OPTIMAL RANDOMIZED PARALLEL AIGORITHMS
FOR COMPUTATIONAL GEOMETRY I*

John H. Reift and Sandeep Senf
Computer Science Department
Duke University
Durham, N.C. 27706

January 1988
Revised March 1989

Abstract

We present parallel algorithms for some fundamental problems in computational geometry
which have running time of O(logn) using n processors, with very high probability (approaching 1
asn — o0). These include planar point location, triangulation and trapezoidal decomposition.
We also present optimal algorithms for 3-D maxima and two-set dominance counting by an
application of integer sorting. Most of these algorithms run on CREW PRAM model and
have optimal processor-time product which improve on the previously best known algorithms
of Atallah and Goodrich [3] for these problems. The crux of these algorithms is a useful data
structure which emulates the plane sweeping paradigm used for sequential algorithms. We
extend some of the techniques used by Reischuk [22] Reif and Valiant [21] for flashsort algorithm
to perform divide and conquer in a plane very efficiently leading to the improved performance
by our approach.

0*This is a substantially revised version of the paper that appeared as Optimal Randomized Parallel Algorithms
for Computational Geometry in the Proceedings of the 16th International Conference on Parallel Processing, St.
Charles, Illinois, August 1987.
tResearch supported in part by Airforce Contract AFSOR-87-0386, Office of Naval Research Contract N00014-
87-K-0310, National Science Foundation Contract CCR-8696134, DARPA/ARO Contract DAAL(03-88-K-0185,
DARPA/ISTO Contract N00014-88-K-0458.

1 Introduction

Recently there has been a growing effort towards developing efficient parallel algorithms for various
fundamental problems in computational geometry. Aggarwal et al. [1] gave polylog algorithms for
a various fundamental problems viz. Voronoi diagram, Planar point location, Triangulation among
others. Atallah and Goodrich [3] improved these algorithms by reducing the running time of most
of these algorithms to O(logn-loglogn) time using O(n) processors. Hence, the previous efforts are
sub-optimal by at least a factor of loglogn, since most of these problems need ©(nlogn) time in
the sequential case. For an optimal processor-time product the running time for most of these
algorithms should be O(logn) using O(n) processors.

Randomization has been used in a wide number of applications successfully (for example see
[21], [16], [24]) and seems to be an ideal choice for optimizing algorithms for various problems in
computational geometry. Clarkson ([5] and [6]) used random sampling techniques to derive better
upper-bounds for algorithms for the post-office problem and higher-order Voronoi diagrams as
well as some combinatorial quantities like k-sets and polytope-separation. Haussler and Welzl [14]
also used random sampling to solve half-space query problems. This is the first paper where
random sampling methods have been applied to yield efficient parallel algorithms in computational
geometry. Clarkson’s methods yielded bounds for the ezpected running time of the algorithms. In
contrast, we are able to bound the tail estimates of the running time with high probability. It
is not clear how Clarkson’s algorithms can be modified to obtain high-probability bounds without
increasing the asymptotic running time of the algorithms (i.e. since the algorithms terminate in the
claimed time bounds with constant probability, one needs to repeat the algorithm O(logn) times to
decrease the failure probability to 1/n). Although this may not be very important in a sequential
environment, it turns out to be very crucial for bounding the resources used by a parallel algorithm.
This will become clearer in the proof of Theorem 2, where expected bounds do not appear to be
sufficient for deriving the claimed bounds.

The term very high likelihood (probability) has been used in this paper to denote probability >
1 - n? for some B > 1 where n is the input size. Just like the big-O function serves to represent
the complexity bounds of deterministic algorithms, we shall use O to represent complexity bounds
of the randomized algorithms. We say that a randomized algorithm has resource bound O(f(n))
if there is a constant ¢ such that the resource used by the algorithm is no more than caf(n) with
probability > 1 — 1/n® for any a 1. (An equivalent definition will be bounding the resource by
a - f(n) with probability greater than 1 - n7°® and in the rest of the paper they will be used in an
interchangeable manner).

We have used some known techniques methods like random mate, and extended techniques
of Flashsort [21] to two-dimensions successfully to reduce the running time of a wide variety of
fundamental problems. Random mate was introduced in [17] to discard a constant fraction of
zeroes in a zero-one string in constant time, and was also later used by Gazit [12]. Random
sampling methods used by Reischuk [22] and Flashsort provided the initial inspiration for divide
and conquer on the plane; although the problem at hand being much harder, required several
additional techniques. We note that Clarkson [7] independently derived bounds for doing divide-
and-conquer efficiently for geometric problems in a more general setting.

The algorithms in this paper have optimal speed-up when compared to their corresponding
sequential cases. Table 1 summarizes the results in this paper and compares them to the em

previously ! best known results. The organization of the paper is as follows : In section 1, we
present a very simple algorithm for planar-point location which demonstrates the usefulness of
randomization. In section 2, we present a new data structure which can be constructed efficiently
using random-sampling, and we call it nested-plane-sweep tree. In the following section we apply
this data structure to develop optimal algorithms for a number of problems for which only efficient
deterministic algorithms were known. In the final section we reduce problems like 3-D dominance
and range counting to integer sorting which can be then be optimally solved using an algorithm
similar to Reif [20]. Since the currently best-known algorithm for integer sorting is optimal for
word-size n¢, for any € > 0, our algorithms are not optimal in an information-theoretic sense (i.e.
the sequential algorithms use only O(logn) bits per word). However, we feel that these are extremely
simple and should be of interest from a practical viewpoint.

Table 1

‘ Summary of our results |

| Problem | Previous bounds | Our bounds |
Planar Point location O(lognloglogn) O(logn)
Trapezoidal decomposition | O(lognloglogn) O(logn)
Triangulation O(lognloglogn) O(logn)
3-D Maxima O(lognloglogn) O(logn)
Two-set dominance counting | O(lognloglogn) O(logn)
Multiple Range-counting O(lognloglogn) O(logn)
Visibility O(lognloglogn) O(logn)

2 Point Location In Planar Subdivisions In Logarithmic Time
With High Probability

A PSLG (planar straight line graph) is a connected graph which can be embedded on a plane using
only straight line edges. Given a PSLG and a query point, the point location problem is to identify
the subdivision in the plane (induced by the PSLG) which contains the query point. If a PSLG
has n vertices, in the sequential (uniprocessor) case, the asymptotic optimal query time perfor-
mance of O(logn) can be achieved by a variety of approaches (Kirkpatrick [15], Edelsbrunner [13]
among others). The performance is achieved by binary search on a well organized data structure
constructed on the PSLG during the preprocessing. The preprocessing cost for the best known
sequential algorithms for point location is (nlogn) operations, and thus the best parallel time for
this problem cannot be better than O(logn) time using n processors. We propose a randomized
method by which the preprocessing can be done in O(logn) time with very high probability using
O(n) processors given a PSLG which has only convex subdivisions. A similar algorithm has also
been independently proposed by Dadoun and Kirkpatrick [10].

!Optimal deterministic algorithms for these problems were obtained independently by Atallah, Cole and
Goodrich [2]. Also, see conclusions for some additional comments.

2.1 The sequential algorithm

Kirkpatrick [15] proposed a triangulation refinement technique which builds a hierarchy of trian-
gulated PSLG from the initial graph. Unfortunately, his method does not appear to be directly
parallelizable. A review of his method will help the reader to understand the parallel version
presented here. Starting with a triangulated PSLG (i.e. all faces including the exterior face are
triangular), his algorithm removes an independent set of vertices, and retriangulates the remain-
ing graph. In addition, it keeps track of the set of the eliminated triangles that have non-empty
intersection with each of the new triangles of the retriangulated graph. This procedure is repeated
successively until we are left with a constant number of triangles. Actually we can stop when the
problem size is reduced to O(logn). The search proceeds in a hierarchical manner from the highest
level, where the problem can now be solved in constant time (O(logn) time if we stop at O(logn)
size graph). Subsequently, at each level we relocate the point with respect to the triangles which
intersect the triangle in the current level, thus refining the regions of location at each level. At the
lowest level the point is located with respect to the regions of the original PSLG and the search
is complete. The search data structure is a directed acyclic graph (not a tree). Each of the nodes
represent a triangular region, and is connected by directed arcs to all the triangular regions that
it intersects in the previous level. At any node, the algorithm determines which of its children the
point lies in. Notice that a node can have more than one parent and hence the graph (the underly-
ing search structure) is not a tree. The efficiency of this approach depends on the number of levels
of the triangulated PSLG, and the number of intersections of each triangle with the triangles in the
next lower level. By guaranteeing that a constant fraction of the vertices, and hence the triangles,
(since it is a planar graph) are eliminated at each successive level a logarithmic level search is
achieved. However in doing so, one must also be careful that a triangle intersects a maximum of
a constant number of triangles in the next level (i.e. each node has a bounded constant degree so
that a constant time is spent at each search level). Both of the above criteria can be satisfied by
identifying an independent set of vertices each having a degree < d, where d is a fixed constant.
The number edges in a planar triangulated graph (V, E) is 3| V|- 6 from Euler’s formula (assuming
that the exterior face is also a triangle). This adds up to a total vertex degree of 6|V|-12, giving
us a lower bound on the number of vertices with degree less than d. Thus the number of vertices
with degree less than d is at least 6|V|/d - 2 in a triangulated graph for d > 6, (a typical value of
d is 12). Since a constant fraction of these vertices can be eliminated at each stage by identifying
a maximal independent set of vertices, the height of the search tree is at most O(log|V'|). The
preprocessing time is dominated by the identification of this independent set of degree < d, which
costs linear in size of the PSLG at each level resulting in total time of O(n). If the initial PSLG is
not triangulated, the cost of triangulization dominates the pre-processing time.

In the discussion below we present a randomized method to identify a large independent set
in constant time for each level using n processors with a high probability. As a result, the search
structure can be constructed in O(logn) time.

2.2 Choosing a large independent set with high probability

Associate a processor with each vertex and each edge of the PSLG (V,E). From Euler’s formula
we need only O(|V|) processors for the PSLG. An independent set consisting of vertices of degrees

less than or equal to d can be identified in the following manner. 2

Algorithm Random-mate

Input: A PSLG in form of a doubly connected edge list (DCEL).

Output: A large independent set of vertices with degree < d.

(1) Identify the set of vertices with degree < d. This can be done in constant time
using one processor for each vertex. There will be at least 6/V|/d (ignoring the small
constant) such vertices (from the previous discussion).

(2) This has two phases :

(2a) Randomly assign a tag ‘male’ or ‘female’ with equal probability to each
selected vertex from step (1). The ‘males’ constitute the candidates for an
independent set. For each edge between two ‘males’ pronounce both vertices
‘dead’ by marking their corresponding cells. This is easily done by using one
processor for every edge with concurrent write capability. Note that it is very
easy to get rid of the concurrent-read feature since a vertex has at most degree
d and hence this step can be carried out in constant number of steps (instead
of exactly one step).

(2b) The ‘males’ which are not ‘dead’ form an independent set.

(3) Output the set X of ‘males’ which are not ‘dead’. The set X is an independent set
of vertices having degree less than d.

It is obvious that the algorithm gives us an independent set which is possibly smaller than the
maximal independent set (a null set in the worst case for a chain of males). However, we shall
show that on the average this technique will produce an independent set proportional to a constant
fraction of the total number of nodes (vertices of degree < d) with a very high probability.

Lemma 1 Let n = |V| and ng denote the number of vertices with degree less than or equal to d
(ng > 6n/d from [15]). There exist constants ¢, v (0 <v < 1), such that P(|X| <vn)< e .

Proof: Assuming equal probabilities for a vertex being assigned a ‘male’ and a ‘female’ tag, the

probability of a vertex being in the independent set is greater than or equal to (%)d+1 (since it
has < d + 1 neighbors). We consider an independent set I3(ng) of vertices which are at a distance
3 (i.e. the shortest distance between any two vertex in this set is three edges). Since the graph
had a bounded degree d, the selection of each vertex can prevent the selection of at most dpgy
= (d—1)® + (d—1)*> + (d—1) other vertices. Thus the cardinality of this set is at least
(1/dmaz)6n/d or 6n/D (D is a constant). The event of a vertex v € I3(ng) being in X (independent
set) is independent of any other vertex in I3(ng). Thus the distribution of the cardinality of the

2this is the random-mate technique mentioned earlier

independent set produced by algorithm Random-mate can be bounded from below by a binomial

a1
distribution with p = (%) , and mean y = |I3(ng|lp > 6np/D.

Using Angluin-Valiant’s bounds (see equation (3) in appendix), for 0 € 1,

Probf|X| < (1— e)u]exp(~ €p/2)
Using v = (1 — €)6/D and ¢ = €2/(12D) we arrive at the required form. O

2.3 A parallel algorithm

We have shown that with very high probability, the size of the independent set will be greater
than a constant fraction of n, which is the key to finding a logarithmic depth search structure. We
present the complete Point-Location-Tree algorithm below

Procedure Point-Location-Tree

(0) Let N be the number of vertices in the current stage. If N < klogn (for some fixed constant
k), then halt. (then we can locate the query point in the O(logn) triangular faces in O(logn) time
using a single processor).
(1) Assume that the given PSLG is triangulated. (If not, then we can use the procedure for
triangulation described in the latter sections to triangulate a PSLG in O(logn) time using O(n)
Processors.)
(2) Choose an independent set of vertices each of which has degree < 12 using the method described
above with d = 12. Time = O(1).
(3) Triangulate the remaining PSLG (after the removal of the independent set). Note that removal
of a vertex of degree d (d < 12) necessitates triangulating a simple polygon of d vertices. This can
be done in constant time using 1 processor for each polygon.
(4) Determine for each of the new triangles (created in step 3), which of the old triangles it
intersects. This can also be done in constant time using one processor for each of the new triangles
using concurrent read.

(5) go to (0)

Theorem 1 Algorithm Point-Location-Tree runs in O(log n) time using O(n) processors and
O(nloglogn) space in a CREW PRAM model. Furthermore, if the input PSLG is triangulated, we
can reduce the processor bound to O(n/logn) without increasing the asymptotic running time of the
algorithm.

Proof : Each of the steps at any level of recursion of the algorithm can be done in constant time
using O(n) processors. From Lemma 1, there exist constants v and c such that the probability of
reducing the problem by a constant fraction (1 - v) is very high. Let n; denote the problem size
(the number of vertices remaining in the graph) at stage i of recursion, where ny = n. We shall
show that after O(logn) stages, the problem size is less than O(logn) with very high likelihood.

From lemma 1, P[n; < (1-v)n; 1] > 1- n=K for n; ; Klogn for some constant K. The

probability that this fails to hold in any level i (1 < 7 < log; /(1) n) is less than n=¢K+9 for any
00. We abort the algorithm if the number of vertices is greater than Klogn after the last stage and
re-run the entire procedure. The argument for space is similar to the sequential case. We need an
extra O(loglogn) factor space for the triangulation procedure.

If the input PSLG is triangulated, the number of operations performed is linear in n (follows
from the sequential algorithm) and hence by Brent’s slow-down procedure and using the load-
balancing scheme of Cole and Viskin [9] or the randomized scheme of Miller and Reif [17], the
processor bounds can be reduced to O(n/logn) without affecting the asymptotic run-time. O

REMARK : Dadoun and Kirkpatrick [10] show that their algorithm runs in O(logn) ezpected
parallel time. However they do not extend their analysis for the high-probability bounds which is
also O(logn) as shown in the previous theorem.

Corollary 1: Given a planar subdivision S, consisting of O(n) vertices, we can locate O(n)
query points in O(logn) time using O(n) processors.
Proof: Follows immediately from the previous discussion. O

A direct application of this result leads to the improvement in performance of Aggarwal et al. [1]
two-dimensional Voronoi diagram algorithm.
Corollary 2: The Voronoi diagram of a set of O(n) points on a plane can be constructed in
O(log®n) expected running time using O(n) processors in a CREW PRAM model.
Proof : Aggarwal et al. [1] uses a divide and conquer algorithm, where in each of the logn stages
of recursion we need to perform point location simultaneously for O(n) vertices. Since their planar-
point location needs O(log?n) time, the overall algorithm runs in O(log®n) time. Using our ran-
domized planar-point location algorithm, the expected running time of algorithm is O(log?n). O

3 Constructing The Plane-Sweep Tree In O(log n) Parallel Time
Using Randomization

There are many problems in computational geometry whose optimal sequential algorithms use the
plane-sweeping paradigm. Aggarwal et al. [1] had proposed a data-structure, which they call plane-
sweep-tree. Using this, they were able to solve a number of problems efficiently (such as planar
point location and triangulations among others) in parallel using a linear number of processors.
This data-structure is similar to the segment-tree (proposed by J. Bentley and is also discussed
in [18]), the intervals of which are induced by the projection of the endpoints of the input set of
segments on one of the axes. This was used to emulate the plane-sweeping paradigm. The idea
of using the plane sweep tree was later further developed by Atallah and Goodrich [3]. We shall
review some definitions and results from their papers as they relate to our work.

3.1 Review of plane-sweep tree

Let T be a complete binary tree with its leaves corresponding to the 2e +1 intervals formed by
projecting the 2e endpoints of a given set of e line segments onto the x-axis. Associated with each
node v in the tree is an interval [a,, b,] on the x axis corresponding to the union of intervals of its
descendants. Let II, represent the vertical strip [ay, by] X (—00,00). A segment s; covers a node v

in T if its projection X(s;) on the x-axis spans the interval [a,,b,] (corresponding to v) but does
not span the interval of v’s parent node. It can be easily shown that no segment s; covers more
than 2 nodes at any level and hence no more than O(log n) nodes of the tree.
For each node v of T, we keep track of the the following properties:
H(v) = {s; | si covers v},
W(v) = {s; | s; has at least one endpoint in II, }.
L(v) = {s; | s; € W(v) and s; intersects the left boundary of II,}.
R(v) = {s; | s € W(v) and it intersects the right boundary}.
I(v) = {s; | the left endpoint of s; is in Ijc fschiid(v) and the right endpoint is in IL.igpschita(o)-

If the given set of segments are non-intersecting (as in the case of a polygon), then these sets
are completely ordered on y coordinate. The above quantities are computed while constructing
the plane-sweep tree, which are used to search for segments directly above or below a given query
point.

Multilocation : Given a plane-sweep tree, this procedure locates for each input point p, the
segment in H(v) which is directly above (or below) p for all vertices v in the tree such that p
belongs to the interval II,,.

Augmented Plane sweep tree : This is a data structure obtained from a plane sweep tree by
adding pointers to every node such that given the position of an element in any node, its position in
the parent node can be located in an additional constant time. (For readers familiar with fractional
cascading, this data structure enables us to perform that.)

3.2 Development of the new data-structure

Fact 1 (Atallah and Goodrich [3]) Multilocation of any query point can be done in O(logn) se-
quential time in an augmented plane-sweep tree.

The preprocessing cost of building this data-structure was O(log?n) time using O(n) processors
and O(nlogn) space. Consequently, the above-mentioned problems needed Q(log?n) time. Atal-
lah and Goodrich [3] improved the preprocessing time for constructing the plane-sweep tree to
O(lognloglogn) using parallel merging techniques of Borodin and Hopcroft [4] while keeping the
number of processors and the space requirement unchanged. The dependence of their approach on
parallel merging can be summed up in the following manner :

Fact 2: The Plane-Sweep Tree of k segments can be constructed in O(f(p,k)logk) time using p
processors (p > k), where f(p,k) denotes the time complexity of merging two sorted lists of O(k)
elements using p processors.

Since f(k,k) = ©(loglogk) (see Valiant [23] and Borodin and Hopcroft [4]), the bound O(lognloglogn)
of Atallah and Goodrich’s Build-Up algorithm for plane-sweep tree follows. Moreover, it enables
us to state a useful lemma:

Lemma 2 The Plane-Sweep tree of n segments can be constructed in O(log n) time with O(n'*t¢)
processors using Atallah and Goodrich’s [3] approach.

The proof follows from the well known result (Valiant [23] and Borodin and Hopcroft [4]) that two
sorted lists of O(n) elements can be merged in constant time using n!*¢ processors. Using f(p,k)
= O(1) in Fact 1 yields the required result.

An important common characteristic of Atallah and Goodrich’s [3] algorithms is that the time
complexity is dominated by the preprocessing cost. More specifically, given the precomputed data-
structure, triangulation and planar-point location can be done in O(logn) time using n processors
in a CREW model. Thus, it is worthwhile to try to improve the preprocessing time to O(logn) so
that the overall running time of the algorithms can be reduced to O(logn). Our approach avoids
merging two O(n) size lists by using random sampling to build up a new data-structure called the
Nested-Plane-Sweep tree in O(logn) time with very high probability. The overall running time
of our algorithms is O(logn) with O(n) processors.

We shall now give an outline of our method, which will be formalized thereafter. The techniques
used are similar to the random sampling used in the Flashsort algorithm of Reif and Valiant [21].
The use of random-splitting is extended to two-dimensions. For this, we choose randomly a sample
of \/n segments from the given set of n segments. (We shall later see that, we choose only n size
sample, 0 < €, < 1 and the actual value of ¢, will be less than 1/13. All the arguments in this
this section apply for any €, which has been set to 1/2 for ease of presentation.) Every segment

has an equal probability i.e. ﬁ of being selected. We build up the augmented plane-sweep tree

of Atallah and Goodrich [3] on this sample of \/n segments using O(n) processors. The randomly
chosen set of O(y/n) segments partitions the plane into O(y/n) disjoint regions (proof follows later).
Each of the remaining O(n) segments is located (using the multilocation algorithm of Atallah and
Goodrich) in the O(y/n) regions, in O(logn) time, using n processors. Though each segment may
be divided into a number of smaller segments by the intervals induced by the plane-sweep tree of
the sample set, the expected number of segments in each region will be shown to be O(y/n) and
less than O(y/nlogn) with very high probability. The algorithm can now be applied recursively to
the sub-problems in each of the O(y/n) sub-regions, resulting in a recurrence equation of the form
T(n) = T(y/nlogn) + O(logn) which has a solution T'(n) = O(logn). A step-wise description of
the algorithm is given below.

Procedure Nested-Sweep-Tree

Input: Set S of non-intersecting line-segments 1, lo, ..., I, in a plane.
(1) Choose a set of \/n segments randomly from the original set. Each segment is selected with
equal probability of ﬁ
(2) Use the Build-up and Augment algorithms of Atallah and Goodrich [3] to construct the
augmented plane sweep tree. Time = O(logn), Space = O(y/nlogn).
(3) Locate the n - \/n segments in the plane sweep tree i.e. identify the region (the O(y/n) regions)
into which the sample set divides the plane) where each of the segments lie. Note that a segment
may lie in more than one region in which case it is broken into a number of smaller segments each
of which lies in only one region. This step uses Atallah and Goodrich’s [3] multilocation algorithm.
The segments which lie completely within a region can be located using the algorithm directly.
However segments that cross the boundaries can be split into O(y/n) broken segments (in the worst
case) are located using a scheme described later.
(4) If the number of segments in any region is more than a threshold, then apply procedure Nested-
Sweep-Tree to each of these regions. (the threshold can be chosen to be O(log" n) for some non-
negative integer r).

Figure 1: The skeleton of a plane-sweep tree. The circled nodes have portions of the segment s-t
(corresponding to the intervals covered by the nodes).

Step 3 needs further explanation. For this, we need a few probabilistic lemmas which bound
the size of each subproblem and the total size of all the subproblems at any level of recursive call.

3.3 Random-sampling methods and probabilistic bounds

Lemma 3 The Plane-Sweep tree of the random sample of \/n segments divides the plane into less
than or equal to 3\/n trapezoidal regions.

Proof : Assuming distinct endpoints there are 21/n vertical segments through the endpoints, each
of which can be shared by 3 such trapezoidal regions (see Figure 1). Moreover each trapezoidal
region is bounded by at most two vertical segments. Thus, there are at most 31/n such regions. O

To bound the number of segments lying in a given trapezoidal region, we classify the segments
into two groups:
(a) Segments that have at most one of their endpoints inside the region.
(b) Segments that lie completely within the region.

(a) The segments that lie partially in the region intersect either the left boundary, or the
right boundary or both boundaries of the region. Consider an ordered list of the segments Ly (7))

10

intersecting the vertical segment passing through an end-point in the upward direction. These
segments can be completely ordered w.r.t. the ordinate (on y). The probability that this ordered
list exceeds m is less than (1 — ﬁ)m because each segment has probability ﬁ of being chosen in

the sample. Let us denote by E; the event that m < ky/nlogn (for some k > 1) for a fixed endpoint
i. The probability that the event occurs for any end-point (and there are 2n such end-points) can
be upper-bounded by 22221 e klogn For k > 2, the event that the ordered list of line segments
Ly (i) is less than ky/nlogn for all i (which is the complement of the previous event) holds with very
high likelihood. Thus the number of segments intersecting any boundary is less than O(y/nlogn)
with high likelihood (this is only a subset of the previous event).

Moreover, the expected number of line segments that intersect a boundary can be upper-bounded
by y/n (mean of geometric distribution). Note that the random variables representing the number
of segments intersecting each of the regions are not independent. Since the expectation of the sum
is the sum of expectation, the total number of such segments over all the regions is expected to be
< 12n (since a trapezoid has at most two vertical segments going up and two going down and there
are < 3y/n trapezoids). It follows that, the probability that the total number of lines intersecting
all the trapezoids exceeds kmazn (kmaz > 24) is less than 1/2. This implies that by repeating the
experiment of choosing 1/n segments clogn times, the probability of failure (where a success is the
event that the total number of intersections is less than k4, n) is less than #

If we choose independently p(n) = O(logn) sets of samples, one of them is good with very high
likelihood. However, to determine if a sample is ‘good’, we would have to carry out step 3, O(logn)
times each of which requires O(logn) time (such a method is described in section 3.4). Instead,
we try to estimate the the number of segments intersecting a trapezoid T; using only a fraction of
the input segments. For example, we can choose ¢y - n/ log?n (for some fixed integer d > 2 and a
constant cg (which will be determined from the required success probability of the algorithm) of
the input segments randomly for the jth sample, R;. Let X} is the number of segments intersecting
trapezoid T; corresponding to sample R;, 1 < j < blogn (b is fixed integer greater than 0) and Ag
be the number of segments intersecting T; out of the n/ log?n randomly chosen input segments for
the same sample. Clearly, A7 is a binomial random variable with parameters cg - n/ log?n , X7 /n.
Assuming that Xz-j is greater than ¢ - log?*! n, for some constant ¢, we can apply Chernoff bounds
(see appendix) to tightly bound the estimates within a constant multiplicative factor. Since we do
it only for 1/log® n of the input segments, the total work done for the O(logn) random subsets does
not change the total work done (which we shall show to be O(nlogn) in the next section). (Note
that X} < ¢log®n, it is an easy case since v/n - plog?n = o(n)).

More formally, by invoking Chernoff bounds (see Appendix equations (1) and (2)), for any « >
0 (« is a function of ¢p), there exists a ¢, independent of n,

Prob(Ag < achg/logdn) < 1/n® and
Prob(4} > cyacy- X7 /log?n) < 1/n% < 1/n® (for col).

From the last two inequalities, Xij is bounded by L/ = Ag logd n/coc2a from below, and U’
= by A] log?n /cia from above. With appropriate changes in the constants, this condition holds
with high likelihood (as defined in section 2.1) for all X! simultaneously. We do the procedure

11

Figure 2: Segment a-b is multilocated in the trapezoidal regions labeled T1, T2, T3, T4.

(described in the next section) simultaneously for all the samples R; and choose the sample R;,
using the following simple test:

Algorithm Sample-select

(Let NV = ZA{ and the let actual number of intersections be denoted by 77 and the upper
and lower bounds obtained from N7 by U’ and L’ respectively).

If kjotqn > UJ then accept sample R? (since kjppqn > U > TY), else
if kjotyn < L7 then the sample is ‘bad’ (since kjsqn < L/ < TY), else

if L7 < kyrqn < U, then accept the sample R’ for which E% is minimum. Since
both k;yiqim and T7¢ lie in this interval this guarantees that 1770 < c¢3 - kgptqn Where
c3 = U7 /L7 which is a constant.

Recall, that from our earlier discussion at least one of the samples would satisfy conditions 1
or 3 with very high likelihood.

(b) The O(y/n) sub-divisions are trapezoidal (see Figure 2) regions which can be specified by at
most four segments. Thus, there are O(n*) potential trapezoids of which only O(y/n) were chosen
in the random sample (Lemma 3). We shall call a trapezoid ”good” if it has less than O(y/nlogn)

12

segments within it and "bad” otherwise. Since the probability that any chosen trapezoid containing
more than m segments is less than (1 — ﬁ)m, the bounds of (a) hold. Thus all the chosen trapezoids

are "good” with very high probability (the number of potential trapezoids from /n segments is
less than n?). The total number of segments lying within all trapezoids is obviously less than n
(from the input size).

We can summarize the above observations in the following lemma:

Lemma 4 There exist constants o, ¢ such that the probability of any one of the O(y/n) trapezoidal
regions containing more than O(Cay/nlogn) segments (or more appropriately broken segments) is
less than n=%. Moreover, the total number of such segments over all trapezoidal regions is less than
kmazn with very high likelihood.

The success of the recursive calls at any level can be argued in an identical manner except that we

—1/2¢71

allow the probability of success at level i to diminish to 1 - n @ For example, in level i, we

do the resampling only logn/2¢ times.

3.4 Partitioning segments into trapezoidal regions

We shall use a locus-based approach to solve this problem. This approach involves considering each
query as a higher dimensional point and partitioning the underlying space into regions providing
the same answer. Thus the query problem is reduced to a point location problem, given sufficient
preprocessing time and space. The problem at hand involves preprocessing the trapezoidal sub-
divisions (induced by the sample) in such a manner that given the end-points of any segment we
should be able to list the regions it intersects in O(logn) time using [k/logn| processors where k is
the number of regions that it intersects. We shall show that the preprocessing for n segments can
be done in O(logn) time using O(n¢) processors, where c is a fixed constant. Thus we can choose
any sample of size less than n'/¢.

Since the input segments are non-intersecting, these can only extend between regions where
there exists a ‘clear-path’ which does not intersect any other sample segment. It must also be clear
that there can exist more than such ‘clear-path’ between two regions. Our objective is to partition
the plane into regions (equivalent classes), such that given any fixed pair of such regions (where the
end-points of a segment lies), the regions that the segment intersects can be pre-determined. The
boundaries of these ‘clear-paths’ are straight-lines joining vertices of the trapezoidal subdivisions
and the equivalent regions are intersections of the half-spaces defined by these boundaries. Since we
need a fast preprocessing procedure, we shall settle for a finer partition of space (i.e. more than one
pair of partitioned region may intersect exactly the same set of trapezoids). If n is the size of the
trapezoidal regions, there are O(n) vertices which gives rise to at most O(n?) boundary conditions
which are straight lines joining every pair of vertices. Some of them may intersect sampled segments
and hence are not boundaries of ‘clear-paths’ but it doesn’t affect our procedure since they would
only make the partition more fine (See Figure 3 for an illustration). These O(n?) lines can intersect
in O(n*) vertices, giving rise to a O(n?) regions in the partition. This implies that there are O(n?)
possible pairs of regions where end-points of a segment could lie and one can pre-compute for each
such pair which trapezoids the corresponding segment intersects using O(n?) processors in O(logn)
time.

For the point location problem, we use a pre-processing scheme similar to Dobkin and Lip-
ton [11]. The following result is a straightforward consequence of their paper

13

Figure 3: There is a clear path between regions A and B where as there cannot be a segment
with end-points in regions C and B. This redundant partitioning does not affect the asymptotic
complexity of the algorithm.

Lemma 5 Given a set of m line segments in a plane, it is possible to preprocess them in O(logm)
time time using O(m3) processors such that point-location for any query point can be done in
O(logm) time. The space needed is O(m?).

Proof: We merely mimic the sequential algorithm. After computing all possible pairs of intersec-
tions in O(1) time using O(m?) processors, we project the intersection on the x-axis and for each
interval we compute the total ordering of the lines in O(logm) time using m processors for each of
the intervals. Thus the space required is O(m3). O

Because of this pre-processing there is an increase in the number of regions from what we
mentioned in the previous paragraph. Each region is now a trapezoid (can also be a triangle) and
there are O(n%) regions. Accordingly we require O(n'3) processors to pre-compute the possible
intersections. Since each region is a trapezoid, we choose a sample point in each trapezoid to do
the pre-computing part. We make a table corresponding to each pair of regions containing the
trapezoids the corresponding segment intersects. For any input segment, we first do the point
location for its end-points and then perform another search on this ordered pair of regions. Clearly
the whole procedure is a constant number of binary searches and takes O(logn) time. We can also
store the number of intersecting trapezoids for each entry, so that we can allocate the required
number of processors corresponding to each segment to list the intersecting trapezoids (using a
prefix sum).

Thus we can state the main result of this section as follows :

Theorem 2 Algorithim Nested-Plane-Sweep-tree runs in O (log n) time and O(nloglogn) space using

14

O(n) processors in a CREW PRAM model.

Proof : Since steps 1, 2 and 3 run in O(logn) time, we have the following recurrence equation for
T(n), the expected time complexity of the algorithm :

T(n) = O(logn) + (1 —n~*T(n'"¢logn) + n~%T(n —n°)

The solution of this recurrence equation gives 7'(n) = O(logn) + low order terms. From our previous
discussion € > 1/13.

At this point we have shown that with sufficient number of processors, the algorithm executes
in expected O(logn) time. Since the number of (broken) segments can increase by a constant fac-
tor (Kkmaz), this could increase the input size by a polylogarithmic factor over O(loglogn) levels.
Consequently, the processor bounds would have to increase by the same factor (from being linear)
to achieve the time bound of O(logn). To avoid this, we make the following modification in the
algorithm. After partitioning the segments into the trapezoidal regions (using the procedure in
section 3.4), we group the segments into two categories:

(a) Segments (part-segments) that have at least one end-point in the region
(b) Segments that span the region (horizontally)

Notice that number of segments of type (a) is less than 2n and the segments of type (b) in a region
i, S* can be completely ordered (with respect to y-coordinate). While performing multilocation, a
straight-forward binary search suffices for ordered segments in S;. Consequently, we do not further
pre-process the segments in S;, i.e. we can leave them out from further recursive calls. Thus,
the total size of the subproblems at any level of the recursive call is no more than 2n. Processor
allocation is achieved by simply setting processors in a region equal to the number of end-points
lying in it. This shows that the algorithm does not need more than O(n) processors.

To analyze the cumulative effects of the nested calls on the worst case total runtime of the
algorithm, we need to consider only one such sequence of nested calls. This gives the probability
that a leaf-node process fails to complete within O(logn) time. Since the success of the algorithm
depends on completion of all such processes (at the leaf level), the probability that the algorithm
fails to halt in O(logn) time is less than n-ProbJone such process fails]. Note that this part of the
analysis is very similar to Flashsort

From lemma 4, we know that for any given level i, the time 7; can be bounded by P[T; >

1/13

cologn(e,)’] < 9-(co)' lognaco yhere €0 < 12/13, since we choose only n sample segments.

Setting t; = k(eg)’ log na(c — ¢,), where ¢, is some constant, we obtain
Prob|T; > kaclog n(eo)i +t] < 9~ (c0)'calogn < 2 ti/k

If T is the total time for this worst case chain of nested calls and m = 1/(1-¢)), the probability that
it takes more than mkalognc, + t, is less than the sum of the probability of events where }_,¢;
=t+7,0<j < pu. Here p = mkalognc,. We shall compute the probability that >°,¢; = t and
multiply by p.

Hzti:tQ*ti < 227tk gyer tOUoglogn) typles.

Thus Prob[T > kmalogne, 4 t] < p2~t/k+0(ogtloglog® n)

15

Using t > kma(c — ¢,) logn, for large values of n and m > 1, we can rewrite the above expression
as
Prob[T > kmaclogn] < p2~omcco)logn

For ¢ > 4c,, i.e. ¢ — ¢, > 3/4c, we have the following required bound,
Prob[T > alogn] < p2~(B/Yealogn < p—erar

assuming that k, m and c are larger than 1. O

4 Applications Of Nested-Plane-Sweep Tree

In this section, we exploit the data structure that we constructed in the previous section to improve
the running time of various algorithms like triangulation, intersection detection, 3-D maxima, 2-D
dominance counting, and visibility from a point.

Lemma 6 The nested-plane-sweep-tree constructed in the previous section can be used to multilo-
cate any query point p in O (logn) sequential time.

Proof: From Fact 1 multilocation in an O(n;) node plane-sweep tree can be performed in O(log
n;) serial time. Thus, the expected time for multilocation in the nested-plane sweep tree obeys the
following recurrence relation:

T(n) = O(logn) + (1—n"?)T(vVnlogn) + (n ?)T(n)

giving T'(n) = O(logn) which is the multilocation time for each query point p using one processor.
Equivalently, multilocation for O(n) query points can be performed in O(logn) expected time using
O(n) processors. The worst case time bounds can be derived using techniques similar to the proof
of Theorem 2. O

4.1 Trapezoidal decomposition and triangulation

Definition it Trapezoidal Decomposition Let P = {v1,vs,...,v,} be a simple polygon, where v;’s
denote the vertices of P, and are listed so that the interior of P is to the left of the walk vyvs..v,,.
For any vertex v; of P a trapezoidal edge for v; is an edge of P, which is directly above or below v;,
such that the vertical line segment from v; to this edge is interior to P. A vertex can have 0,1 or
2 such edges. Trapezoidal decomposition of a polygon P is to find the trapezoidal edges for each
vertex of P.

Lemma 7 Given a simple polygon P, a trapezoidal decomposition of P can be constructed in
O(logn) time using O(n) processors and O(nlogn) space in a CREW PRAM model.

Proof : The trapezoidal decomposition can be done in two distinct stages (see Atallah and
Goodrich [3] for details). In the preprocessing part, a nested plane-sweep tree is constructed
on the edges of the simple polygon P. From theorem 2 this runs in O(logn) time with very high
probability. Subsequently, all the vertices of the polygon are multilocated simultaneously using

16

O(n) processors which takes O(logn) time with very high likelihood (from lemma 6). For each
point, it takes a constant time to determine if the vertical line intersecting the trapezoidal edge is
within the polygon P using one processor per point. O

Fact 3 (Atallah and Goodrich [3]): Given a one-sided monotone polygon with n vertices, P can
be triangulated in O(logn) time and O(n) space using O(n) processors in a CREW PRAM model.
Our next theorem is a direct consequence of this fact and Lemma 7.

Theorem 3 Given a simple polygon with n vertices, P can be triangulated in é(logn) time and
O(nlogn) space using O(n) processors in a CREW PRAM model.

Proof: The algorithm consists of three phases:

(1) We first build the Nested Plane-Sweep-Tree on the edges of the polygon. With very high
probability this can be done in O(logn) time and O(nlogn) space (from theorem 2).

(2) The simple polygon is decomposed into one-sided monotone polygons by using trapezoidal
decomposition (see Atallah and Goodrich [3] for details). Thus, from lemma 7 the expected running
time for this phase is O(logn).

(3) Each of the one-sided monotone polygons can be triangulated in O(logn) time and O(n) space
from fact 3.

The proof of the theorem follows directly from the above steps. O

4.2 Visibility from a point

Definition Visibility from a point Given a set of line segments S = {si, s9...s,}, which do not
intersect, except possibly at end-points, and a point p, determine the part of the plane which is
visible from p when every segment s; is opaque.

We shall assume the point p to be at negative infinity below all segments. The algorithm that
we present below can appropriately modified for any general point. Notice that now (with the
assumption) the problem is to determine the projections of segments on the x-axis, such that in
case of overlap the segment closer to x axis has precedence (see Figure 4).

The solution to this problem consists of a sequence of points {p1, pa...p2n } such that two consec-
utive points p;, p;+1 define a segment visible in the interval [x(p;), x(pi+1)]. An important property
of this problem is that the visibility is a continuous function between the endpoints of the segments,
i.e. for all points between two endpoints (projection of the endpoints on the x axis), the same seg-
ment will be visible. We can refer to the endpoints as critical points where the visibility function
defined as Vis(x) may change its value. This property enables us to solve the problem efficiently.
Since Vis(x) is constant between any two consecutive endpoints, we choose a point p which lies
in this interval below all the segments and draw a vertical line through p. The segment which
intersects the vertical line first (from below) is the visible segment in the corresponding interval.
Formally, the algorithm can be described as follows:

Algorithm Visibility

(1) Given a set S of non-intersecting segments, sort their endpoints on the x-coordinate. This
can be done in O(logn) time using Cole’s [8] parallel mergesort algorithm which does not have a

17

/

:

: .

! 1 85 | 1

I :/ 1 !

1 1 . 1

i L L

1 1 1 1 1

! 1 ! 1 1
1, 4 51 5 4 2 6

1 | 1 \ 1

Figure 4: The intervals on the x-axis are labeled by the segment visible in that interval.

large constant as does the AKS algorithm.

(2) For each of the 2n-1 bounded intervals, choose a point within the interval. A possible choice is
the midpoint of an interval. Let us denote them by {p1,p2,...p2n—1}-

(3) Construct a Nested Plane-Sweep tree on the segments of set S.

(4) Multilocate the 2n-1 midpoints on this tree giving us ordered pairs of the form (p;,s;) which
carries the required visibility information for the interval [z;, ;1] -

The following theorem is a direct consequence of our previous discussion:

Theorem 4 Given a set S of segments and a point p, the visibility of the plane induced by this set

of segments from this point can be computed in O(logn) time using O(n) processors in a CREW
PRAM.

5 Dominance Problems

The problems tackled in the previous section used trapezoidal decomposition which can be efficiently
carried out with the nested-plane sweep tree. A plane sweep tree was constructed on a random
sample, and was used to divide and conquer on the plane which was divided into trapezoidal regions.
An important property which was not mentioned explicitly was that by dividing up the plane in
such a manner we did not require a merging phase. For trapezoidal decomposition, locating a point
within a particular trapezium at any phase eliminated interaction with the other regions since the
trapezoidal edge could not be exterior to this region. The problems dealt in this section are of
somewhat different nature, and there may arise a need to determine the relative location of a query
point with respect to more than one trapezoidal regions. This distinction can be brought out more
clearly by the following example : Given a set of non-intersecting segments and a query point, p,

18

we wish to determine the following:
(1) Which segment is immediately above p?
(2) Among all the segments above p which one is the longest?

The first problem can be solved by trapezoidal decomposition which can be done efficiently using
the Nested-Plane-Sweep tree. However, the second problem appears more difficult and indeed it is
because it cannot be solved by simply finding the segment immediately above the point p within one
region. It will be shown that the latter problem can be solved easily using the normal plane-sweep
tree but the construction of this tree is the bottleneck i.e. it takes O(lognloglogn) time using O(n)
processors. To avoid building the full data structure we shall argue that we do not need all the
attributes (mentioned in section 3.1) in the plane-sweep tree and also avoid the need for fractional
cascading in the algorithms presented in this section.

5.1 Maximal set in three-dimensions

The Maxima problem is defined as follows : Given a set S of points in d-dimensions, the maxima,
of S is the set of all points p;, such that p; € S, and is not dominated on all dimensions by any
other point in set S.

Efficient sequential algorithms are known for only two and three dimensions (O(nlogn) time al-
gorithm is optimal). For two dimensions, an O(logn) algorithm using O(n) processors is easily
obtainable by using the O(logn) AKS sorting network or Cole’s [8] parallel mergesort (which has a
much lower constant). The best known result for 3-D maxima is O(lognloglogn) from Atallah and
Goodrich’s algorithm ([3]) in which they use parallel merging techniques. We present a method to
reduce the 3-D maxima problem to integer sorting so that we can solve it in O(logn) time using
O(n) processors.

Given a set S of points in three dimensions, consider their projection on the x-y plane. For any
point (z;,y;) draw the segment s; parallel to x-axis joining (0, ;) and (z;,y;). Note that any point
(x,y;) is dominated by another point (x;,y;) iff the point lies below s; and also z; < z;. This
means that the point is dominated by p; on all the axes. Instead of comparing the z coordinates
of all s; which are above pj, it is enough to compare z; with the maximum of the z coordinate for
all the segments s; which dominate p; (Figure 5). Note that identifying the segments which are
above p; is similar to the multilocation of p;. However, this time we are not only interested in the
segment which lie directly above p; but also which of them has the maximum z-coordinate and this
is unique for any interval. It is possible to precompute the maximum z coordinate for each interval
so that the necessary comparisons can be performed in constant additional time during each step
of multilocation. This preprocessing requires a parallel-prefix type of computation. The following
well known result can be used to do this efficiently:

Fact 4: Parallel prefix computation for n element sequence can be done in O(logn) time using
O(n/logn) processors (for example see Reif [20]).

The sequence of elements in each node are segments ”covering” the corresponding interval of
the plane-sweep-tree sorted on y axes and the operation needed is MAX. (Recall the definition of
‘covering’ from section 3.1)

However, as mentioned previously, we cannot afford to construct the full data structure of [3]

19

Pé6

.P5

P2

I
1

: .

1

1 - P1
1

1

1

I

1

1

Figure 5: Point P1 is not a maxima iff it is dominated by P2 or P6 in the z-coordinate.

and therefore the following observations can be made :

Observation 1: We do not require fractional cascading to perform multilocation of the input
points. We can instead use their ranks in the list H(v). Note that fractional cascading gives us
more information for multilocating those points that are not in the input set (used for building the
tree).

Observation 2 : We can build the sets H(v) in O(logn) time using the following result:

Fact 5: (Rajasekaran [19]) Integer sort of n keys in the range [1, n°(] can be performed in
time O(logn) using n/logn processors in a CREW PRAM model given word size of n bits for any
e>0.

We first build the skeleton of the plane sweep tree on the intervals induced by the end-points of
the segments (corresponding to the input points). Note that the segments can be totally ordered on
the y coordinates and after an initial sorting on the y-coordinate , we can make use of their ranks
(which is an integer in the interval [1,n]) instead of the actual y coordinate. Using one processor
per segment and concurrent read, we can find the allocation nodes for each segment - there can
be at most 2-logn for each. Due to the special nature of the line segments (all have the same
left x coordinate), it can be seen that the allocation node cannot be a right child. We also make
a slight modification - we not only allocate segments to the appropriate intervals but also to all

20

Figure 6: P, is allocated to the circled node and the square nodes store P, and P,;. Nodes marked
‘N’ are the special nodes of allocation for P, which are the left-children on the allocation path of
P,

the left childs in the allocation path (see Figure 6 for an illustration of such nodes). These are
special allocation nodes of a segment so we distinguish them by some special markings. Note that
there can be at most logn such special allocation nodes for each segment. We can next build the
unordered lists for H(v) (H(v) is ordered on y axis) for each node v of the plane-sweep tree using
lexicographic sorting and prefix computation on the ordered pairs (v, s;). Though there can be
O(nlogn) such pairs, this can still be done in O(logn) time using n processors using Facts 4 and 5.
Another application of sorting (on the ranks of the y coordinate) and prefix computation gives us
the H(v) in the same time bounds.

The full algorithm is presented below :
Procedure 3-D Mazima

it Input n points in 3-dimensions, where each point p; is defined by its 3-coordinates (z;, v, 2;).
(1) Build a plane-sweep tree on the segments joining (z;,v;) and (0,¥;), and compute the H(v)’s
using the scheme described in observation 2. At the end of this step, we shall have for each segment,
its rank in all the H(v)’s (at most 2logn) which will be used for multilocation.

21

max

z — coord
where s1p,,52n;, -+ 8| H(n;)|,n; aT€ segments in node n; ordered on y coordinate (which is the set
H(n;) from its definition.) During this step, the marked entries (which are to be used for multilo-
cation) are assigned y-coordinates of -co so that they do not affect the computation.

(3) At each node, in the path followed by a point p; from the root to the right most allocation node
of s;, compare z(p;) with the Max(s, ,,,), where p; lies immediately below sy, ,,, using the rank of s;
in the corresponding H(v). If at any time during the search z(p;) is less than this value, p; is not a
Maxima of S. (Note that this step can be done in O(logn) time by using one processor per point.)

(2) For each node n;, calculate Max(sy ;) = {81,n;52,n;---Skn, } for k < [H(n;)|,

end

Theorem 5 Algorithm 3-D Mazima finds the mazimal points correctly in O(logn) time and O(nlogn)
space using O(n) processors in a CREW PRAM model.

Proof : The proof of the time complexity is based on the previous discussion. To see that it
identifies the maximal points correctly, we have to explain significance of the ”marked” nodes in
more detail. Given points p, and p,, where p, dominates p,, we have to ensure that they are
allocated to at least one common node, so that in step 3, we are able to eliminate p, from the set
of maximal elements. This may not happen in the normal allocation scheme (as shown in Figure
6), hence there is a need for special nodes. The assignment of -co to the special nodes in step 2,
prevents p, from dominating p, if y(py) > y(pa) and z(ps) > z(pa), but x(ps) < x(ps). O

5.2 Two-set dominance on a plane

The two-set dominance counting problem is defined as follows: Given a set V. = {p1,p2,..p;}
and a set U = {q1,¢2, ..gm } of points in the plane, we wish to determine the number of points in V
which are dominated (on two coordinates) by each point g; in U. This seems to be closely related
to the two-dimensional dominance problem but is harder since not only we have to identify points
that are not maximum but also find all points which dominate a given point. However this problem
can also be solved using a scheme similar to the previous problem.

Given the set U and V, we transform each point g; € U, with coordinates (x;, y;), into a segment
s; joining (x;,y;) and (0, y;) (similar to the previous problem) and build a plane-sweep tree on these
segments. Then, in parallel, allocate each point p; of set V on this tree to the appropriate intervals
(all the nodes in the path which are left children in the tree). These are marked as special elements
to be used for dominance counting. Next, we construct the sets H(v)’s using the original segments as
well as the points of V. We mark the elements corresponding to p; and ¢; with 1 and 0 respectively.
In each node, the number of special points in H(v) (the points of V) lying under a segment s;
is the number of points dominated by s; in that interval. Thus, we can carry out a prefix sum
computation using the reverse order of the H(v)’s. To find the total number of points dominated
by g¢;, we simply add up sequentially the numbers over all the intervals (at most logn) in which the
segment is allocated. A formal description of the algorithm is given below

Two-set dominance counting

22

(1) Build a Plane-Sweep tree on the segments joining (z;,v;) and (0, y;) where (z;, y;) correspond
to coordinates of a point ¢; in set U.
(2) Locate each point p; of set V simultaneously on the plane-sweep tree constructed in step 1 and
allocate it to all the nodes (intervals) which are the left children in the path taken by the point in
the tree. (Note that p; is not stored as a segment but just as a point.)
(3) Mark the points of V and construct H(v) by lexicographic sorting on the pairs (v, y(p;)) using
the integer sorting algorithm in [19].
(4) For each node v of the tree perform a parallel prefix sum on the the set H(v) to count the
number of points of V lying below a ¢;. This gives us the total number of points dominated by a
segment (and hence the corresponding point) in a certain interval.
(5) For any segment find the total number of points dominated by all the intervals of the segment.
This can also be done using one processor per g;, since there can be at most logn intervals for each
segment s;.

Theorem 6 Algorithm Two-set dominance counting runs correctly in O(logn) time using O(n)
processors in a CREW model where n = |U| + | V].

Proof : The proof of correctness of the algorithm is similar to 3-D dominance where we use some
special allocation nodes. To ensure a correct count of the number of points in set V dominated by
gk, we have to count each point p; (dominated by ¢i) exactly once. Thus g and p; should share
exactly one node of allocation. The special allocation nodes guarantee that there will be at least
one shared node. The argument that there is at most one such node follows from the way that p;
and ¢; are stored in the tree. All the nodes where p;’s are allocated are in a path (and hence are
related as ancestors), where as the g; are stored (as transformed segments) in nodes which cannot
be ancestors of each other. The justification for time complexity follows easily from the preceding
discussion since each of the steps can be completed in O(logn) time. O

Two-set dominance counting can be used to solve a number of problems efficiently, among which
the multiple range-counting problem is very important. Multiple range counting problem can be
described as following : Given a set V of 1 points and a set R of m rectangles (ranges), the multiple
range-counting problem is to compute the number of points interior to each rectangle. Note that
this is equivalent to a data base query where the ranges are defined by two different keys. The next
result follows immediately.
Corollary 3 Given a set V of 1 points in a plane, and a set R of m isothetic rectangles, we can
solve the multiple range-counting problem for V and R in O(logn) time with very high probability
using O(n) processors where n =1+ m.
Proof : We can transform this problem into two-dimensional dominance counting problem as
follows: Given a rectangle r defined by its four corners (pi, p2, p3, p4) the number of points
enclosed by a rectangle is equal to d(p1) - d(p2) - d(p3) + d(p4). Here p; is the upper right corner
of the rectangle, p4 the lower right corner and d(v) denotes the number of points in V two-dominated
(dominated on both coordinates) by v. The result follows. O

23

6 Concluding remarks

In this paper we have designed parallel algorithms for solving a variety of problems in computa-
tional geometry which have optimal running time with high probability. Some of these algorithms
use a new data structure, which we call Nested-Plane-Sweep tree. This appears to be an useful
modification of the plane-sweep tree described in Aggarwal et al. [1] and Atallah and Goodrich [3].
On the other hand, plane-sweep tree itself can be used to solve a number of problems optimally if
it can be constructed optimally. Random splitting was used very effectively to divide and conquer
on the plane, raising hopes about extending these techniques efficiently to problems with higher
dimensions like the three-dimensional convex hulls. A challenging exercise will be mapping these
algorithms to fixed interconnection networks like hypercube and maintain the same performance.

As mentioned in the introduction, Atallah, Cole and Goodrich [2] have independently discovered
optimal deterministic algorithms for all these problems. Some of their algorithms use the less
powerful EREW model and their algorithms and they do not use n¢ size size words that we need
for integer-sorting. Since they are based on an approach used by Cole for the optimal parallel
mergesort algorithm (see [8]), there is little hope of extending them to the fixed interconnection
models while maintaining the optimal performance achieved in the PRAM models.

Moreover, as demonstrated by Clarkson [7], randomized methods have very wide applications
in computational geometry in terms of simplifying deterministic algorithms or speeding up sub-
optimal algorithms. Though his methods were restricted to a sequential setting, this paper provides
ample evidence that they can be extended to the parallel setting with some additional techniques
(as seen in section 3.4). In addition, the algorithms can be made to run in a certain time (and
number of processors) with very high likelihood instead of just a constant probability. There are
still a number of important problems in computational geometry which do not have optimal parallel
algorithms and we feel that this paper has merely scratched the surface.

Acknowledgements

We wish to thank Ken Clarkson for pointing out a serious error in the proof of Lemma 4 in an
earlier version of the manuscript. More specifically, we had claimed high probability bounds using
a straight-forward sampling procedure which was refuted by a counter-example due to Peter Shor.
We are also grateful to the referees for their comments for improving presentation and especially
for noticing that the assumption regarding binomial distribution in the proof of Lemma 1 was
incorrect in the way it was being used. We are also grateful to S. Rajasekaran for several insightful
discussions on the probabilistic arguments and to Salman Azhar for carefully reading an earlier
version.

References

[1] A. Aggarwal, B. Chazelle, L. Guibas, C. O’Dunlaing, and C. Yap. Parallel computational
geometry. Proc. of 25th Annual Symposium on Foundations of Computer Science, pages 468
— 477, 1985. also appears in full version in Algorithmica, Vol. 3, No. 3, 1988, pp. 293-327.

24

[2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

M.J. Atallah, R. Cole, and M.T. Goodrich. Cascading divide-and-conquer: A technique for
designing parallel algorithms. Proc. of the 28th Annual Symposium on the Foundations of
Computer Science, pages 151 — 160, 1987.

M.J. Atallah and M.T. Goodrich. Efficient plane sweeping in parallel. Proc. of the 2nd ACM
Symp on Comput. Geom, pages 215 — 225, 1986.

A. Borodin and J. Hopcroft. Routing, merging and sorting on parallel models of computation.
Journal of Computer and System Sciences, 30(1):130 — 145, 1985.

K.L. Clarkson. A probabilistic algorithm for the post-office problem. Proc of the 17th Annual
SIGACT Symposium, pages 174 — 184, 1985.

K.L. Clarkson. New applications of random sampling in computational geometry. Discrete
and Computational Geometry, pages 195 — 222, 1987.

K.L. Clarkson. Applications of random sampling in computational geometry ii. Proc of the
4th Annual ACM Symp on Computational Geometry, pages 1 — 11, 1988.

R. Cole. Parallel merge sort. Proc. of the 27th Annual IEEE Symp. on Foundations of
Computer Science, pages 511 — 516, 1986.

R. Cole and U. Vishkin. Approximate and exact parallel scheduling with applications to list,
tree and graph problems. Proc. 27th IEEE Symp. on Foundations of computer Science, pages
511 — 516, 1986.

N. Dadoun and D.G. Kirkpatrick. Parallel processing for efficient subdivision search. Proc. of
the 3rd Annual ACM Symp on Comput. Geom, pages 205 — 214, 1987.

D. Dobkin and R.J. Lipton. Multidimensional searching problems. SIAM J. on Computing,
5:181 — 186, 1976.

H. Gazit. An optimal randomized parallel algorithm for finding connected components in a
graph. Proc. of the 27th Annual IEEE Symp. on Foundations of Computer Science, pages 492
- 501, 1986.

L.J. Guibas H. Edelsbrunner and J. Stolfi. Optimal point location in monotone subdivision.
SIAM Journal on Computing, 15(2), 1986.

D. Haussler and E. Welzl. e-nets and simplex range queries. Discrete and Computational
Geometry, 2(2):127 — 152, 1987.

D.G. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on Computing, 12:18
- 27, 1979.

N. Meggido. Parallel algorithms for finding maximum and median almost surely in constant
time. Preliminary Report, Computer Sc. Dept, C.M.U., 1982.

G. Miller and J. Reif. Parallel tree contraction and its applications. Proc. of the 26th Annual
IEEE F.0.C.S., pages 478 — 489, 1985.

25

[18]

[19]

[20]

[21]

[22]

[23]

[24]

F.P. Preparata and 1. Shamos. Computational Geometry: An Introduction. Springer-Verlag,
1985.

S. Rajasekaran and S. Sen. On parallel integer sorting. Tech Rept CS-87-38, Comp Sc. Dept.,
Duke University, 1987.

J.H. Reif. An optimal parallel algorithm for interger sorting. Proc. of the 26th Annual IEEE
F.0.C.S., pages 831 — 838, 1985.

J.H. Reif and L.G. Valiant. A logarithmic time sort for linear size networks. Journal of the
ACM, 34:60 — 76, 1987.

R. Reischuk. A fast probabilistic parallel sorting algorithm. Proc. of the 22nd IEEE FOCS,
pages 212 — 219, 1981.

L.G. Valiant. Parallelism in comparison problems. SIAM Journal on Computing, 4:348 — 355,
1975.

L.G. Valiant. A scheme for fast parallel communication. SIAM J. on Computing, 11:350 —
361, 1982.

26

A Appendix

We say a random variable X upper-bounds another random variable Y (equivalently Y lower bounds
X) if for all x such that 0 < z < 1, Prob(X < z) < Prob(Y < x).

A Bernoulli trial is an experiment with two possible outcomes viz. success and failure. The
probability of success is p.

A binomial variable X with parameters (n,p) is the number of successes in n independent
Bernoulli trials, the probability of success in each trial being p. The probability mass function of X
can be easily seen to be

PI‘Ob(X < x) = Zi:o < Z >pn(1 _p)nfk

The tail end of the Binomial distribution can be bounded by Chernoff bounds. In particular
the following approximations due to Angluin and Valiant are frequently used:

Prob(X > m) < (72)™e™ " (1)

Prob(X < m) < (22)™e~mPtm (2)
Prob(X < (1 —€)pn) < exp(—e*np/2) (3)
Prob(X > (1 + €)np) < exp(—€*np/3) (4)

for all 0 < € < 1. The last two bounds actually follow from the Chernoff bounds which (for a
discrete distribution) can be stated as

Prob[A > x] < 2z *G4(z) where G4(z) is the probability generating function.

To minimize the bound we substitute z = z, that minimizes the right side expression.
The probability mass function of a modified geometric random variable X is specified by px (i) =
p(1 — p)* fori=0,1,2.. The probability generating function of a modified geometric random variable

X is given by Gy (z) 1_(1"%1))2 where p is the probability of success in each individual trial. Recall

that, Y is the number of trials before we have a success. Thus the generating function of sum of
logn independent identical modified geometric random variable is given by

Gy () (=) Gr) ()

Using Chernoff bounds and minimizing the bounds by differentiating we obtain

Prob[Y > clogn] < nc1082 =) forp =1/2

For ¢ > 2, we can write it as Prob[Y > clogn| < n~%*¢ where a > 0. (5)

27

