherited from its parent
and an (intermediate) profile computed in the previous phase
by one of its children.

Merging is done by finding the intersections of the seg-
ments of the intermediate profile with the other profile and
updating the other profile. However, as we will see later,
our visibility structure (i.e. the vertices of the profiles) may
be shared among different nodes at the same level of PCT.
We can not afford to keep these profiles totally independent
of each other because that will jeopardize our main objec-
tive of designing an output-sensitive algorithm. Instead of
keeping a visibility structure for each profile at a fixed level
of PCT we keep just one structure maintaining information
about all the intersections computed so far and also provide a
search structure to detect the intersections at the next level of
PCT. We shall need frequent applications of the slow-down
lemma which (in our context) can be formally stated as fol-
lows. Let tp;r denote the time to allocate p processors to a
number of tasks whose total processor requirement is O(r).
That is tp;r is the time to solve the problem of processor al-
location of size r with p processors.
Lemma 2.1 Let A be a parallel algorithm that executes in
� phases and performs a total number of N tasks (each
task is not necessarily unit time but is performed by a sin-
gle processor). Then the algorithm can be executed in time
O(�(tp;N+t)+Nt=p) using p processors in a PRAM where
t is the time taken for each task.
Proof: This is a straightforward generalization of Brent’s
slow-down lemma. 2

Lemma 2.2 Let A be a parallel algorithm that executes in
� phases. Let Ni be the number of tasks in phase i, each
executes in O(ti) time with pi processors. Let t =

P�
i=1 ti

andN = maxifNipig. Then the algorithmcan be executed
in O(�tp;N + t+Nt=p) time with p processors.

3. The parallel algorithm
We describe the algorithm in a top-down manner, treat-

ing the important steps in individual subsections accompa-
nied by detailed analysis. Given a 2-D surface as a straight
line graph in three dimensions, we project the line-segments
on the x�y plane . By the property of terrain maps, no two
projected segments will intersect. If the graph is not triangu-
lated, we triangulate the graph using the algorithm of Atal-
lah, Cole and Goodrich [1] for parallel triangulation. Since
it is a planar graph, the number of edges and faces is still
O(n) . Henceforth our discussions will be with respect to
the triangulated graph. The main steps of the algorithm are:

shared segments

profile  at

profile  at

v

l

Figure 1. l is the left child of the node v in PCT,
profile at l is the profile of the subset of edges
of the set whose profile is computed at v.

1. Order the edges of the triangulated graph using seper-
ator trees. .

2. Profile computation

(a) Phase 1 : Compute the intermediate profiles - to
compute the profiles we take the projection of the line
segments on the z � y plane. For each node v in the
separator tree do in parallel: compute the profile of the
edges in the leaves of the subtree rooted at v. We shall
call these profiles intermediate profiles. Note that these
are not necessarily part of the final visible scene. As
mentioned earlier, we call the resulting tree the Profile
Computation Tree . We shall use the term layer to im-
ply a level of PCT. Observe that the segments of the
profiles may be shared among the layers of PCT (see
Figure 1) .

(b) Phase 2 : Compute the actual profiles - compute
the actual (visible) profiles starting from the root of
the PCT, proceeding layer by layer towards the leaves.
This step constitutes the crux of our algorithm.

Step 1 can be implemented in O(logn) time using a linear
number of processors in an EREW PRAM using a procedure
due to Tamassia and Vitter [25]. Their result can be summa-
rized as follows:
Fact 1 Let S be a planar triangulated subdivision with n
vertices. Then the separator tree consisting of monotone
chains that decompose S can be constructed by an EREW
PRAM in O(logn) time using n processors.
Lemma 3.1 The profile of a set of m segments can be con-
structed in O(log2m) time using O(m�(m)= logm) pro-
cessors in a CREW PRAM .
Proof: This is done by dividing the set of segments in two
equal halves, computing the profiles recursively for each
half and merging the profiles. Details are ommitted here. 2

Thus Step 2a can be done in O(log2 n) time using
O(n�(n)) processors in a CREW PRAM.

3.1. Computing the actual profiles
Given the profiles and the data structure for intersection

detection at a given layer, say L of PCT, several actual pro-
files are computed at the next layer in parallel. Suppose at a



node u of PCT, we compute the actual profile Pj by merg-
ing Pi (i < j, Pi inherited from the parent of u) with an
intermediate profile �ij precomputed (by the left child of u)
in phase 1. For each segment s of �ij we compute the in-
tersection of s with Pi. Some of the vertices of Pi may be
deleted as they lie below s and hence do not contribute to
Pj. Some new intersections may be detected and added to
Pj. The intersection of a segment with a profile is computed
as follows.
Lemma 3.2 Given the data structure for intersection de-
tection of a profile P of size m and a line segment s,
we can find all the ks intersections of s with P in time
O(maxf(TI + tp;ks) logm; ksTI=pg)with p processors on
CREW PRAM, where TI is the sequential time to detect the
first intersection of a segment with P .
Proof: Split the segment s around the middle diagonal d
(among the diagonals that the segment spans). Find the in-
tersection closest to d in both the subsegments and recurse.
The result follows by applying Lemma 2.1. Further details
are ommitted here. 2

To detect the first intersection between a segment and a
profile (if an intersection exists), we use the data structure
and recursive search procedure of Chazelle and Guibas ([3]).
The sequential algorithm of Reif and Sen revolved around
making this data structure dynamic. See Figure 2. We will
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Figure 2. (a) profile P . (b) CG data structure
for P .

refer to this structure of Chazelle and Guibas by CG data
structure in future. By an edge of CG we would imply ei-
ther a tree edge or a shooting pointer (shown as dotted arcs
in the figure) unless explicitly stated otherwise.
Lemma 3.3 For a profile with m vertices,
we can construct the CG data structure in
O(maxflogm; tp;m +m logm=pg) time using p pro-
cessors on the CREW PRAM.
Proof: Follows from a straight-forward divide-and-
conquer strategy and then applying Lemma 2.1.

2The original data structure of CG was somewhat more
complex based on dual transforms. Here instead, to detect
whether a segment intersects a profile between two diag-
onals a and b we augment each edge ab of the CG data
structure with the lower convex chain of the vertices of
the profile between a and b. Call the resulting structure as
augmented CG and refer to it as ACG hereafter. The above
procedure is along the lines of Preparata and Vitter [18]. A
crucial factor here is sharing of common visible segments
between the profiles being computed at different nodes of
the same layer of PCT. To handle this problem, instead of
keeping an ACG structure for every profile, we keep a single
ACG structure for all the profiles. That is, we construct the
CG on all the intersections found upto a certain layer, say, L
of PCT. and augment each edge of it with the lower convex
chains of all those profiles (all profiles computed so far)
which participate in detecting the intersections at the next
layer so that the proper chain is searched for intersection.
(see Figure 3). Here, we use a shared data-structure along
the lines of a persistent binary tree structure [6] to store the
convex chains of all the profiles taking care of their shared
visible portions.
Lemma 3.4 The CG structure constructed on the k
intersections computed upto a fixed layer of PCT
can be augmented with all the convex chains in
O(maxflog2 k; tp;k logk + k log2 k=pg) time using p
processors on a CREW PRAM.
Proof: The constructions and the proof are very long and
therefore ommitted. 2

Lemma 3.5 At a fixed layer of PCT, the ACG structure can
be constructed in O(maxflog2 k; tp;k logk + k log2 k=pg)
time using p processors on a CREW PRAM, where k is the
number of intersections computed upto that layer.
Proof: Follows from Lemmas 3.3 and 3.4. 2

Lemma 3.6 All ks intersections of a segment s
with a profile can be detected in O(maxflog2 k +
tp;ks) logn; ks log

2 k=pg) time with p processors, where k
is total number of intersections computed upto a fixed layer
of PCT.
Proof: To search whether a ray intersects a profile P and
detect the first intersection in case it does, proceed level
by level of ACG starting from the root, according to the
recursive search procedure mentioned earlier. At each level,
it involves searching whether a ray intersects the convex
chain corresponding to P between two diagonals (not nec-
essarily of P ). This requiresO(logk) phases each requiring
O(logk) time. Thus the result follows from Lemma 3.2. 2

Hence by Lemma 2.1 all the intersections
of all the segments of all the intermediate pro-
files at the next layer of PCT can be computed in
O(maxflog3 k; tp;k+n�(n) logk + (k + n�(n)) log2 k=pg)
time, where n�(n) is the total number of segments whose
intersections are to be computed and k is the maximum
number of intersections. Finally the processor allo-
cation problem of size r can be done in O(r log r=p)



time using p processors on CREW PRAM. Hence all
the intersections at the next layer of PCT can be com-
puted in O(maxflog3 n; (k + n�(n)) log2 n=pg) time
using p processors, or all intersections can be detected
in O(maxflog4 n; (k+ n�(n)) log3 n=pg) time over all
layers of PCT using p processors. we summarize our final
result as follows.

Theorem 3.1 The hidden-surface elimina-
tion problem for terrains can be solved in
O(maxflog4 n; (k + n�(n)) log3 n=pg) time using p
CREW processors where n and k are the input and the
output sizes respectively.
Remark For p = n�(n)= logn, the work bound is O((k +
n�(n)) log3 n) which is within O(logn) factor of the se-
quential bound of Reif and Sen [20].
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