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Implications of measured properties
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Abstract
It is shown how the two experimentally measurable properties of the mixing matrix V', the
asymmetry A(V) = |Vio|?>—|Va1|? of V with respect to the main diagonal and the Jarlskog invariant
J(V) = Im(V11 V5V5) Vaz), can be exploited to obtain constraints on possible structures of mass
matrices in the quark sector. Specific mass matrices are examined in detail as an illustration.
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I. INTRODUCTION

Flavor mixing in the quarks, in the Standard Model, arises from the unitary mixing
matrices which diagonalize the corresponding mass matrices. In the quark sector [1], in the
physical basis, the CKM-mixing matrix is given by V = VIVy, where the unitary matrices V,,
and Vj diagonalize the up-quark and down-quark mass matrices, respectively. One can also
work in a basis in which the up-quark (down-quark) mass matrix M, (M,) is diagonal. In
these bases the mixing matrix in the quark sector (like in the neutrino sector) will come from
a single mass matrix. Clearly, if we knew the mass matrices fully then the corresponding
mixing matrices are completely determined. In practice, the mass matrices are guessed
at, while experiment can only determine the modulii of the matrix elements of the mixing
matrix.

Recently it was shown [2] that a general property of the diagonalizing unitary matrix
U imply constraints on the corresponding hermitian mass matrix M. In particular, it was
shown that the asymmetry A(U) w.r.t. the main diagonal and the Jarlskog invariant J(U) [3],
which is a measure of CP-violation, can be directly expressed in terms of the eigenvalues m;
and matrix elements M;; of the mass matrix M. Since UMU=M = diag[mq, mg, ms] one
obtains

A(U) = Uil = [Un|? = |Uss|* = [Uso|* = |Us1 | — |Uns|?

1
- M?) e — m2 M, 1
D(m){; (ma (M?)gg — mi; M) }, (1)
where
1 1 1
D(m) = |my my ms| = (mg —my)(m3 —myq)(ms — ms) (2)
mi mj mj
and
R Im(Mya Moz M75)
J(U) = Im(UnU},Uz, Uns) = g(m2)3 137 (3)
Also, in terms of M and its eigenvalues,
Ukal® = (Na )k, (4)

where

(mg — M)(m, — M) o
T r—— #B#, (5)

with «, 3, v taking values from 1 to 3. Through this equation each |Uy,| can be calculated in
terms of the eigenvalues (assuming non-degenerate eigenvalues which is true for the quarks)
and matrix elements of M. Then, |Uy,| so calculated will automatically satisfy the unitarity
relations Y, |Ukal®* =1 =3, |Uak|>. Thus, the calculated A(U) will be unique.

Eqns. (1) and (3) provide a simple criterion for selecting suitable mass matrices. In
particular, the latter is remarkable in that it shows that if Mo MogM5 is real for a given
M, then the Jarlskog invariant for the matrix U which diagonalizes it vanishes.

N, =
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II. CHOICE FOR THE MASS MATRIX M

We consider

0 a d
M=1a" 0 b]. (6)
d* b* ¢

For d = 0 this reduces to the so called Fritzsch type mass matrix [5, 6] and will give J(U) = 0.
We now investigate its viability in both the up-quark and down-quark diagonal bases.
From the characteristic equation, we have

c = my+ mg + ms, (7)
—(la* + [b]* +1d[*) = mima +mims + mams, (8)
—cla|* + 2Re(abd*) = mimayms. 9)

For the quark sector we need the mass hierarchy |m;| << |ms| << |mg|. This coupled with
Egs. (8) and (9) require my,mg > 0 and my < 0, assuming ¢ > 0, for both up and down
quarks. For simplicity we take a and b to be real and positive and d as pure imaginary.
Eq. (9) then determines a. Eq. (3) gives ab|d|. This together with Eq. (8) fixes b and |d|.

A. Down-quark diagonal basis

In this case M = M, is the up-quark mass matrix which is diagonalized by V. So the
CKM-matrix V = VI since Vg = I. Note that A(V,) = —A(V) and J(V,) = —J(V) <0, so
we choose d = —i|d| in this case. For J(V') and the quark masses we take the experimental
values given in [4]: J(V) = (3.08 £ 0.18) x 107° > 0, m, = (2.25 &+ 0.75) Mev, |m.| =
(1.25 4 0.09) x 10* Mev, and m; = (174.2 4 3.3) x 10*> Mev. Using these we obtain D(m) =
(—3.83 £ 0.31) x 103 (Mev)? and

a = (53.5+£9.1)Mev, b= (14.67 4 0.55) x 10> Mev,
c = (17.30 £ 0.33) x 10* Mev, |d| = (1.51 £ 0.27) x 10° Mev. (10)

Thus M, is completely determined. We can calculate A(V) and individual |Vi,|* using
Eq. (1) and Eq. (4), respectively. The results for are given in columns Case A of Tables I
and II.

B. Up-quark diagonal basis

In this case M = My is the down-quark mass matrix which is diagonalized by Vg. So the
CKM-mixing matrix V' = Vg since V,, = I. Here A(Vy) = A(V) and J(Vy) = J(V) > 0, so we
choose d = i|d| in this case. For numerical analysis we take the values cited in [4] as inputs:
J(V) = (3.0840.18) x 1075, mq = (5+2) Mev, |my| = (95+25) Mev, my, = (42004 70) Mev.
These give D(m) = (—1.80 £ 0.47) x 10 (Mev)? and



a = (22.0+£5.3)Mev, b= (615 86) Mev,
¢ = (4110 &+ 74) Mev, |d| = (4.10 + 0.74) Mev. (11)

Using these we can calculate A(V) and individual |V, |? as before. The results are given in
columns Case B of Tables I and II, respectively.

III. ANALISYS OF A(U)

We have also examined the dependence of A(U) as a function of my and mg for three
typical values of m; according to experimental m, and mq [4]. The results are displayed in
Figures 1-3.

In general, we observe from Figs. 1-3 that the algebraic value of A(U) increases with
the value of m; in the selected range of values of msy and ms, from —mg; = —95MeV to
—m. = —1.25GeV and from my, = 4.20GeV to my = 174.2 GeV, respectively. When
my = 1.5 MeV (see Fig. 1) and also when m; = 3MeV (see Fig. 2), A(U) < 0 for the Case A
corner (down—quark diagonal basis) where |my| = m, and |mg| = m; and A(U) > 0 for the
Case B corner (up—quark diagonal basis, |msy| = mg, |ms| = my). For m; = 7TMeV, A(U) is
positive for the whole graphic (see Fig. 3).

The increase in the algebraic value of A(U) with increasing m; (for given |my| and mg)
observed in the graphs can be understood algebraically. For the given M, the condition
A(U) > 0 can be expressed, in general, as

L<R (12)

where
L =my |my|c— mslal?, (13)
R =my |b]* — |ma| |d)?. (14)

For the choice a,b > 0 and d = Fi|d|, Eq. (9) determines a, while Eq. (8) determines b+ |d|?
and b|d| is given by Eq. (3) in terms of J(U), a, and the masses. Thus, we can determine
b* and |d|? individually. We assume b > |d| as indicated by the numerical fits in both the

cases|7]. Since ms3 > |my| and my, an approximate expression for L &~ —2m;|msy|?. Given
the values of m;, numerically Ly = —1.204 x 107 (MeV)? and Lg = —8.055 x 10* (MeV)3.
For R we obtain

2R = (m1 — |mo]) (0" + [d|*) + (1 + [ma] ) (b* — |d])
= (m1 — |ma|)(V? + [d[*) + (ma + [ma]) /(b2 + |d[*)? — (2b]d])2.

Given the numerical values of the m;, in either case, we can approximate this by expanding
the square root to the first order to obtain

b2|d|2

~ 2 2
R~ m(b® + [d?) — (mq + \mz\)m-

(15)



TABLE I: Experimental and predicted numerical values of the asymmetry A(V) (in units of 107°).
The calculated A(V) is exactly the same for [Via|? — [Vay |?, etc. (see remark after Eq. (5)). A(V)
in row 4 is the average of the three values in rows 1 to 3. Case A: In down-quark diagonal basis,
with experimental values [4] of up-quark masses and J(V') as inputs. Case B: In up-quark diagonal
basis, with experimental values [4] of down-quark masses and J(V') as inputs.

Quantity Experiment ¢ Case A? Case B?
[Via|* — [Vau]? 5+ 64 6.2+ 3.1 110 + 40
Vo |2 — [Vsal? 51783 6.2+3.1 110 + 40
Va1 |? — [Vis|? 5.0510-5% 6.2 +3.1 110 + 40

A(V) 5120 6.2+ 3.1 110 + 40
“From Ref. [4].

*From Egs. (1) and (2).

For the given masses, L can be neglected in comparison with the first term of R since
b + |d|?* = |mg|ms. Consequently, the condition Eq. (12) is effectively R > 0. Since
b? + |d|? & |my|ms, this implies (m; # 0)[8]

—L> J2(U). (16)

The approximate algebraic condition Eq. (16) gives an insight into the numerical trend that
A(U) increases algebraically as m; increases.

IV. CONCLUDING REMARKS

In this work we have examined constraints on mass matrices in the quark sector that arise
due to measured properties of the mixing matrix. Working in a basis where down—quark
(up—quark) mass matrix is diagonal and that the up—quark (down—quark) mass matrix has
a specific texture, we reconstruct the moduli of the matrix elements of the mixing matrix
taking the experimental values of the quark masses and the Jarlskog invariant as inputs.
Comparing the modulii of the matrix elements of the mixing matrix thus reconstructed with
the available data, we find better agreement for Case B when the down—quark mass matrix
has the assumed form (see Eq. (6)) with the up—quark mass matrix diagonal rather than
when the down-quark mass matrix is diagonal (Case A). This could well be attributed to
the fact that the mass ratios in the two cases are very different. It is clear that in both cases
one needs a more complicated mass matrix than the M considered above.
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TABLE II: Experimental and predicted numerical values of the moduli of the matrix elements

|Vij| of the CKM-matrix V. Case A: In down-quark diagonal basis, with experimental values [4]
of up-quark masses and J(V') as inputs. Case B: In up-quark diagonal basis, with experimental

values [4] of down-quark masses and J(V') as inputs.

Quantity Experiment ¢ Case AP Case B?
Vi1 0.9738370- 00053 0.9939 + 0.0017 0.975 +0.012
[Viz| 0.22727F5-0010 0.111 £ 0.015 0.224 + 0.051
Vi) 0.003967 395009 0.00360 + 0.00060 0.00123 + 0.00013
Vo | 0.227173-501 0.110 £ 0.015 0.221 £ 0.051
|[Vaa| 0.972967 390024 0.9903 + 0.0016 0.964 + 0.010
|Vas| 0.04221+5-00040 0.0843 + 0.0031 0.145 4 0.020
Vi | 0.008141 96052 0.0086 + 0.0015 0.0331 + 0.0060
|Vaa| 0.041611) 95042 0.0839 + 0.0031 0.141 + 0.020
Va3 0.9991001 500504 0.99644 + 0.00026 0.9895 + 0.0029

“From Ref. [4].

"From Egs. (4) and (5).
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The condition for real b and |d| can be approximated as J(U) < \/m1|ma|/(2m3) and is satisfied
in both cases.

Note that if m; was exactly zero from the start it would imply a = J(U) = 0 reducing Eq. (12)
to 0 < —|mga||d?! Also, for d = 0 again J(U) = 0 but Eq. (12) or Eq. (16) is automatically
satisfied.
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FIG. 1: Behaviour of A(U) as a function of my and mg for my = 1.5MeV. The range for my is
from —mgz = —95MeV to —m,. = —1.25 GeV and for mg from my = 4.20 GeV to m; = 174.2 GeV.
A(U) < 0 for the Case A corner (down—quark diagonal basis) where |msy| = m, and |mg| = m; and
A(U) > 0 for the Case B corner (up—quark diagonal basis, |ma| = ms, |ms| = myp).
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FIG. 2: Behaviour of A(U) as a function of mg and mg for m; = 3MeV. The intervals for mq
and mg are the same as in Fig. 1. A(U) increases with the value of m;. A(U) < 0 for the Case A
corner (down—quark diagonal basis) where |ms| = m. and |mg| = m; and A(U) > 0 for the Case B
corner (up—quark diagonal basis, |mg| = mg, |ms| = my).



FIG. 3: Behaviour of A(U) as a function of mg and ms for m; = 7MeV. The intervals for mg and
mg are the same as in Fig. 1. A(U) increases with the value of m; and now the whole graphic is
positive.



