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SEMILINEAR TRANSFORMATIONS

SHREERAM S. ABHYANKAR

(Communicated by Ron Donagi)

Abstract. In previous papers, nice trinomial equations were given for unram-
ified coverings of the once punctured affine line in nonzero characteristic p with
the projective general group PGL(m, q) and the general linear group GL(m, q)
as Galois groups where m > 1 is any integer and q > 1 is any power of p. These
Galois groups were calculated over an algebraically closed ground field. Here
we show that, when calculated over the prime field, as Galois groups we get
the projective general semilinear group PΓL(m, q) and the general semilinear
group ΓL(m, q). We also obtain the semilinear versions of the local coverings
considered in previous papers.

1. Introduction

In my 1957 paper [A02], I considered the algebraic fundamental group πA(Lk) of
the affine line Lk over a field k of characteristic p > 0, and conjectured that if k is
algebraically closed, then πA(Lk) coincides with the set Q(p) of all quasi-p groups;
recall that πA(Lk) is defined to be the set of all Galois groups of finite unramified
Galois coverings of Lk, and Q(p) is defined to be the set of all finite groups G
such that G = p(G) where p(G) denotes the subgroup of G generated by all of
its p-Sylow subgroups. In [A02], I also conjectured that if k is algebraically closed
and t ≥ 0 is any integer, then πA(Lk,t) = Qt(p), where Lk,t = Lk punctured at t
points, and Qt(p) = the set of all quasi-(p, t) groups, i.e., finite groups G such that
G/p(G) is generated by t generators; more generally, if k is algebraically closed and
Cg is a projective nonsingular curve of genus g over k, then for any integer w ≥ 0,
upon letting Cg,w = Cg minus w + 1 points, we have πA(Cg,w) = Q2g+w(p). Now
that these Geometric Conjectures have been settled affirmatively by Raynaud
[Ray] and Harbater [Har], it is time to turn our attention to the arithmetic case of
affine curves over the prime field GF(p) of cardinality p. As in the geometric case of
curves over an algebraically closed ground field, here too the evidence suggests that
the algebraic fundamental group should be “as large as possible.” Specifically, as
an Arithmetical Conjectural Question we ask whether πA(LGF(p)) = Q1(p).

The above Geometric Conjectures were inspired by the Local Conjecture which
was implicit in my 1955 paper [A01] and was made explicit in [A06]. The said Local
Conjecture predicts that if k is algebraically closed, then for all integers r ≥ 2 and
t ≥ 1 we have πL

A(N r
k,t) = Pt(p). Here N r

k,t represents a neighborhood of a simple
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point on an r-dimensional algebraic variety over k from which we have deleted a
divisor having a t-fold normal crossing at the simple point. The local algebraic
fundamental group πL

A(N r
k,t) is defined to be the set of all inertia groups above the

simple point coming from finite Galois coverings of the variety with branch locus
at the simple point contained in the normal crossing divisor. Moreover, Pt(p) is
defined to be the set of all (p, t)-groups, i.e., finite groups G such that G/p(G) is
an abelian group on t generators. Note that Qt(p) = Pt(p) for t ≤ 1, but Qt(p) is
much larger than Pt(p) for t > 1.

To provide evidence towards these conjectures, in [A01] to [A06], we considered
the trinomials F ∗ = F ∗(Y ) = Y n∗+XY +(−1)n∗ and F ∗∗ = F ∗∗(Y ) = Y n∗+Y +X
and F •• = F ••(Y ) = Y n∗ + ZY + X in indeterminates X, Y, Z over the field k,
where m > 1 is any integer, q > 1 is any power of p, and n∗ = 1+q+ · · ·+qm−1. We
also considered the trinomials obtained by changing Y to Y q−1 in these, i.e., the
trinomials Φ∗(Y ) = F ∗(Y q−1) and Φ∗∗(Y ) = F ∗∗(Y q−1) and Φ••(Y ) = F ••(Y q−1).
By taking Y -derivatives, we easily see that F ∗ and Φ∗ give unramified coverings
of the affine X-line, F ∗∗ and Φ∗∗ give unramified coverings of the once punctured
affine X-line, and F •• and Φ•• give coverings of the affine (X, Z)-plane with the
line X = 0 as the branch locus.

Recall that the general linear group GL(m, q) is the group of all nonsingular m
by m matrices over the Galois Field GF(q) of cardinality q. Moreover, the special
linear group SL(m, q) is the subgroup of this consisting of matrices of determinant
1. Now GL(m, q) may be regarded as the group of all nonsingular linear trans-
formations of the vector space GF(q)m, and then it becomes a subgroup of the
general semilinear group ΓL(m, q) = the group of all nonsingular semilinear trans-
formations of GF(q)m, i.e., those additive bijections β of GF(q)m for which we have
β(ζz) = β′(ζ)β(z) for all ζ ∈ GF(q) and z ∈ GF(q)m where β′ is an automorphism
of GF(q) which depends only on β and not on ζ or z. Finally note that PGL(m, q),
PSL(m, q) and PΓL(m, q) are the respective factor groups of GL(m, q), SL(m, q)
and ΓL(m, q) modulo scalar matrices.

In [A03], [A04] it was shown that if k is algebraically closed, then Gal(Φ∗, k(X))
= SL(m, q) and Gal(F ∗, k(X)) = PSL(m, q);1 we shall now show that this is so
under the weaker assumption that GF(q) ⊂ k.

For every divisor d of q − 1, let Φ∗(d) and F ∗(d) be obtained by substituting
(−1)n∗Xd for X in Φ∗∗ and F ∗∗ respectively, let GL(d)(m, q) be defined by the
condition that SL(m, q) / GL(d)(m, q) / GL(m, q) with GL(m, q)/GL(d)(m, q) =
Zd,2 let PGL(d)(m, q) = the image of GL(d)(m, q) under the canonical epimor-
phism of GL(m, q) onto PGL(m, q), and note that then PGL(d)(m, q) is uniquely
characterized by the condition that PSL(m, q) / PGL(d)(m, q) / PGL(m, q) with
PGL(m, q)/PGL(d)(m, q) = ZGCD(m,d).3 In [A04] and [A05] it was shown that if

1Here we regard SL(m, q) as acting on nonzero vectors. For the polynomial Φ̂∗(Y ) = Y Φ∗(Y )

we then have Gal(Φ̂∗, k(X)) = SL(m, q) regarded as acting on the entire vector space GF(q)m.

The polynomials Φ∗ and Φ̂∗ may respectively be called the subvectorial and vectorial associates
of the projective polynomial F ∗. For generalities about projective, subvectorial, and vectorial
polynomials, and their Galois groups, see Sections 2 and 3.

2Since SL(m, q) / GL(m, q) with GL(m, q)/SL(m, q) = Zq−1, we see that this uniquely char-

acterizes the intermediate group GL(d)(m, q). Note that, as usual, < and / denote subgroup and
normal subgroup respectively, and Zd denotes a cyclic group of order d.

3In view of the previous footnote, this follows from the fact that [PGL(m, q) : PSL(m, q)] =
GCD(m, q − 1).
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GF(q) ⊂ k, then Gal(Φ∗∗, k(X)) = GL(m, q) and Gal(F ∗∗, k(X)) = PGL(m, q);
we shall now extend this result by showing that, if GF(q) ⊂ k, then, for every
divisor d of q− 1, we have Gal(Φ∗(d), k(X)) = GL(d)(m, q) and Gal(F ∗(d), k(X)) =
PGL(d)(m, q). In [A05] it was also shown that if GF(q)⊂k, then Gal(Φ••, k((X, Z)))
= GL(m, q) and Gal(F ••, k((X, Z))) = PGL(m, q);4 we shall now extend this re-
sult by showing that if GF(q) ⊂ k, then, for every divisor d of q − 1, we have
Gal(Φ•(d), k((X, Z))) = GL(d)(m, q) and Gal(F •(d), k((X, Z))) = PGL(d)(m, q)
where Φ•(d) and F •(d) are obtained by substituting (−1)n∗Xd for X in Φ•• and
F •• respectively.

To extend the above results further by removing the assumption that GF(q) ⊂ k,
let us note that GL(m, q) / ΓL(m, q) and, upon letting u be the unique integer
with q = pu, we have ΓL(m, q)/GL(m, q) = Zu. For every divisor δ of u, let
ΓLδ(m, q) be defined by the condition that GL(m, q) / ΓLδ(m, q) / ΓL(m, q) with
ΓLδ(m, q)/GL(m, q) = Zδ, and let us define PΓLδ(m, q) = the image of ΓLδ(m, q)
under the canonical epimorphism of ΓL(m, q) onto PΓL(m, q). Also let ΓSLδ(m, q)
be the set of all subgroups I of ΓLδ(m, q) such that I∩GL(m, q) = SL(m, q)/I with
I/SL(m, q) = Zδ, and let PΓSLδ(m, q) be the set of images of the various mem-
bers of ΓSLδ(m, q) under the canonical epimorphism of ΓL(m, q) onto PΓL(m, q).5

Likewise, for every divisor d of q − 1, let ΓL(d)
δ (m, q) be the set of all subgroups J

of ΓLδ(m, q) such that J ∩ GL(m, q) = GL(d)(m, q) / J with J/GL(d)(m, q) = Zδ

and I < J for some I in ΓSLδ(m, q), and let PΓL(d)
δ (m, q) be the set of images of

the various members of ΓL(d)
δ (m, q) under the canonical epimorphism of ΓL(m, q)

onto PΓL(m, q).6

Upon letting δ(k) be the unique divisor of u such that Gal(Y q−Y, k) = Zδ(k), we
shall show that Gal(Φ∗, k(X))∈ΓSLδ(k)(m, q) and Gal(F ∗, k(X))∈PΓSLδ(k)(m, q),
and moreover Gal(Φ∗∗, k(X)) = ΓLδ(k)(m, q) and Gal(F ∗∗, k(X)) = PΓLδ(k)(m, q).
Similarly we shall show that

Gal(Φ••, k((X, Z))) = ΓLδ(k)(m, q) and Gal(F ••, k((X, Z))) = PΓLδ(k)(m, q).

Likewise, for every divisor d of q − 1, we shall show that Gal(Φ∗(d), k(X)) ∈
ΓL(d)

δ(k)(m, q) and Gal(F ∗(d), k(X)) ∈ PΓL(d)
δ(k)(m, q), and similarly we show that

Gal(Φ•(d), k((X, Z))) ∈ ΓL(d)
δ(k)(m, q) and Gal(F •(d), k((X, Z))) ∈ PΓL(d)

δ(k)(m, q).
As we shall indicate in Section 2, the trinomials Φ∗, Φ∗∗, Φ∗(d), Φ••, Φ•(d), F ∗,

F ∗∗, F ∗(d), F ••, F •(d) are members of more general families of polynomials which
have the same Galois groups as these special members, and which give unramified

4As usual, k((X, Z)) denotes the field of meromorphic functions. In case of Gal(Φ∗∗, k(X))
and Gal(Φ••, k((X, Z))) we regard GL(m, q) as acting on nonzero vectors. For the polynomials

Φ̂∗∗(Y ) = Y Φ∗∗(Y ) and Φ̂••(Y ) = Y Φ••(Y ) we then have Gal(Φ̂∗∗, k(X)) = GL(m, q) and

Gal(Φ̂••, k((X, Z))) = GL(m, q) regarded as acting on the entire vector space GF(q)m.
5It can be seen that ΓSLδ(m, q) is a nonempty complete set of conjugate subgroups of ΓL(m, q),

and every I in ΓSLδ(m, q) is a split extension of SL(m, q) (i.e., some subgroup of I is mapped

isomorphically onto I/SL(m, q) by the residue class map of I onto I/SL(m, q)) such that ΓLδ(m, q)
is generated by SL(m, q) and I. See Remark (4.1.1).

6It can be seen that ΓL
(d)
δ (m, q) is a nonempty complete set of conjugate subgroups of ΓL(m, q),

and every J in ΓL
(d)
δ (m, q) is a split extension of GL(d)(m, q) such that ΓLδ(m, q) is generated

by GL(m, q) and J . It can also be seen that ΓL
(q−1)
δ (m, q) = ΓSLδ(m, q) and ΓL

(1)
δ (m, q) =

{ΓLδ(m, q)}. See Remark (4.1.1).
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coverings of the affine space, the affine line minus a hyperplane, and the local affine
space minus a normal crossing divisor.

In Section 2 we shall state the results about the Galois groups of these general
families of polynomials assuming that the ground field contains GF(q), and we shall
prove them in Section 3. In Section 4 we shall state and prove the sharper forms of
these results without this assumption; it will turn out that the Galois groups then
get enlarged into their semilinear versions.

As in [A02] to [A06], our calculation of the Galois groups will mainly be based on
MTR = the Method of Throwing away Roots and RGT = Recognition Theorems for
Groups. To explain MTR, if F = F (Y ) ∈ K[Y ] is separable monic of degree n, then
the Galois group Gal(F, K) is a transitive subgroup G of the symmetric group Sn on
n letters, and its one-point stabilizer G1 is the Galois group Gal(F ′, K(y)) where y
is a root of F and the “twisted derivative” F ′ of F is obtained by “throwing away”
y, i.e., F ′(Y ) = F (Y )/(Y − y); frequently, properties of G and G1 can be read off
from each other. As an example of RTG, we shall use the result of Cameron-Kantor
[CaK] which gives a condition for a subgroup of GL(m, q) with m > 2 to contain
SL(m, q), and which we state as the Transitivity Lemma (2.1.4) in Section 2. We
shall also use the Basic Extension Principle (see page 93 of [A03]) saying that, for
any overfield K∗ of K, the Galois group Gal(F, K∗) may be regarded as a subgroup
of the Galois group Gal(F, K), and the Substitution Principle (see page 98 of [A03])
which applies this to the case when K = k(Xd) and K∗ = k(X). Yet another fact
which we shall use is the Specialization Principle (see footnote 8 of [AL1]) saying
that if K is the quotient field of a regular local domain R with F ∈ R[Y ] and
α : R → R is an epimorphism where R is an integral domain with quotient field
K such that the polynomial F obtained by applying α to the coefficients of F is
separable, then the Galois group Gal(F , K) may be regarded as a subgroup of the
Galois group Gal(F, K).

Note that πA(Lk) is the set of all finite quotients of the complete algebraic
fundamental group πC

A(Lk) = the (highly infinite) Galois group of the compositum
of all finite extensions of k(X) in a fixed algebraic closure which are unramified
over k[X ]. We would like to point out that, even when k is algebraically closed,
the structure of πC

A(Lk) remains a complete mystery. Indeed, my few attempts to
describe it were immediately shot down by Serre, who has predicted a similar fate
for any future attempts I might make.

It is a pleasure to thank Nick Inglis, Paul Loomis and Ganesh Sundaram for
stimulating conversations concerning the material of this paper.

2. Notation and outline

Let kp ⊂ K be fields of characteristic p > 0, let q > 1 be any power of p, and let
m > 0 be any integer.7 To abbreviate frequently occurring expressions, for every
integer i ≥ −1 we put

〈i〉 = 1 + q + q2 + · · ·+ qi (convention :〈0〉 = 1 and 〈−1〉 = 0).

Recall that f∗(Y ) (resp: φ∗(Y ) or φ̂∗(Y )) in K[Y ] is said to be a projec-
tive (resp: subvectorial or vectorial) q-polynomial of q-prodegree (resp: q-
subdegree or q-degree) m∗ (where m∗ ≥ 0 is an integer) in Y with coefficients in

7In the Abstract and the Introduction we assumed m > 1. But in the rest of the paper, unless
stated otherwise, we only assume m > 0.
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K if it is of the form f∗(Y ) =
∑m∗

i=0 a∗i Y
〈m∗−1−i〉 (resp :φ∗(Y ) =

∑m∗

i=0 a∗i Y
qm∗−i−1

or φ̂∗(Y ) =
∑m∗

i=0 a∗i Y
qm∗−i

) with a∗i ∈ K for all i and a∗0 6= 0. The phrase “of q-
prodegree (resp: q-subdegree or q-degree) m∗ in Y with coefficients in K” may be
dropped or may be abbreviated to something like “in Y over K.” Also the reference
to q may be dropped. Note that f∗(Y ) (resp: φ∗(Y ) or φ̂∗(Y )) is monic ⇔ a∗0 = 1,
and note that f∗(Y ) (resp: φ∗(Y ) or φ̂∗(Y )) is separable (i.e., its Y -discriminant
is nonzero) ⇔ a∗m∗ 6= 0, and note that φ̂∗

Y (Y ) = φ̂∗
Y (0) = a∗m∗/a∗0 = a∗m∗ where

φ̂∗
Y (Y ) is the Y -derivative of φ̂∗(Y ). Also note that f∗(Y ) → φ∗(Y ) = f∗(Y q−1)

and φ∗(Y ) → φ̂∗(Y ) = Y φ∗(Y ) give bijections of projectives to subvectorials (=
their subvectorial associates) to vectorials (= their vectorial associates).

Now let

f = f(Y ) =
m∑

i=0

aiY
〈m−1−i〉 with ai ∈ K and a0 6= 0 6= am

be a separable projective q-polynomial of q-prodegree m in Y over K, and let

φ = φ(Y ) = f(Y q−1) =
m∑

i=0

aiY
qm−i−1

and

φ̂ = φ̂(Y ) = Y φ(Y ) =
m∑

i=0

aiY
qm−i

be the subvectorial and vectorial associates of f respectively.
Concerning the Galois groups of projective and subvectorial polynomials, in

(2.5)(i) and (2.5)(ii) of [A04] we observed the following:8

Linearity Lemma (2.1.1). If GF(q) ⊂ K, then for the Galois group Gal(φ, K) of
the subvectorial polynomial φ in a natural manner we have Gal(φ, K) < GL(m, q),9

and for the Galois group Gal(f, K) of its projective associate f in a natural manner
we have Gal(f, K) = the image of Gal(φ, K) under the canonical epimorphism of
GL(m, q) onto PGL(m, q).

In connection with (2.1.1), the following four lemmas are significant; for (2.1.2)
see (2.5)(iii) of [A04], for (2.1.3) see (2.3) of [A04], for (2.1.4) see Theorem I of
Cameron-Kantor [CaK], and for (2.1.5) see Result 4 of [A02],

Root Extraction Lemma (2.1.2). There exists an element Λ in the splitting
field of φ over K such that Λq−1 = (−1)〈m−1〉am/a0.

Transvection Lemma (2.1.3). For any H < GL(m, q) we have: SL(m, q) <
H ⇔ PSL(m, q) < the image of H under the canonical epimorphism of GL(m, q)
onto PGL(m, q).

Transitivity Lemma (2.1.4) (Cameron-Kantor). If m > 2 and H < GL(m, q) is
such that its image under the canonical epimorphism of GL(m, q) onto PGL(m, q)
is doubly transitive, then either SL(m, q) < H, or (q, m) = (4, 2) with A7 ≈ H <

8In [A04] we assumed m > 1, but the following Lemmas (2.1.1) to (2.1.3) are obviously true
for m = 1.

9The Galois group Gal(φ̂, K) essentially equals the Galois group Gal(φ, K) except that the

former acts on the entire vector space of the roots of φ̂ while the latter acts on the nonzero vectors
of that vector space.
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SL(4, 2) = GL(4, 2) ≈ A8 (where ≈ denotes isomorphism, and A7 and A8 are the
alternating groups on 7 and 8 letters respectively).

Quasi-p Lemma (2.1.5). If K = kp(X) with X an indeterminate and kp alge-
braically closed, am/a0 ∈ kp, and ai/a0 ∈ kp[X ] for 1 ≤ i ≤ m− 1, then Gal(φ, K)
and Gal(f, K) are quasi-p groups.

To apply these lemmas to special families of polynomials, let Y, X, T1, T2, . . . be
indeterminates over kp. For every e ≥ 0 let

Ke = kp(X, T1, . . . , Te)(i)

and

K̃e =

{
the quotient field of an (e + 1)−dimensional regular local
domain Re with kp ⊂ Re and M(Re) = (X, T1, . . . , Te)Re

(ii)

where as usual M(Re) is the maximal ideal of Re, and for every e ≥ 1 and 0 6= τ ∈
kp(T1) let

K(e,τ) = kp(X, τ, T2, . . . , Te).(iii)

For 0 ≤ e ≤ m− 1, consider the monic separable projective q-polynomial

f∗∗
e = f∗∗

e (Y ) = Y 〈m−1〉 + X +
e∑

i=1

TiY
〈i−1〉

of q-prodegree m in Y over Ke, and its subvectorial associate

φ∗∗
e = φ∗∗

e (Y ) = f∗∗
e (Y q−1) = Y qm−1 + X +

e∑
i=1

TiY
qi−1

and, for every divisor d of q − 1, let f
∗(d)
e and φ

∗(d)
e be obtained by substituting

(−1)〈m−1〉Xd for X in f∗∗
e and φ∗∗

e respectively, i.e., let

f∗(d)
e = f∗(d)

e (Y ) = Y 〈m−1〉 + (−1)〈m−1〉Xd +
e∑

i=1

TiY
〈i−1〉

and

φ∗(d)
e = φ∗(d)

e (Y ) = Y qm−1 + (−1)〈m−1〉Xd +
e∑

i=1

TiY
qi−1.

For 1 ≤ e ≤ m − 1 and every 0 6= τ ∈ kp(T1) let f∗∗
(e,τ) and φ∗∗

(e,τ) be obtained by
substituting τ for T1 in f∗∗

e and φ∗∗
e respectively, i.e., let

f∗∗
(e,τ) = f∗∗

(e,τ)(Y ) = Y 〈m−1〉 + X + τY +
e∑

i=2

TiY
〈i−1〉

and

φ∗∗
(e,τ) = φ∗∗

(e,τ)(Y ) = Y qm−1 + X + τY q−1 +
e∑

i=2

TiY
qi−1
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and, for every divisor d of q − 1, let f
∗(d)
(e,τ) and φ

∗(d)
(e,τ) be obtained by substituting

(−1)〈m−1〉Xd for X in f∗∗
(e,τ) and φ∗∗

(e,τ) respectively, i.e., let

f
∗(d)
(e,τ) = f

∗(d)
(e,τ)(Y ) = Y 〈m−1〉 + (−1)〈m−1〉Xd + τY +

e∑
i=2

TiY
〈i−1〉

and

φ
∗(d)
(e,τ) = φ

∗(d)
(e,τ)(Y ) = Y qm−1 + (−1)〈m−1〉Xd + τY q−1 +

e∑
i=2

TiY
qi−1.

Finally, for 1 ≤ e ≤ m−1 and every 0 6= τ ∈ kp(T1) let f∗
(e,τ) and φ∗

(e,τ) be obtained
by substituting ((−1)〈m−1〉τq−1, X) for (X, T1) in f∗∗

e and φ∗∗
e respectively, i.e., let

f∗
(e,τ) = f∗

(e,τ)(Y ) = Y 〈m−1〉 + (−1)〈m−1〉τq−1 + XY +
e∑

i=2

TiY
〈i−1〉

and

φ∗
(e,τ) = φ∗

(e,τ)(Y ) = Y qm−1 + (−1)〈m−1〉τq−1 + XY q−1 +
e∑

i=2

TiY
qi−1.

The following Results (2.2.1) to (2.2.3) were respectively proved in Propositions
(5.1)10 to (5.3)11 of [A05] by first establishing the double transitivity of the Galois
groups of the respective projective q-polynomials, and then making some ramifica-
tion considerations and using above Lemmas (2.1.1) to (2.1.4) but not (2.1.5).

Result (2.2.1). If m > 1 and GF(q) ⊂ kp, then in a natural manner we have
SL(m, q)<Gal(φ∗

(1,1), K0)<GL(m, q) and PSL(m, q)<Gal(f∗
(1,1), K0)<PGL(m, q).

Result (2.2.2). If m > 1 and GF(q) ⊂ kp, then in a natural manner we have
Gal(φ∗∗

(1,1), K0) = GL(m, q) and Gal(f∗∗
(1,1), K0) = PGL(m, q).

Result (2.2.3). If m > 1 and GF(q) ⊂ kp, then in a natural manner we have
Gal(φ∗∗

1 , K̃1) = GL(m, q) and Gal(f∗∗
1 , K̃1) = PGL(m, q).

From Results (2.2.1) to (2.2.3), by using Lemmas (2.1.1) to (2.1.4) but not
(2.1.5), in Section 3 we shall deduce the following Theorems (2.3.1) to (2.3.5),12

where K̃e and K(e,τ) are as in (ii) and (iii) above.

Theorem (2.3.1). If GF(q) ⊂ kp, then, for 1 ≤ e ≤ m − 1 and every element
0 6= τ ∈ kp(T1), in a natural manner we have Gal(φ∗

(e,τ), K(e,τ)) = SL(m, q) and
Gal(f∗

(e,τ), K(e,τ)) = PSL(m, q).

10In view of above Lemma (2.1.3), the m = 2 case of Result (2.2.1) follows from part (5.1.3)
of Proposition (5.1) of [A05]. The m > 2 case of Result (2.2.1) follows from Proposition (3.2) of
[A04] which was the original source for Proposition (5.1) of [A05]. By using above Lemma (2.1.5),
in Proposition (3.2) of [A04] and Proposition (5.1) of [A05] it was shown that if kp is algebraically

closed, then Gal(φ∗
(1,1)

, K0) = SL(m, q) and Gal(f∗
(1,1)

, K0) = PSL(m, q).
11As a misprint correction, in the last line of the proof of Proposition (5.3) of [A05], the

reference to Lemma (4.6) should be changed to a reference to Lemma (3.6).
12In connection with (2.3.4) and (2.3.5) we note that, in the situation of Lemma (2.1.1), if K ′ is

any field between K and the splitting field of φ over K, then the usual way of regarding Gal(φ, K′)
to be a subgroup of Gal(φ, K) is coherent with the natural manner, described in Lemma (2.1.1),
of regarding these groups as subgroups of GL(m, q).
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Theorem (2.3.2). If GF(q) ⊂ kp, then, for 1 ≤ e ≤ m − 1 and every element
0 6= τ ∈ kp(T1), in a natural manner we have Gal(φ∗∗

(e,τ), K(e,τ)) = GL(m, q) and
Gal(f∗∗

(e,τ), K(e,τ)) = PGL(m, q).

Theorem (2.3.3). If GF(q) ⊂ kp, then, for 1 ≤ e ≤ m − 1 and every integer
ε ≥ e, in a natural manner we have Gal(φ∗∗

e , K̃ε) = GL(m, q) and Gal(f∗∗
e , K̃ε) =

PGL(m, q).

Theorem (2.3.4). If GF(q) ⊂ kp, then, for 1 ≤ e ≤ m − 1 and every ele-
ment 0 6= τ ∈ kp(T1) and every divisor d of q − 1, in a natural manner we
have SL(m, q) = Gal(φ∗(d)

(e,τ), K(e,τ)(Θd)) / Gal(φ∗(d)
(e,τ), K(e,τ)) = GL(d)(m, q) and

PSL(m, q) = Gal(f∗(d)
(e,τ),K(e,τ)(Θd)) / Gal(f∗(d)

(e,τ), K(e,τ)) = PGL(d)(m, q) for some

element Θd in the splitting field of φ
∗(d)
(e,τ) over K(e,τ) with Θ(q−1)/d

d = X.

Theorem (2.3.5). If GF(q) ⊂ kp, then, for 1 ≤ e ≤ m−1 and every integer ε ≥ e
and every divisor d of q − 1, in a natural manner we have

SL(m, q) = Gal(φ∗(d)
e , K̃ε(Θ̃d)) / Gal(φ∗(d)

e , K̃ε) = GL(d)(m, q)

and

PSL(m, q) = Gal(f∗(d)
e , K̃ε(Θ̃d)) / Gal(f∗(d)

e , K̃ε) = PGL(d)(m, q)

for some element Θ̃d in the splitting field of φ
∗(d)
e over K̃ε with Θ̃(q−1)/d

d = X.

In Section 4 we shall refine these theorems into their semilinear versions without
assuming GF(q) ⊂ kp.

Remark (2.4.1). Note that the equations φ∗
(e,τ) = 0 and f∗

(e,τ) = 0 give unramified

coverings of the affine line. Likewise the equations φ
∗(d)
(e,τ) = 0 and f

∗(d)
(e,τ) = 0 give

unramified coverings of the once punctured affine line. Finally the equations φ
∗(d)
e =

0 and f
∗(d)
e = 0 give unramified coverings of the local affine space minus a normal

crossing divisor. See [A06].

Remark (2.4.2). Note that by taking kp = k we get (f∗
(1,1), K(1,1)) = (f∗

(1,1), K0) =
(F ∗, k(X)) and (f∗∗

(1,1), K(1,1)) = (f∗∗
(1,1), K0) = (F ∗∗, k(X)). Also note that by

taking (kp, T1, R1) = (k, Z, k[[X, Z]]) we get (f∗∗
1 , K̃1) = (F ••, k((X, Z))).

Remark (2.4.3). The sign (−1)〈m−1〉 in Theorems (2.3.1) to (2.3.3) is important.
For instance, by Lemma (2.1.2) and Theorem (2.3.2) we see that for odd m > 1
and q = 3 we have

Gal(Y qm−1 + XY q−1 − 1, GF(q)(X))

= SL(m, q) / GL(m, q) = Gal(Y qm−1 + XY q−1 + 1, GF(q)(X))

with GL(m, q)/SL(m, q) = Z2, but Gal(Y 〈m−1〉+XY−1, GF(q)(X)) = PSL(m, q) =
PGL(m, q) / Gal(Y 〈m−1〉 + XY + 1, GF(q)(X)).

3. Linear groups

To prove Theorems (2.3.1) to (2.3.5), assume that GF(q) ⊂ kp and let there be
given 1 ≤ e ≤ m− 1.
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First let us consider Gal(φ∗
(e,τ), K(e,τ)) and Gal(φ∗∗

(e,τ), K(e,τ)) with 0 6= τ ∈
kp(T1). By applying the obvious epimorphism kp(τ)[X, T2, . . . , Te] → kp(τ)[X ] with
kernel (T2, . . . , Te)kp(τ)[X, T2, . . . , Te] to the coefficients of φ∗

(e,τ)(Y ) ∈ K(e,τ)[Y ]
and φ∗∗

(e,τ)(Y ) ∈ K(e,τ)[Y ] we get φ∗
(1,τ)(Y ) ∈ K(1,τ)[Y ] and φ∗∗

(1,τ)(Y ) ∈ K(1,τ)[Y ]
respectively, and hence by the Specialization Principle (see footnote 8 of [AL1])
we see that Gal(φ∗

(1,τ), K(1,τ)) / Gal(φ∗
(e,τ), K(e,τ)) and Gal(φ∗∗

(1,τ), K(1,τ)) /
Gal(φ∗∗

(e,τ),K(e,τ)).13 We can take elements τ ′ and τ ′′ in an overfield of kp(X) with
τ ′〈m−1〉 = τ and τ ′′q−qm

= τ and then upon letting k′p = kp(τ ′) and k′′p = kp(τ ′′)
we have K(1,τ) ⊂ k′p(X) and K(1,τ) ⊂ k′′p (X), and therefore by the Basic Extension
Principle (cf. page 93 of [A03]) we see that Gal(φ∗

(1,τ), k
′
p(X)) / Gal(φ∗

(1,τ), K(1,τ))
and Gal(φ∗∗

(1,τ), k
′′
p (X)) / Gal(φ∗∗

(1,τ), K(1,τ)), and hence we get Gal(φ∗
(1,τ), k

′
p(X)) /

Gal(φ∗
(e,τ), K(e,τ)) and Gal(φ∗∗

(1,τ), k
′′
p (X)) / Gal(φ∗∗

(e,τ), K(e,τ)). Now φ∗
(1,τ)(Y ) =

τ ′q
m−1φ′∗

(1,1)(Y ) where φ′∗
(1,1)(Y ) is obtained by substituting (τ ′q−qm

X, τ ′−1Y ) for
(X, Y ) in φ∗

(1,1)(Y ) and hence Gal(φ∗
(1,τ), k

′
p(X)) ≈ Gal(φ∗

(1,1), k
′
p(X)); by (2.2.1) we

have SL(m, q) < Gal(φ∗
(1,1), k

′
p(X)); therefore we get SL(m, q) / Gal(φ∗

(e,τ), K(e,τ));
by (2.1.1) we know that in a natural manner we have Gal(φ∗

(e,τ), K(e,τ)) < GL(m, q)
and hence (say by quasi-p considerations)14 we see that in a natural manner we have
SL(m, q) < Gal(φ∗

(e,τ), K(e,τ)) < GL(m, q). Similarly φ∗∗
(1,τ)(Y ) = τ ′′1−qm

φ′′∗∗
(1,1)(Y )

where φ′′∗∗
(1,1)(Y ) is obtained by substituting (τ ′′q

m−1X, τ ′′Y ) for (X, Y ) in φ∗∗
(1,1)(Y )

and hence Gal(φ∗∗
(1,τ), k

′′
p (X)) ≈ Gal(φ∗∗

(1,1), k
′′
p (X)); this time by (2.2.2) we have

Gal(φ∗∗
(1,1), k

′′
p (X)) = GL(m, q) and therefore we get GL(m, q) / Gal(φ∗∗

(e,τ), K(e,τ));
by (2.1.1) we know that in a natural manner we have Gal(φ∗∗

(e,τ), K(e,τ)) < GL(m, q)
and hence (say by order considerations) we see that in a natural manner we have
Gal(φ∗∗

(e,τ), K(e,τ)) = GL(m, q). This completes the proof of (2.3.2). Given any
divisor d of q−1, by (2.1.2) there exists an element Λd in the splitting field of φ∗∗

(e,τ)

over K(e,τ) such that Λd
d = (−1)〈m−1〉X , and hence by the Substitution Principle

on page 98 of [A03] we may regard Gal(φ∗(d)
(e,τ), K(e,τ)) = Gal(φ∗∗

(e,τ), K(e,τ)(Λd)) /

Gal(φ∗∗
(e,τ), K(e,τ)) with Gal(φ∗∗

(e,τ), K(e,τ))/Gal(φ∗∗
(e,τ), K(e,τ)(Λd)) = Zd, and there-

fore15 it follows that in a natural manner we have Gal(φ∗(d)
(e,τ), K(e,τ)) = GL(d)(m, q).

Again by (2.1.2) there exists an element Θd in the splitting field of φ
∗(d)
(e,τ) over K(e,τ)

with Θ(q−1)/d
d = X , and by the usual Galois correspondence Gal(φ∗(d)

(e,τ), K(e,τ)(Θd))/

Gal(φ∗(d)
(e,τ), K(e,τ)) with Gal(φ∗(d)

(e,τ), K(e,τ))/Gal(φ∗(d)
(e,τ), K(e,τ)(Θd)) = Z(q−1)/d and

hence (see the previous footnote) in a natural manner we have Gal(φ∗(d)
(e,τ), K(e,τ)(Θd))

13We are using / as an abbreviation for “is isomorphic to a subgroup of.”
14The quasi-p part of a finite group G is denoted by p(G) and is defined to be the subgroup

of G generated by all of its p-Sylow subgroups. It can also be characterized as the subgroup of
G generated by all of its elements of p-power order. Yet another characterization of it would be
as the smallest normal subgroup of G which is the kernel of an epimorphism of G onto a group
whose order is prime to p. It follows that p(G) / H < G ⇒ p(G) < H. It only remains to note
that p(GL(m, q)) = SL(m, q) which is the crucial fact used in the proof of above Lemma (2.1.3)
which is a reformulation of Lemma (2.3) of [A04].

15Say in view of the last footnote about the quasi-p part of GL(m, q) together with the fact
that SL(m, q) / GL(m, q) with GL(m, q)/SL(m, q) = Zq−1. Also note that for any G < GL(m, q)

we have: SL(m, q) < G ⇔ SL(m, q) < p(G) ⇔ SL(m, q) = p(G).



2520 SHREERAM S. ABHYANKAR

= SL(m, q). This completes the proof of (2.3.4). In particular, in a natural man-
ner we have Gal(φ∗(q−1)

(e,T1) , K(e,T1)) = GL(q−1)(m, q) = SL(m, q). If τ 6∈ kp, then
(X, T1, T2, . . . , Te) 7→ (τ, X, T2, . . . , Te) gives a kp-isomorphism of K(e,T1) onto K(e,τ)

which sends φ
∗(q−1)
(e,T1) to φ∗

(e,τ); hence in a natural manner we have Gal(φ∗
(e,τ), K(e,τ))

= SL(m, q). If τ ∈ kp, then (X, T1, T2, . . . , Te) 7→ (τ, X, T2, . . . , Te) gives a kp-
epimorphism of kp[X, T1, T2, . . . , Te] onto kp[X, T2, . . . , Te] which sends φ

∗(q−1)
(e,T1) to

φ∗
(e,τ) and hence by the Specialization Principle (see footnote 8 of [AL1]) we see

that Gal(φ∗
(e,τ), K(e,τ)) / SL(m, q); since we have already seen that in a natural

manner we have SL(m, q) < Gal(φ∗
(e,τ), K(e,τ)) < GL(m, q), by order considerations

we conclude that in a natural manner we have Gal(φ∗
(e,τ), K(e,τ)) = SL(m, q). This

completes the proof of (2.3.1).
Now let us consider Gal(φ∗∗

e , K̃ε) with ε≥e. Let θ : Rε → R1 =Rε/(T2, . . . , Tε)Rε

be the canonical epimorphism. Then R1 is a 2-dimensional regular local domain
whose maximal ideal is generated by θ(X) and θ(T1). Let K1 be the quotient field
of R1, and let φ

∗∗
1 (Y ) ∈ K1[Y ] be obtained by applying θ to the coefficients of

φ∗∗
e (Y ). Then by the Specialization Principle (see footnote 8 of [AL1]) we see that

Gal(φ
∗∗
1 , K1) / Gal(φ∗∗

e , K̃ε), and by (2.2.3) we see that Gal(φ
∗∗
1 , K1) ≈ GL(m, q);

by (2.1.1) in a natural manner we have Gal(φ∗∗
e , K̃ε) < GL(m, q), and hence (say by

order considerations) we conclude that in a natural manner we have Gal(φ∗∗
e , K̃ε) =

GL(m, q). This completes the proof of (2.3.3). Given any divisor d of q − 1, by
(2.1.2) there exists an element Λ̃d in the splitting field of φ∗∗

e over Λ̃d
d = (−1)〈m−1〉X

and hence, by the Substitution Principle on page 98 of [A03], in the affine case,
i.e., when R̃ε is the localization of kp[X, T1, . . . , Tε] at the maximal ideal generated
by (X, T1, . . . , Tε), we may regard Gal(φ∗(d)

e , Kε) = Gal(φ∗∗
e , Kε(Λ̃d))/Gal(φ∗∗

e , Kε)
with Gal(φ∗∗

e , Kε)/Gal(φ∗∗
e , Kε(Λ̃d)) = Zd, and therefore (see the previous footnote)

in a natural manner we have Gal(φ∗(d)
e , Kε) = GL(d)(m, q). Referring to the proof

of the Substitution Principle on page 98 of [A03], we see that the only special
property of the affine case which we used in the last sentence was the existence of a
kp-isomorphism kp[X, T1, . . . , Tε] → kp[(−1)〈m−1〉X, T1, . . . , Tε] ⊂ kp[X, T1, . . . , Tε]
sending (X, T1, . . . , Tε) to ((−1)〈m−1〉X, T1, . . . , Tε). Now upon letting R̂ε to be
the completion of Rε and K̂ε to be the quotient field of R̂ε, we see that R̂ε =
k̂p[[X, T1, . . . , Tε]] where k̂p is an overfield of kp, and clearly there exists a k̂p-
isomorphism k̂p[[X, T1, . . . , Tε]] → k̂p[[(−1)〈m−1〉X, T1, . . . , Tε]] ⊂ k̂p[[X, T1, . . . , Tε]]
sending (X, T1, . . . , Tε) to ((−1)〈m−1〉X, T1, . . . , Tε). Therefore in a natural manner
we have Gal(φ∗(d)

e , K̂ε) = GL(d)(m, q). Since φ
∗(d)
e (Y ) ∈ Kε[Y ] and Kε ⊂ K̃ε ⊂ K̂ε,

by the Basic Extension Principle (cf. page 93 of [A03]) we see that Gal(φ∗(d)
e , K̂ε) /

Gal(φ∗(d)
e , K̃ε) / Gal(φ∗(d)

e , Kε). By (2.1.1) we also know that in a natural manner
we have Gal(φ∗(d)

e , K̃ε) < GL(m, q). Therefore (see the previous footnote) in a
natural manner we have Gal(φ∗(d)

e , K̃ε) = GL(d)(m, q). Again by (2.1.2) there
exists an element Θ̃d in the splitting field of φ

∗(d)
e over K̃ε with Θ̃(q−1)/d

d = X ,
and by the usual Galois correspondence Gal(φ∗(d)

e , K̃ε(Θ̃d)) / Gal(φ∗(d)
e , K̃ε) with

Gal(φ∗(d)
e , K̃ε)/Gal(φ∗(d)

e , K̃ε(Θ̃d)) = Z(q−1)/d and hence (see the previous footnote)
in a natural manner we have Gal(φ∗(d)

e , K̃ε(Θ̃d)) = SL(m, q). This completes the
proof of (2.3.5).
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4. Semilinear groups

In this section we shall generalize the results of the preceding sections to the case
when the ground field does not necessarily contain the field GF(q) of q elements.

To recapitulate and refine the Linearity Lemma (2.1.1), let V be the set of all
roots of φ̂ in an algebraic closure Ω of K, and note that then V is an m-dimensional
GF(q)-vector-subspace of Ω.16 Let V be the set of all roots of f in Ω. Then V \{0}
is the set of all roots of φ in Ω, and y 7→ yq−1 gives a surjective map V \ {0} → V
whose fibers are punctured 1-spaces, i.e., 1-spaces minus the zero vector. So we
may identify V with the projective space associated with V . In particular, fixing
0 6= y ∈ V and letting y′ vary over all elements of V with y′q−1 = yq−1 we see that
y′/y ∈ K(V ) varies over all nonzero elements of GF(q), and hence GF(q) ⊂ K(V ) =
the splitting field of φ̂ over K = the splitting field of φ over K. It follows that
any g ∈ Gal(K(V ), K) induces an automorphism g′ of GF(q), and for all z ∈ V
and ζ ∈ GF(q) we clearly have g(ζz) = g′(ζ)g(z); since g is clearly additive on
V , we see that g induces on V a semilinear transformation, i.e., an element of
ΓL(V ) = ΓL(m, q), and moreover this element belongs to GL(V ) = GL(m, q) ⇔ g′

is identity. Thus in a natural manner Gal(φ̂, K) < ΓL(m, q). Clearly g′ is identity
for all g ∈ Gal(K(V ), K) ⇔ GF(q) ⊂ K, and hence in the above identification
Gal(φ̂, K) < GL(m, q) ⇔ GF(q) ⊂ K. Note that the Galois group Gal(φ, K)
essentially equals the Galois group Gal(φ̂, K) except that the former acts on nonzero
vectors while the latter acts on the entire vector space. Thus, in view of the relevant
considerations of Lemmas (2.4) and (2.5) of [A04], we get the following:

Semilinearity Lemma (4.1.1). GF(q) is contained in the splitting field of φ̂ over
K (which is the same thing as the splitting field of φ over K) and in a natural man-
ner we may identify Gal(φ̂, K) with a subgroup of ΓL(m, q); under this identification
we have Gal(φ̂, K) < GL(m, q) ⇔ GF(q) ⊂ K. Likewise, we may identify Gal(f, K)
with a subgroup of PΓL(m, q) and then Gal(f, K) becomes the image of Gal(φ̂, K)
under the canonical epimorphism of ΓL(m, q) onto PΓL(m, q). The Galois group
Gal(φ, K) essentially equals the Galois group Gal(φ̂, K) except that the former acts
on nonzero vectors while the latter acts on the entire vector space of roots of φ̂.

Let u be the unique integer with q = pu, and let δ be any divisor of u. Let the
groups ΓLδ(m, q) and PΓLδ(m, q), and the sets of groups ΓSLδ(m, q), PΓSLδ(m, q),
ΓL(d)

δ (m, q), and PΓL(d)
δ (m, q), be defined as in Section 1. By (4.1.1) we know that

K(V ) contains the splitting field K(GF(q)) of Y q − Y over K, and hence K(V )
also contains the splitting field K(GF(pu/δ)) of Y pu/δ − Y over K. According to
the notation introduced in Section 1, δ(K) is defined to be the unique divisor of u
such that

Gal(Y q − Y, K) = Zδ(K) i.e. equivalently [K(GF(q)) : K] = δ(K)(4.1.2)

and we note that then17

K ∩GF(q) = GF(pu/δ(K)).(4.1.3)

16This is so without assuming GF(q) ⊂ K, although in [A04] we made that assumption.
17To see this, let H(Y ) be the minimal monic polynomial of a primitive element η of GF(q)

over K∩GF(q), and let H′(Y ) be the minimal monic polynomial of η over K. Then H′(Y ) divides
H(Y ) and hence H′(Y ) ∈ GF(q)[Y ]. But also H′(Y ) ∈ K[Y ] and hence H′(Y ) ∈ (K ∩GF(q))[Y ].

Therefore H′(Y ) = H(Y ) and hence K ∩GF(q) = GF(pu/δ(K)).
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For a moment let V be any m-dimensional vector space over GF(q). As above,
for every g ∈ ΓL(V ) = ΓL(m, q) let g′ be the unique element in Aut(GF(q)) = Zu

such that for all z ∈ V and ζ ∈ GF(q) we have g(ζz) = g′(ζ)g(z). Then g 7→ g′

gives an epimorphism ΓL(m, q) → Aut(GF(q)) whose kernel is GL(m, q). The
group ΓLδ(m, q) can be characterized by saying that ΓLδ(m, q) = {g ∈ ΓL(m, q) :
g′ ∈ Gal(GF(q), GF(pu/δ))}. Again letting V denote the vector space of roots of
φ̂, for any g ∈ Gal(φ, K) we have g′ = g|GF(q) where | denotes restriction,18 and
hence Gal(φ, K) ∩ ΓLδ(m, q) = {g ∈ Gal(φ, K) : g′ ∈ Gal(GF(q), GF(pu/δ))} =
Gal(φ, K(GF(pu/δ)));19 by the usual Galois correspondence Gal(φ, K(GF(pu/δ))) /
Gal(φ, K) with Gal(φ, K)/Gal(φ, K(GF(pu/δ)))=Gal(K(GF(pu/δ)), K), and there-
fore {

Gal(φ, K) ∩ ΓLδ(m, q) = Gal(φ, K(GF(pu/δ))) / Gal(φ, K)
with Gal(φ, K)/Gal(φ, K(GF(pu/δ))) = Gal(K(GF(pu/δ)), K)

(4.1.4)

and this gives rise to the implication

Gal(φ, K) < ΓLδ(m, q) ⇔ GF(pu/δ) ⊂ K,(4.1.5)

which generalizes the implication ⇔ of (4.1.1). In view of (4.1.2) and (4.1.3), by
taking δ = 1 in (4.1.4) and δ = δ(K) in (4.1.5) we get:

Proposition (4.2.1). We have

Gal(φ, K) ∩GL(m, q) = Gal(φ, K(GF(q))) / Gal(φ, K) < ΓLδ(K)(m, q)

with Gal(φ, K)/Gal(φ, K(GF(q))) = Zδ(K).

By (4.2.1) we immediately get:

Proposition (4.2.2). If Gal(φ, K(GF(q))) = GL(d)(m, q) where d is a divisor of
q−1, then we have Gal(φ, K)∩GL(m, q) = GL(d)(m, q)/Gal(φ, K) < ΓLδ(K)(m, q)
with Gal(φ, K)/GL(d)(m, q) = Zδ(K).

Since GL(q−1)(m, q) = SL(m, q), in view of (4.1.1), by taking d = q−1 in (4.2.2)
we get:

Proposition (4.2.3). If Gal(φ, K(GF(q))) = SL(m, q), then we have Gal(φ, K) ∈
ΓSLδ(K)(m, q) and Gal(f, K) ∈ PΓSLδ(K)(m, q).

Since GL(1)(m, q) = GL(m, q) and [ΓLδ(K)(m, q) : GL(m, q)] = δ(K), in view of
(4.1.1), by taking d = 1 in (4.2.2) we get:

Proposition (4.2.4). If Gal(φ, K(GF(q))) = GL(m, q), then we have Gal(φ, K) =
ΓLδ(K)(m, q) and Gal(f, K) = PΓLδ(K)(m, q).

Because of the usual Galois correspondence (see the previous footnote), by (4.2.3)
and (4.2.4) we get:

18Strictly speaking g′ = g̃|GF(q) where g̃ ∈ Gal(K(V ), K) is such that g = g̃|V \{0}.
19For any field K ′ with K ⊂ K′ ⊂ K(V ), the usual way of regarding Gal(φ, K ′) to be a

subgroup of Gal(φ, K) is coherent with the natural manner, described in (4.1.1), of regarding
these groups as subgroups of ΓL(V ).
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Proposition (4.2.5). If Gal(φ, K(GF(q))) = GL(d)(m, q) where d is a divisor of
q− 1, and for some field K ′ between K and the splitting field of φ over K we have
δ(K ′) = δ(K) and Gal(φ, K ′(GF(q))) = SL(m, q), then Gal(φ, K) ∈ ΓL(d)

δ(K)(m, q)

and Gal(f, K) ∈ PΓL(d)
δ(K)(m, q).

In view of the above propositions, from Theorems (2.3.1) to (2.3.5) we shall now
deduce the following Theorems (4.3.1) to (4.3.5), where K̃e and K(e,τ) are as in (ii)
and (iii) above.

Theorem (4.3.1). For 1 ≤ e ≤ m − 1 and every element 0 6= τ ∈ kp(T1), upon
letting δ = δ(kp), we have Gal(φ∗

(e,τ), K(e,τ)) ∈ ΓSLδ(m, q) and Gal(f∗
(e,τ), K(e,τ)) ∈

PΓSLδ(m, q).

Theorem (4.3.2). For 1 ≤ e ≤ m − 1 and every element 0 6= τ ∈ kp(T1), upon
letting δ = δ(kp), we have Gal(φ∗∗

(e,τ), K(e,τ)) = ΓLδ(m, q) and Gal(f∗∗
(e,τ), K(e,τ)) =

PΓLδ(m, q).

Theorem (4.3.3). For 1 ≤ e ≤ m − 1 and every integer ε ≥ e, upon letting δ =
δ(K̃ε), we have Gal(φ∗∗

e , K̃ε) = ΓLδ(m, q) and Gal(f∗∗
e , K̃ε) = PΓLδ(m, q). [Note

that if either Rε = kp[[X, T1, . . . , Tε]] or Rε = the localization of kp[X, T1, . . . , Tε]
at the maximal ideal generated by (X, T1, . . . , Tε), then δ(K̃ε) = δ(kp).]

Theorem (4.3.4). For 1 ≤ e ≤ m−1 and every element 0 6= τ ∈ kp(T1) and every
divisor d of q − 1, upon letting δ = δ(kp), we have Gal(φ∗(d)

(e,τ), K(e,τ)) ∈ ΓL(d)
δ (m, q)

and Gal(f∗(d)
(e,τ), K(e,τ)) ∈ PΓL(d)

δ (m, q).

Theorem (4.3.5). For 1 ≤ e ≤ m − 1 and every integer ε ≥ e and every di-
visor d of q − 1, upon letting δ = δ(K̃ε), we have Gal(φ∗(d)

e , K̃ε) ∈ ΓL(d)
δ (m, q)

and Gal(f∗(d)
e , K̃ε) ∈ PΓL(d)

δ (m, q). [Note that if either Rε = kp[[X, T1, . . . , Tε]]
or Rε = the localization of kp[X, T1, . . . , Tε] at the maximal ideal generated by
(X, T1, . . . , Tε), then δ(K̃ε) = δ(kp).]

To prove (4.3.1), (4.3.2) and (4.3.4), let 1 ≤ e ≤ m − 1 and 0 6= τ ∈ k(T1) be
given, and note that then clearly K(e,τ)(GF(q)) = kp(GF(q))(X, τ, T2, . . . , Te) and
δ(K(e,τ)) = δ(kp). By (2.3.1) we know that Gal(φ∗

(e,τ), K(e,τ)(GF(q))) = SL(m, q),
and hence by taking (φ∗

(e,τ), K(e,τ)) for (φ, K) in (4.2.3) we get (4.3.1). Simi-
larly by (2.3.2) we know that Gal(φ∗∗

(e,τ), K(e,τ)(GF(q))) = GL(m, q), and hence
by taking (φ∗∗

(e,τ), K(e,τ)) for (φ, K) in (4.2.4) we get (4.3.2). Given any divisor

d of q − 1, by (2.3.4) we know that Gal(φ∗(d)
(e,τ), K(e,τ)(GF(q))) = GL(d)(m, q) and

Gal(φ∗(d)
(e,τ), K(e,τ)(GF(q))(Θd)) = SL(m, q) for some element Θd in the splitting

field of φ
∗(d)
(e,τ) over K(e,τ)(GF(q)) with Θ(q−1)/d

d = X , and clearly δ(K(e,τ)) =

δ(K(e,τ)(Θd)), and hence by taking (φ∗(d)
(e,τ), K(e,τ), K(e,τ)(Θd)) for (φ, K, K ′) in (4.2.5)

we get (4.3.4).
To prove (4.3.3) and (4.3.5), let 1 ≤ r ≤ m−1 and ε ≥ e be given, and note that

then, upon letting K̃†
ε = K̃ε(GF(q)) and R†

ε = the localization of the integral closure
of Rε in K̃†

ε at a maximal ideal in it, we see that R†
ε is an (ε+1)-dimensional regular

local domain whose maximal ideal is generated by (X, T1, . . . , Tε) and whose quo-
tient field is K̃†

ε . Therefore by (2.3.3) we see that Gal(φ∗∗
e , K̃ε(GF(q))) = GL(m, q),
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and hence by taking (φ∗∗
e , K̃ε) for (φ, K) in (4.2.4) we get (4.3.3). Likewise, given

any divisor d of q − 1, by (2.3.5) we see that Gal(φ∗(d)
e , K̃ε(GF(q))) = GL(d)(m, q)

and Gal(φ∗(d)
e , K̃ε(GF(q))(Θd)) = SL(m, q) for some element Θ̃d in the splitting

field of φ
∗(d)
e over K̃ε(GF(q)) with Θ̃(q−1)/d

d = X , and clearly δ(K̃ε) = δ(K̃ε(Θ̃d)),
and hence by taking (φ∗(d)

e , K̃ε, K̃ε(Θ̃d)) for (φ, K, K ′) in (4.2.5) we get (4.3.5).

Remark (4.4.1). Recall that q = pu > 1 is any power of prime p, and m > 0 is
any integer. For every divisor d of q − 1, we are letting GL(d)(m, q) be the unique
subgroup of GL(m, q) containing SL(m, q) such that GL(m, q)/GL(d)(m, q) = Zd,
and we are letting PGL(d)(m, q) be the image of GL(d)(m, q) under the canoni-
cal epimorphism of GL(m, q) onto PGL(m, q). Likewise, for every divisor δ of u,
we are letting ΓLδ(m, q) be the unique subgroup of ΓL(m, q) containing GL(m, q)
such that ΓLδ(m, q)/GL(m, q) = Zδ, and we are letting PΓLδ(m, q) be the im-
age of ΓLδ(m, q) under the canonical epimorphism of ΓL(m, q) onto PΓL(m, q).
We are also letting ΓSLδ(m, q) be the set of all subgroups I of ΓLδ(m, q) such
that I ∩ GL(m, q) = SL(m, q) / I with I/SL(m, q) = Zδ, and we are letting
PΓSLδ(m, q) be the set of images of the various members of ΓSLδ(m, q) under
the canonical epimorphism of ΓL(m, q) onto PΓL(m, q). Finally we are letting
ΓL(d)

δ (m, q) be the set of all subgroups J of ΓLδ(m, q) such that J ∩ GL(m, q) =
GL(d)(m, q) / J with J/GL(d)(m, q) = Zδ and I < J for some I in ΓSLδ(m, q),
and we are letting PΓL(d)

δ (m, q) be the set of images of the various members of
ΓL(d)

δ (m, q) under the canonical epimorphism of ΓL(m, q) onto PΓL(m, q). Note
that clearly ΓL(q−1)

δ (m, q) = ΓSLδ(m, q) and ΓL(1)
δ (m, q) = {ΓLδ(m, q)}. Also note

that the canonical epimorphism of ΓL(m, q) onto Aut(GF(q)) = Zu with kernel
GL(m, q) splits; to see this, as on page 79 of [A03], we may identify ΓL(m, q)
with pairs (g, α) with g ∈ Aut(GF(q)) and α ∈ GL(m, q), and now upon let-
ting Γ(m, q) = {(g, 1) : g ∈ Aut(GF(q))} we see that Γ(m, q) is a subgroup of
ΓL(m, q) which is mapped isomorphically onto Aut(GF(q)) by the canonical epi-
morphism of ΓL(m, q) onto Aut(GF(q)). Let Γδ(m, q) be the unique subgroup of
Γ(m, q) of order δ. Then clearly ΓLδ(m, q) is generated by Γδ(m, q) and GL(m, q).
Upon letting Iδ(m, q) be the subgroup of ΓLδ(m, q) generated by Γδ(m, q) and
SL(m, q) we see that Iδ(m, q) ∈ ΓSLδ(m, q). Likewise, upon letting J

(d)
δ (m, q)

be the subgroup of ΓLδ(m, q) generated by Γδ(m, q) and GL(d)(m, q) we see that
Iδ(m, q) < J

(d)
δ (m, q) ∈ ΓL(d)

δ (m, q). Now (g, α) 7→ (g, detα) gives an epimorphism
σ of ΓL(m, q) onto ΓL(1, q) with kernel SL(m, q). Hence σ induces the usual bi-
jection between the set of subgroups of ΓL(m, q) containing SL(m, q) and the set
of all subgroups of ΓL(1, q). In particular ΓL(d)

δ (m, q) = {J < ΓL(m, q) : σ(J) ∈
ΓL(d)

δ (1, q)}. Also σ(ΓSLδ(m, q)) = ΓSLδ(1, q) and σ(ΓL(d)
δ (m, q)) = ΓL(d)

δ (1, q). It
is easy to see that ΓSLδ(1, q) is the set of all conjugates of Iδ(1, q) in ΓL(1, q), and
ΓL(d)

δ (1, q) is the set of all conjugates of J
(d)
δ (1, q) in ΓL(1, q). From this it follows

that ΓSLδ(m, q) is the set of all conjugates of Iδ(m, q) in ΓL(m, q), and ΓL(d)
δ (m, q)

is the set of all conjugates of J
(d)
δ (m, q) in ΓL(m, q). Clearly Iδ(m, q) is a split

extension of SL(m, q) such that ΓLδ(m, q) is generated by GL(m, q) and Iδ(m, q),
and likewise J

(d)
δ (m, q) is a split extension of GL(d)(m, q) such that ΓLδ(m, q) is

generated by GL(m, q) and J
(d)
δ (m, q).
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Therefore ΓSLδ(m, q) is a nonempty complete set of conjugate subgroups of
ΓL(m, q), and every I in ΓSLδ(m, q) is a split extension of SL(m, q) such that
ΓLδ(m, q) is generated by GL(m, q) and I, and likewise ΓL(d)

δ (m, q) is a nonempty
complete set of conjugate subgroups of ΓL(m, q), and every J in ΓL(d)

δ (m, q) is a
split extension of GL(d)(m, q) such that ΓLδ(m, q) is generated by GL(m, q) and J .

Recalling that m > 0 is any integer, we conclude with the following four theo-
rems, where K̃e and K(e,τ) are as in (ii) and (iii) above.

Theorem (4.4.2). We have Gal(φ∗∗
m−1, Km−1) = ΓLδ(m, q) and Gal(f∗∗

m−1, Km−1)
= PΓLδ(m, q) where δ = δ(kp).

Theorem (4.4.3). We have Gal(φ∗∗
m−1, K̃m−1) = ΓLδ(m, q) and Gal(f∗∗

m−1, K̃m−1)
= PΓLδ(m, q) where δ = δ(K̃m−1). [Note that if Rm−1 = kp[[X, T1, . . . , Tm−1]] or
Rm−1 = the localization of kp[X, T1, . . . , Tm−1] at the maximal ideal generated by
(X, T1, . . . , Tm−1), then δ(K̃m−1) = δ(kp).]

Theorem (4.4.4). We have Gal(φ∗(d)
m−1, Km−1)∈ΓL(d)

δ (m, q) and Gal(f∗(d)
m−1, Km−1)

∈ PΓL(d)
δ (m, q) where d is any divisor of q − 1 and δ = δ(kp).

Theorem (4.4.5). We have Gal(φ∗(d)
m−1, K̃m−1)∈ΓL(d)

δ (m, q) and Gal(f∗(d)
m−1, K̃m−1)

∈ PΓL(d)
δ (m, q) where d is any divisor of q−1 and δ = δ(K̃m−1). [Note that if either

Rm−1 = kp[[X, T1, . . . , Tm−1]] or Rm−1 = the localization of kp[X, T1, . . . , Tm−1] at
the maximal ideal generated by (X, T1, . . . , Tm−1), then δ(K̃m−1) = δ(kp).]

Namely, for m > 1, Theorems (4.4.2) to (4.4.5) are special cases of Theorems
(4.3.2) to (4.3.5) respectively. Also obviously for m = 1 we have Gal(φ∗∗

0 , K0) =
GL(1, q) and Gal(φ∗∗

0 , K̃0) = GL(1, q), and from this the m = 1 case of Theorems
(4.4.2) to (4.4.5) follows as in the proof of Theorems (4.3.2) to (4.3.5).
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