A novel approach for raising salt tolerant transgenic plants based on altering stress signalling through Ca++/calmodulin-dependent protein phosphatase calcineurin

Anil Grover

Excess amounts of salts in soil adversely affect growth and development of salt-sensitive plants (i.e. glycophytes). Processes leading to seed germination, seedling growth, flowering and fruit set are negatively influenced by high salt concentrations. Due to high levels of salt stress, the genetic potential of the plant is not utilized to its maximal extent towards tapping the grain yield. Conventionally, it is accepted that a saline soil is one which has a conductivity of 4 ds/m, which translates into nearly 2.56g total dissolved salts in the saturated extract (or if all the salt is NaCl, an ionic concentration of 44 mM). In India, large tracts of land are unsuitable for cultivation due to high salt levels. Furthermore, the problem of excess soil-salinity is getting accentuated due to extension of the irrigation network in cropping systems. There is a great deal of urgency for developing crop varieties which can sustain and set seeds under high salt concentrations. In order to produce salt-tolerant crops by plant genetic engineering methods, it is important to obtain in-depth understanding of the plant responses to high salt concentrations 1-3.

The common salt – NaCl, is often the most abundant salt in saline soils. This compound in higher concentrations causes water deficit, ion toxicity, ion imbalance or a combination of these factors. A major part of the NaCl-induced growth inhibition is caused by excess Na ions. There is a natural tendency in all the cells to accumulate K and exclude Na ions for maintaining favourable K'/Na ratios. Presence of higher concentrations of Na1 in the growth medium upsets this balance. Excess Na may compete with K* in membrane transport and when accumulated in the cytoplasm, it inhibits many enzymes.

It has been known for a long time that presence of Ca** in the growth medium enhances the selective absorption of K* by plants at high concentrations of NaCl (ref. 5). Such observations have been made in a large number of plant species. The beneficial effects of adding CaCl2 to the root medium of rice plants which are subjected to NaCl stress are shown in Figure 1 (see Bhushan and Grover6 for more details on Na/Ca interactions in rice). To explain the mechanism(s) underlying this phenomenon, it is suggested that Ca** sustains K* transport and K*/Na* selectivity in Na-challenged plants. However, the mechanistic details of this process are largely unknown.

J. Liu and J-K. Zhu from the University of Arizona, USA, have studied the genetics of the Na*/K*/Ca** interactions employing Arabidopsis thaliana plants. These workers isolated a recessive mutant (sos3) in this species which is hypersensitive to Na*. Under salt stress, sos3 plants accumulated more Na* and retained less K* than the wild type plants. It was further found that sos3 plants were incapable of growing under low K concentrations. Increased Ca in the culture medium partially suppressed the Na hypersensitivity of sos3 plants and completely suppressed the defect in the K nutrition. Based on extensive data, it was inferred that the S03 gene product is part of a crucial pathway for mediating the beneficial effects of Ca during NaCl stress. Liu and Zhu 7 ranked the positional cloning technique for cloning SOS3 locus which is on chromosome V between two molecular markers namely nga 139 and CDPK 9. These molecular markers were employed as the starting points for identifying the overlapping YAC clones. RELP analysis delimited SOS3 locus to a 120 kilobase region of DNA between the left ends of two YAC clones. A BAC contig was subsequently assembled within this region. Further, a binary cosmids clone which rescued sos3 mutant phenotype upon transformation into sos3 mutant plants was identified. The SOS3 gene in this complementing cosmids was identified by sequencing candidate genes from the sos3 mutant plants. The transcribed sequence of the SOS3 gene was determined by sequencing several overlapping cDNAs obtained by library screening and by reverse transcriptase-polymerase chain reaction (RT-PCR). Importantly, the deduced amino acid sequence of the SOS3 gene has been found to be similar to that of a large number of EF hand calcium-binding proteins. Specifically, the amino acid sequence of the SOS3 gene product shows its close affinity to calcineurin (CAN) and neuronal calcium sensors (NCS) of animals, which can stimulate protein phosphates or inhibit protein kinases. These versatile proteins participate in some ion transport phenomena in other organisms. In animal cells, CAN plays a key role in diverse cellular functions, including T cell activation, neurotransmission, neutrophil migration, and Na+ homeostasis.

A clear picture on CAN involvement in Na+-responses has emerged from the study of yeast cells. In the yeast Saccharomyces cerevisiae, Na+ homeostasis is achieved by the coordinated regulation of plasma membrane influx and efflux systems. Na+ enters the yeast cell through K* uptake system. Under Na* stress, the K* uptake system is converted into a high affinity mode of K* transport that results in higher K*/Na* discrimination, thereby reducing the influx of Na*. The expression of this high affinity state depends on the TRK1 gene encoding a putative K* transporter. Na* efflux is mediated by the P-type ATPase encoded by ENAI, an essential gene for NaCl tolerance. Complementation of NaCl-sensitive yeast mutants led to the isolation of CNB1 gene which encodes for the regulatory subunit (CNB) of the Ca**/calmodulin dependent protein phosphatase CAN. Cells deficient in CNB accumulated Li* (Li* is a toxic analogue of Na*) due to