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Abstract

A new technique for calculating the time-evolution, correlations and

steady state spectra for nonlinear stochastic differential equations is pre-

sented. To illustrate the method, we consider examples involving cubic

nonlinearities in an N-dimensional phase-space. These serve as a useful

paradigm for describing critical point phase transitions in numerous equi-

librium and non-equilibrium systems. The technique presented here is

not perturbative. It consists in developing the stochastic variable as a

power series in time, and using this to compute the short time expan-

sion for the correlation functions. This, in turn, is extrapolated to large

times and Fourier transformed to obtain the spectrum. A stochastic dia-

gram technique is developed to facilitate computation of the coefficients

of the relevant power series expansion. Two different types of long-time

extrapolation technique, involving either simple exponentials or logarith-

mic rational approximations, are evaluated for third-order diagrams. The

analytical results thus obtained are compared with numerical simulations,

together with exact results available in special cases. The agreement is

found to be excellent up to and in the neighborhood of the critical point.

The exponential extrapolation works especially well even above the criti-

cal point at large N-values, where the dynamics is one of phase-diffusion

in the presence of a spontaneously broken symmetry. A feature of this

method is that it also enables the calculation of the steady state spectra

of polynomial functions of the stochastic variable. In these cases, the final

correlations can be non-bistable even above threshold, and the logarith-

mic rational extrapolation has the greater accuracy. Finally, we emphasize

that the technique is also applicable to more general stochastic problems

involving spatial variation in addition to temporal variation.
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1 Introduction

Stochastic differential equations are a natural way of describing the interaction
of a system with a random reservoir. They were introduced by Langevin[1] to
help explain Einstein’s theory[2] of small particles immersed in a fluid, as ob-
served by the biologist Robert Brown. More rigorous mathematical treatments
were later introduced by Ito[3] and Stratonovich[4]. They have now diffused
into many different areas[5] of physics, chemistry and biology. In recent times,
similar models have been utilized in ever more diverse fields, including engineer-
ing, economics[6] , and even sociology. The essence of a stochastic differential
equation is that it isolates a system of interest from the background of random
events that may influence the system. Implicit in this formulation is the idea
that the reservoir, or source of random fluctuations, evolves without reference to
the system of interest. This simplifies the study of otherwise complex coupled
phenomena.

As an example, the calculation of correlation functions, and hence the spec-
tra, of physical systems near phase transitions is of considerable theoretical inter-
est. These have dynamical properties that are often conveniently described using
stochastic differential equations. However, commonly used analytic techniques
like linearization, frequently become invalid near phase-transition points. At
the same time, while numerical simulation is possible, this is a time-consuming
computational procedure without resulting in a great deal of insight. Thus,
there is a need for techniques that give analytical results. Rather surprisingly,
there are few systematic procedures for treating nonlinear stochastic differential
equations under conditions where linearization is invalid.

In this paper we consider the spectra of physical systems that are described
by stochastic differential equations near a critical point phase transition. Such
differential equations have a near universal applicability, both for equilibrium
and non-equilibrium phase transitions [5]. For instance, they arise in theoret-
ical treatments of single mode lasers [5], inhomogeneously and homogeneously
broadened two mode lasers [7, 9], and optical parametric amplifiers near thresh-
old [10, 11]. A number of useful theoretical techniques [12, 17] are known for
these problems, some of which improve upon the the conventional Zwanzig-Mori
projection operator method [18, 19]. However, these techniques are cumbersome
for systems in higher phase space dimensions.

Instead, we propose a simple, direct calculation which is based on the
stochastic differential equation. The resulting integral expressions can be clas-
sified diagrammatically, in a way that allows a straightforward calculation of
essential combinatoric factors. The results give a power series in time which
can be extrapolated to long times with reasonable accuracy in many cases. We
analyze two possible extrapolation techniques, namely the exponential of a ra-
tional function, and a series of simple exponential terms. Either method gives
excellent results at or below the critical point.

Above the critical point, we find differences in accuracy, and this can be
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related to the dominant eigenvalue distributions for different types of equation
and observable. Convergence is slowest when the spectrum has characteristic
time-scales which are an exponential function of an equation parameter, as in
the one-dimensional cubic stochastic process above threshold, which involves
diffusion over a barrier. The exponential series method is preferable for simple
types of spectra with only one or two dominant eigenvalues, which turns out to
be the case for the N -dimensional cubic stochastic process at large N -values.
The rational function method is best for complex spectra without much range
in characteristic time-scales. An example of this is the intensity (x2) correlation
spectrum of the one-dimensional cubic process, which can be represented with
remarkable accuracy using low-order rational function extrapolation.

More generally, we expect that this method can be applied to any stochastic
differential equation where conventional linearization methods are inapplicable
due to large nonlinear terms. Under these circumstances, it may be useful to
have a nonlinear solution of the type derived here, as a starting point for a
perturbative or asymptotic analysis. For these reasons, it is useful to analyze
the simple cubic nonlinear case in detail, both as a test case for the stochastic
diagram method, and as an elementary stochastic process of intrinsic interest.

2 Stochastic Equations

The method of stochastic diagrams to calculate solutions to stochastic differ-
ential equations is normally applied in the frequency domain, where it corre-
sponds to a perturbation theory expansion in a small coupling constant [20, 21].
In these applications, there is a close resemblance to Feynman diagram tech-
niques. In both cases, the starting point of the iterative method is the ap-
proximate linearized solution to the problem, which becomes the solution to the
entire correlation function in the limit as the coupling constant approaches zero.
Frequency domain stochastic diagrams have many useful applications, includ-
ing the stochastic quantization approach to quantum field theory. An essential
difference between these methods and Feynman diagrams, is the appearance of
stochastic terms that are averaged over at a later stage.

We choose here to apply stochastic diagrams to the time domain correlation
function. This has the advantage that there are no singularities in the series
expansion coefficients, even at a critical point. A corresponding disadvantage is
that the long time correlation functions cannot be directly calculated, and must
be approximated by an extrapolation procedure that is based on some known
property of the solution. In the examples given here, we use either simple expo-
nentials or logarithmic rational function extrapolation, which results in analytic
expressions for the approximate correlation function. A direct comparison with
numerically calculated spectra will be used to demonstrate the great accuracy
of this procedure in calculating spectra near critical points. It is less accurate
above threshold in the bistable cases where stochastic ‘barrier hopping’ or ‘tun-
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neling’ can occur, resulting in widely differing eigenvalues. This results in a
reduced precision for the extrapolation. Methods based on multiple time scales
can be used in these cases.

Surprisingly, in the closely related higher-dimensional phase-diffusion prob-
lem, stochastic diagrams give good results. An example of this is the laser above
threshold. This is because the long time-scale here is not exponentially long,
as it is in the tunneling cases. Good results are also found for non-bistable
variables like the intensity, even when the underlying equations are themselves
bistable. This is because the extrapolation is carried out in terms of the cor-
relation function, which has a different behavior to the underlying stochastic
variable. In order to illustrate these various cases, we start with a very general
form of stochastic differential equation.

The equations we wish to treat are of the form

ẋ = A(x) + B(x) · ξ(t) , (1)

where the real noise sources ξi(t) have zero mean and are delta-correlated in
time so that

< ξi(t) >= 0 ; < ξi(t)ξj(t
′) >= δijδ(t − t′) . (2)

Here x is a real vector of n-dimensions, A is an n-dimensional real polynomial
vector function of x and B is an n × m dimensional real polynomial matrix
function of x. The vector ξ(t) is an m-dimensional real Gaussian stochastic
process, interpreted in the Itô sense[22], for computational simplicity.

2.1 Iterative solutions

The method of stochastic diagrams consists of performing an iterative solution
for x(p)(t) so that

x(p)(t) = x0 +

∫ t

t0

dt′[A(x(n−1)(t′)) + B(x(n−1)(t′)) · ξ(t′)] , (3)

where x(0)(t) ≡ x0 ≡ x(t0). Next, correlation functions of the typical form

Gij(t, t0) =< xi(t)xj(t0) > − < xi(t) >< xj(t0) > , (4)

are evaluated to pth order, resulting in an expansion of Gij(t, t0) as a power series
in τ = t − t0 for τ > 0. For any given term p in the power series, iterations
must be carried out until all possible terms in τp are evaluated. The result
of the iterations consists of integrals over time which will be represented as
directed lines in the stochastic diagrams. In addition, there are polynomials in
variables (represented as vertices), initial conditions in the variables (represented
as terminating arrows, and treated as delta functions at the initial time) and
stochastic terms (represented as crosses).
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2.2 Cubic stochastic process

Thus, for example, the solution of the well-known cubic stochastic process [22]

ẋ = −x3 + ξ(t) , (5)

has a first iteration, starting from a known initial value x(0) = v at t = 0, of

x(1)(t) = v + w(t) −
∫ t

0

dt′v3 . (6)

where w(t) =
∫ t

0
dt′ξ(t′). More generally, the nth iteration in this simple one-

dimensional case is written

x(n)(t) = v + w(t) −
∫ t

0

dt′(x(n−1)(t′))3 . (7)

Thus, we can expand the second term in the iteration as

x(2)(t) = v + w(t) −
∫ t

0

dt′[v + w(t′) − t′v3]3

= v + w(t) +

∫ t

0

dt′[(t′)3v9 − 3(t′)2v6w(t′) − 3(t′)2v7 − 6t′v4w(t′)

+ 3t′v3w(t′)
2
+ 3t′v5 − w(t′)

3 − 3v2w(t′) − 3vw(t′)
2 − v3] . (8)

We see that even this simple example leads to a large number of distinct terms,
which need to be classified in a systematic way. In particular, while the leading
term in the integral is of order t4, there are other terms of lower order present,
including the stochastic terms and a term of order t which comes from the initial
condition.

2.3 Stochastic diagrams

The next term in the iteration involves a cubic integral of x(2)(t), and clearly
the combinatoric factors involved are more complex to three and higher orders.
In order to simplify the counting of these factors, a diagrammatic classification
can be introduced at this stage. In this classification, the terms are given di-
agrammatically to first order in Fig (1). To second order, all possible terms
in x(1)(t) appear as ‘legs’ on the nonlinear vertex, to the next higher order, as
shown in Fig (2).

Not all terms will contribute to the same order in a power series in τ , since
the expectation value of a product of two stochastic integrals is proportional to
τ , while the product of two deterministic integrals is proportional to τ2. This
means that a reordering of the sequence is needed, to obtain a series of terms
to a given order in τ . The rules are simple: all vertices counts as one order in
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τ while stochastic terms count as half an order in τ and initial values as zero
order. If the terms in the reordered series are labeled as x̃(n)(t) we can represent
them according to Fig (3). On expanding all the relevant terms in Fig (3), we
obtain:

x̃(0)(t) = v

x̃(1/2)(t) = w(t)

x̃(1)(t) = −v3t

x̃(3/2)(t) = −3v2w̃(t)

x̃(2)(t) = 3[−vw̃2(t) + v5t2/2]

x̃(5/2)(t) = −w̃3(t) + 9v4

∫ t

0

w̃(t′)dt′ + 6v4

∫ t

0

w(t′)t′dt′

x̃(3)(t) = 3v3

∫ t

0

w2(t′)t′dt′ + 9v3

∫ t

0

w̃2(t′)dt′

+ 18v3

∫ t

0

w(t′)w̃(t′)dt′ − t3v7 − 3

2
t3v7 . (9)

Here we have introduced the notation of:

w̃n(t) ≡
∫ t

0

wn(t′)dt′ . (10)

Further rules in stochastic calculus (of the Itô variety) are that the expectation
values of the products of initial terms with stochastic terms decorrelate to all
orders at later times and all odd products of stochastic integrals average to zero.
This means that the only surviving terms in the expectation value Gij must be
the terms of integer order in the series. For other types of expectation values
(involving polynomials in x(t)), these extra terms must be retained.

If we take expectation values of the relevant stochastic terms, they have the
structure:

〈w2(t)〉 = t

〈w̃(t)w(t)〉 = 〈w̃2(t)〉 = t2/2 . (11)

Hence, on decorrelating, integrating over time, and combining all the relevant
terms up to third order we obtain (for the average and correlation function of
x(t)):

〈x(t)〉 = 〈v − tv3 +
3

2
t2(v5 − v) +

1

2
t3(11v3 − 5v7)〉

〈x(t)x(0)〉 = 〈v2 − tv4 +
3

2
t2(v6 − v2) +

1

2
t3(11v4 − 5v8)〉 . (12)

These results are valid for an arbitrary initial distribution function. If carried
out to higher orders, it is clear that they can describe either a transient process,
or else a steady-state correlation in the time-domain, to any order in time.
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3 N-dimensional cubic stochastic process

Having introduced the stochastic diagram method, we now apply it to the N-
dimensional cubic stochastic process

ẋi(t) = −ηixi − fijklxjxkxl + ξi(t) ; i, j, k, l = 1, · · · , N . (13)

Here summation over repeated indices is implied. The coefficient fijkl of the
cubic terms can be taken to be symmetric in the the last three indices without
any loss of generality. This stochastic equation, with appropriate choice of
parameters accommodates the stochastic equations that have been considered
in the context of single and two mode lasers and optical parametric amplifiers
[1-6]. The quantities of interest are the equilibrium correlation functions

G(n)
ij (τ) = lim

t0→∞
[< xn

i (τ + t0)x
n
j (t0) > − < xn

i (τ + t0) >< xn
j (t0) >] . (14)

This equation now has the added feature of a linear loss/gain term η. When
η > 0, there is additional damping, and the system is below threshold in the
usual sense. The deterministic critical point is at η = 0. When η < 0, the system
has linear gain (like a laser above the lasing threshold), and the system is then
above the critical point. However, it is worth noting that as the dimensionality
increases, this type of classification which comes from a linearized analysis is
rather misleading. In fact, the enlarged phase-space volume means that noise
sources become increasingly important at large dimensionality - to the point that
there is a reduced distinction between the above and below threshold cases.

3.1 Steady-state behavior

Steady-state behavior is most readily analyzed if, for simplicity, we confine
ourselves to the following equation with N -dimensional rotational symmetry:

ẋ(t) = −ηx − x(x · x)/N + ξ(t) . (15)

This corresponds to defining the cubic coefficient as: fijkl = [δijδkl + δikδjl +
δilδjk]/(3N) .

This stochastic equation has what is known as detailed balance - and hence
an exact solution in the steady-state, found by examining the corresponding
Fokker-Planck equation:

∂

∂t
P (t,x) = LFP P (t,x) =

∑

i

[(
∂

∂xi
[η + x · x/N ]xi +

1

2

∂2

∂x2
i

]
P (t,x) . (16)

The equilibrium distribution is Pe(x) = N exp [−V (x)], where V (x) is a
potential function given by:

V (x) = ηx · x + (x · x)2/2N . (17)
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The stochastic equation also has an exact relationship between the moments
of different orders in the steady-state, which can be easily derived from the
variable-change rules of Ito stochastic calculus. These are:

M(n+1) = (2n + N − 2)M(n−1)/(2N) − ηM(n) (18)

Here we have defined M(n) = 〈[x ·x]n〉e/N , as a convenient normalized form
of the moment. Although these recursion relations are useful, the mean-square
fluctuations have to be calculated from the potential solutions given above. The
quantity M(1) = 〈x · x〉e/N can therefore be computed explicitly and is given
by

M(1) =

√
N

4
U

(
N + 1

2
,
√

Nη

)
/U

(
N − 1

2
,
√

Nη

)
, (19)

where U(a, x) denote the Whittaker functions [23]. For η = 0, this expression
simplifies to

M(1) =

√
2

N
Γ

(
N + 2

4

)
/Γ

(
N

4

)
. (20)

3.2 N = 1 case

An important property of this potential in the one-dimensional case of N = 1,
is that it possesses a potential barrier at x = 0, if η < 0. This means that there
is a progression from a stable ‘below-threshold’ region for η > 0, (where x = 0
is the deterministic stable point), to a critical region for η = 0 characterized by
large fluctuations, and then to a bistable region for η < 0. This is characterized
by local stability in the two potential wells at x = ±

√
|η|.

The N = 1 case has been well-studied in terms of its eigenvalue spectrum.
Any one-dimensional Fokker-Planck equation can be transformed to an equiva-
lent Schroedinger equation problem with imaginary times[12], by introducing a
Schroedinger operator. In this case, it has the form:

LS = exp [V (x)/2]LFP exp [−V (x)/2]

= [2V ′′(x) − (V ′(x))2]/8 +
1

2

∂2

∂x2

= −1

2
[x3 + ηx]2 + [η + 3x2]/2 +

1

2

∂2

∂x2
. (21)

At large positive values of η, the corresponding Schroedinger potential re-
duces to a harmonic oscillator problem, with quadratic potential. Transforming
back to real time, the eigenvalues of the Fokker-Planck operator are of form:

LFP Pn(x) = −λnPn(x) , (22)

where λn = nη. Physically this is easy to understand. The equation is domi-
nated by the linear decay rate η, and integer multiples of η will occur through
the decay of integer powers of the variable x.
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At large negative values of η, the equation is bistable, and there are two
principle eigenvalues. A fast equilibration inside each potential well occurs,
with an eigenvalue of λf = 2|η| in the limit of large η. A slow decay also occurs
through diffusion over the barrier. Ignoring terms in |η| of order (1) in the
pre-factor, this gives a slow eigenvalue:

ln[λs] ≃ −∆V + ln[|η|] ≃ −η4/2 + ln[|η|] . (23)

It is significant for the stochastic diagram method, that this eigenvalue is
exponentially small in the limit of large η. Thus, we cannot expect an accurate
estimate of the eigenvalue with any technique involving a finite series of terms
in η, and any corresponding spectrum in which λs is significant will not be able
to be estimated with a finite expansion in powers of η.

3.3 Large N case

For N > 1, a similar progression from below to above the critical point holds
deterministically, except that there is no bistable region. Instead, for η << 0,
there is a region characterized by neutral stability in the subset of phase-space
where |x| ≃

√
|η|N . Thus, there is a continuum of possible deterministically

stable behaviour. This phenomenon is sometimes called spontaneous symmetry
breaking. To show this more clearly, consider the distribution PR(R), in the
variable R = |x|2/N . This has a steady-state potential of VR(R) = N [ηR +
R2/2 − (1/2 − 1/N) ln(R)]. As a result, for increasing N , the distribution in

R is peaked more and more strongly near the value Rη = (
√

2 + η2 − η)/2. In
fact, due to the increase in phase-space volume as R increases, there is always
an outward ‘entropic’ force even when η > 0. This means that the stochastic
equation at large N is not described well by the deterministic stability theory.

In this limit, the radius approaches a fixed value, due to the balance between
the outward entropic force due to increasing phase-space volume, and the inward
force due to the nonlinearity. Thus, the moments M(n) all factorise, and are
given by:

M(n) = ([
√

2 + η2 − η]/2)n . (24)

The recursion relation for moments now simplifies, and it is straightforward to
verify that the above solution does satisfy the recursion relation.

Generally, in a stochastic equation, spontaneous symmetry breaking is ac-
companied by a type of phase-diffusion, or tangential diffusion in a surface of
dimension N − 1. Hence, the lack of bistability for any N greater than one
results in a dynamical behaviour in which diffusion still occurs, but with a re-
duced dimensionality. These two types of above-threshold behaviour result in
different dynamical regimes for the resulting correlation functions and spectra.
In both cases, the above threshold dynamics typically involves more than dif-
ferent time-scale. The radial relaxation to a stable point within a potential well
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in the R-space equations generally occurs much faster above threshold than the
tangential diffusion.

There are corresponding changes in the large-N dynamics, and the physical
explanation for this is interesting. In the limit of N → ∞, the fast radial
equilibration takes place in an approximately quadratic potential well at all
values of η. It may be noted that the corresponding (Itô) stochastic equation
for radial equilibration involves noise in a multiplicative way. In the general
case, we find that:

Ṙ = −2ηR − 2R2 + 1 + 2

√
R

N
ξ(t) , (25)

where 〈ξ(t)ξ(t′)〉 = δ(t−t′). As well as having multiplicative noise, this equation
also shows why the stochastic equation trajectories are confined to an increas-
ingly small region in R-space, as N increases. This occurs because the relative
size of the noise term in the radial equation decreases as N increases. Thus,
radial equilibration takes place with a fast relaxation rate of

λf = 4Rη − 2η = 2
√

2 + η2 . (26)

In the tangential direction, diffusion takes place on a hyper-spherical surface
of fixed radius defined by

|x| =
√

NRη . (27)

Suppose we define a coordinate system so the diffusion starts with a radial
coordinate of x1 =

√
NRη at time t = 0. For small times, the other (tangential)

coordinates obey the diffusion equation, so that

〈x2
j 〉 = t , (28)

for j > 1. Since the radius is fixed by the radial equation, it follows that
this corresponds to angular diffusion. Projecting each angular variable in turn
onto a radius vector in a lower dimensional subspace reduces the length of
the resulting vector. Finally, in the subspace of one dimension containing the
original (starting) vector, we have:

〈x1(t)〉 ≃
√

NRη[1 − t/NRη](N−1) ≃
√

NRη exp [−(1 − 1/N)t/2Rη] . (29)

This corresponds to a much slower tangential relaxation rate of

λs = (1 − 1/N)/(2Rη) (30)

in the large N limit. We note that this is not exponential in η, unlike the one-
dimensional case. Similar behaviour would occur in the case of finite N and
large, negative η, which is also dominated by the tangential diffusion caused by
spontaneous symmetry breaking. However, for the case of finite N values, the
slow eigenvalue must reduce to λs = η in the limit of large enough positive η.
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4 N-dimensional stochastic diagrams

The N -dimensional equation clearly has the same structure as the integral equa-
tion associated with the simple cubic process considered in the previous section,
except for the linear terms which would complicate the diagrams if retained. In-
stead, we can simply define yi(t) = exp(ηi(t−t0))xi(t), which obeys a stochastic
equation without a linear term. This can then be iterated as previously. The it-
erative solution has the same diagrammatic structure as before. Using an initial

estimate for xi(t) of x
(0)
i (t) = e−ηi(t−t0)vi, where the initial value is v = x(t0),

the basic iterative solution is given by:

x
(n+1)
i (t) = e−ηi(t−t0)xi(t0)

+

∫ t

t0

dt′e−ηi(t−t′)[ξi(t
′) − fijklxj

(n)(t′)x
(n)
k (t′)xl

(n)(t′)] .

(31)

It is easily checked that replacing the approximations x(n), x(n−1) by x, leads
to an exact integral equation for x(t).

We can now identify successive iterations with terms in the stochastic dia-
grams for vector quantities xi(t), where each vertex includes a term −fijkl, and
each directed arrow corresponds to

∫
exp(−ηi(t− t′))... Thus, in evaluating the

diagrams, each vector initial condition is replaced by vj exp(−ηj(t − t0)), and
the noise term w(t) is replaced by:

wi(t) =

∫ t

t0

dt1e
−ηi(t−t1)ξi(t1) (32)

. To order τ3, this can be calculated using the diagrams in Fig (3a)-(3d), by
making the associations given in Fig (4). Using the diagrams in Fig (3), one can
easily derive an expansion for xi(t) up to order τ3. The details of the resulting
stochastic integrals are straightforward, but rather lengthy.

These results are given in the Appendix for the rotationally symmetric

case.In the symmetric case, it is also clear that G(1)
ij (τ) = 0 if i 6= j and that

G(1)(τ) ≡ G(1)
ii (τ)

= lim
t0→∞

[< x(τ + t0) · x(t0) > − < x(τ + t0) > · < x(t0 + τ) >]/N .

(33)

4.1 N-dimensional two-time correlation function

Averaging the expression for xi(t) thus obtained over ξ(t)’s, expanding the ex-
ponential factors and keeping all terms up to order τ3, one obtains the result for
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the steady-state or equilibrium two-time correlation function. In this expres-
sion the two-time correlation is given in terms of the initial one-time moments
of the stochastic process. We note that it is not essential, at this stage, to use
equilibrium moments. The same general result occurs regardless of the initial
condition, even for the case of transient correlations calculated without taking
the steady-state limit.

We will focus on the symmetric case here, and simplify the following expres-
sion (derived in the Appendix), by using the definition of M(n) = < Rn >e =
< [x · x/N ]n >e, where the subscript e denotes an equilibrium average:

G(1)(τ) = M(1) − τ
[
ηM(1) + M(2)

]

+ τ2

[(
η2

2
− N + 2

2N

)
M(1) + 2ηM(2) +

3

2
M(3)

]

− τ3

[(
η3

6
− η

(
5N + 10

6N

))
M(1)

+

(
13η2

6
− 7N + 26

6N

)
M(2) +

9η

2
M(3) +

5

2
M(4)

]

+ O(τ4) . (34)

Next, we can substitute the known equilibrium moments to obtain a final
expression for the correlation function in terms of the mean square fluctuation
M(1) =< x · x/N >e, although still in a power series in τ . Using the previous
relations M(n+1) = (2n + N − 2)M(n−1)/(2N) − ηM(n), and defining

a = 1/(2M(1)) , (35)

one obtains the following power series:

G(1)(τ) = M(1)

[
1 − aτ + τ2

(
N + 2

4N
+

1

2
ηa

)

− τ3

(
N + 8

12N
a +

1

6
η2a −

(
4 − N

12N

)
η

)
+ O(τ4)

]
, (36)

It is convenient to re-express this as:

G(1)(τ) = M(1)[1 −
3∑

n=1

anτn] . (37)

where:

a1 = a

a2 = − (N + 2 + 2Nηa) /(4N)

a3 =
(
(N + 8)a + 2Nη2a − (4 − N)η

)
/(12N) (38)
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Although the result is still expressed in terms of the correlation function through
a, this quantity can be calculated exactly, either by integrating the distribution
function numerically, or by using the Whittaker function representation. In the
case of η = 0, this reduces to a =

√
N/8Γ (N/4)/Γ ((N + 2)/4).

4.2 Correlations of polynomials

The diagrammatic expression for xi(t) in powers of τ and W (τ) can also be used
to calculate the equilibrium correlations for any polynomial functions of xi(t).
Thus, in the case N = 1, for the equilibrium correlations for R = x2:

G(2)e(τ) = lim
t0→∞

< R(τ + t0)R(t0) > − < R(τ + t0) >< R(t0) > , (39)

we obtain

G(2)e(τ) = [M(2) − (M(1))2] − τ [2M(1)] + τ2[2 − 2ηM(1)]

− τ3[8M(1) +
4

3
η2M(1)] + O(τ4) . (40)

Here we notice that M(2) = 1/2 − ηM(1), so the pre-factor in the above
expression reduces to:

[M(2) − (M(1))2] = G(2)(0) =
2a2 − 2ηa − 1

4a2
. (41)

Just as in the case above, we can write the two-time correlation function
down in terms of the individual power series terms, as:

a
(2)
1 = 4a/[2a2 − 2ηa − 1]

a
(2)
2 = −[8a2 − 4ηa]/[2a2 − 2ηa − 1]

a
(2)
3 = 4a(4 + 2η2/3)/[2a2 − 2ηa − 1] (42)

5 Spectral calculations

The correlation function in the time domain must be extrapolated to long times
in order to compute the spectrum, which involves a Fourier transform over all
times. The general spectrum for any steady-state correlation function is:

S(n)(ω) = 2Re

∫ ∞

0

dτG(n)(τ)eiωτ . (43)

In order to perform the Fourier transform, some extrapolation of the power se-
ries is required. In general, for an arbitrary initial condition, this is a difficult
operation to perform. However, in the steady state, the un-subtracted correla-
tion function must factorise at long times to the product of the mean values at
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initial and final times. This means that the correlation function defined here
gives rise to exponential decay at long times.

In fact, for the type of stochastic differential equations considered here, we
expect a discrete spectrum with an exponential decay at long times. However,
a simple truncation of the power series at a finite order will not lead to an ex-
ponential decay, so we cannot just truncate the power series in time to obtain
the spectrum. We will consider two different approaches to extrapolation. The
first is to simply represent the correlation function with a finite series of ex-
ponentially decaying terms, the second is to approximate the logarithm of the
correlation function as a rational function.

We assume that our starting point is an arbitrary correlation function G,
expressed as power series up to p-th order in the stochastic diagrams, of form:

G(τ) = G(0)[1 −
p∑

n=1

anτn] . (44)

5.1 Simple exponential extrapolation

This technique represents the correlation function as a finite series of decaying
exponential terms. The coefficients can then be matched to the known power
series in time on a term-by term basis. This method is especially useful when
only a small number of eigenvalues dominates the spectrum.

For a power series calculation to order τ3, two distinct exponential terms are
required. More generally, any correlation function expanded to order p = 2p′−1
is represented using p′ effective eigenvalues as:

G(τ) = G(0)

p′∑

n=1

gn exp(−λnτ) . (45)

Here, for simplicity, we impose the restriction that
∑p′

n=1 gn = 1. It is also
obviously necessary that all the effective decay rates are positive. In the third
order stochastic diagram case, on matching powers of τ , one obtains:

g1 =
1

2
− a3

1 + 3a1a2 + 3a3

2∆

g2 =
1

2
+

a3
1 + 3a1a2 + 3a3

2∆

λ1 =
−∆ − 3a3 − a2a1

2a2 + a2
1

λ2 =
∆ − 3a3 − a2a1

2a2 + a2
1

(46)
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where the denominator term ∆ is defined by:

∆ =
√

6a3
1a3 − 3a2

1a
2
2 + 18a1a2a3 − 8a3

2 + 9a2
3 . (47)

5.1.1 Amplitude correlations - N=1 case

For the case of G(1) at N = 1, the dependence of λ1 and λ2 on η is displayed
in Fig (5a) by the two solid lines, where the upper line corresponds to λ1 and
the lower line to λ2. There is a marked transition in this N = 1 case, between
the non-bistable behaviour for η >> 0, where the two time-scales are identical,
and the bistable behaviour for η << 0, where one time-scale becomes very long,
corresponding to stochastic ‘barrier-hopping’ over the potential barrier in the
distribution function at x = 0. In this region, the extrapolation technique used
here is obviously less reliable, since the relevant eigenvalue is an exponential
function of η. One cannot accurately estimate these long-time tails on the
correlation function, purely from the short-time information provided by the
stochastic diagrams. In fact, there are other techniques based on multiple time-
scales, which are more suitable in this above-threshold region.

Nevertheless, the technique does generate the fast eigenvalue (λf = 2|η|)
correctly for large negative η. For large positive η, the harmonic oscillator
predictions are regained. It is interesting to note that the fast eigenvalue in this
case is λf = 3|η|; this occurs because the symmetry of the problem means that
even order eigenvalues are not significant in the dynamics of G(1)(t) at large
damping. The slow eigenvalue is not accurately reproduced at large negative
η, since this becomes exponentially slow (i.e, should be a straight-line graph).
We will show later, by comparisons to numerical simulations, that the critical
dynamics are reproduced accurately.

5.1.2 Amplitude correlations - N=4 case

In Fig (5b), the behaviour of the eigenvalues for G(1) at N = 4 is shown in
the solid lines. Here we expect the slow eigenvalue to approach λs = .375/(Rη),

where Rη = [
√

2 + η2−η]/2, while the fast eigenvalue should be λf = 2
√

2 + η2.
Since these are strictly large-N limits, we cannot expect these to be found ex-
actly. These approximate results are actually reproduced with surprising pre-
cision, especially in the phase-diffusion limit of large negative η. Thus, we find
λs = .076 and λf = 10.4 at η = −5. The approximate predicted values would
be λs = .074, and λf = 10.6, with even better agreement at larger values of |η|.
At large positive η, the slow eigenvalue approaches η, and the fast eigenvalue
approaches 3η due to the x3 term in the stochastic equation. This is a result
due (as in the N = 1 case) to symmetry properties; the intra-well eigenvalue
with λ = 2η does not contribute to this correlation function.
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5.1.3 Intensity correlations - N=1 case

Finally, we consider a quadratic correlation function, which we term the inten-
sity correlation. This is the case of G(2) at N=1. These results for the relaxation
rates are given in the solid lines of Fig. (5c). Here we see no trace of the expo-
nentially slow eigenvalue. This describes a sign-reversal process which has little
or no effect on intensity correlations. Hence, all the observed relaxation rates
are caused by the higher-order eigenvalues for intra-well relaxation. Far below
threshold, and above threshold, the eigenvalues approach 2|η| and 4|η|, which
are characteristic of intra-well relaxation. Near the critical point of η = 0, there
is strong critical slowing down, with longest time-scales (smallest eigenvalue)
being found at η ≃ −1.5. Although this region is bistable, it gives the slowest
relaxation rate of λs = 2.35; going further into the bistable region speeds up
the intra-well relaxation.

5.2 Rational logarithmic extrapolation

An alternative ‘generic’ technique, is to approximate the logarithm of the corre-
lation function as a rational function, with a numerator of one order larger than
the denominator. This is guaranteed to have an exponential behaviour at large
τ . We call this procedure rational logarithmic extrapolation. It can be applied
to a power series of any order, as long as it is known that the series gives rise
to exponential decay at long times. It is especially useful for complex spectra
that may have several eigenvalues - as long as the values are not too different
from each other.

For a power series calculation to order τ3, a quadratic rational function is
required, so that we can approximate the correlation function to the given order
as

G(τ) = G(0)

[
exp−

(
ατ + βτ2

1 + γτ

)]
. (48)

On matching powers of τ with the previous power-series expression, one obtains
the following general results:

α = a1

γ = −2(a3 + a1a2 + a3
1/3)

a2
1 + 2a2

β = a1γ + a2
1/2 + a3 (49)

These can be used to obtain an extrapolated correlation function in any
of the cases treated here. However, it is clearly important to ensure that the
asymptotic coefficient, β/γ, is positive - otherwise no decay will occur.

16



5.2.1 Amplitude correlations - N=1 case

In the expression for G(1), the logarithmic expansion gives:

γ =
4Na3 − 6Nηa2 + 2Nη2a − 2(N − 1)a − (4 − N)η

3N + 6 + 6Nηa− 6Na2
,

β

γ
= a −

(
3N + 6 + 6N(ηa − a2)

)2

12N(4Na3 − 6Nηa2 + 2Nη2a − 2(N − 1)a − (4 − N)η)
. (50)

The approximate expressions for the equilibrium correlations of x(t) given
above are characterized by two time scales - λs = α = a and λl = β/γ which
govern the short and long time behaviors respectively. For the case of G(1) at
N = 1, the dependence of λs and λl on η is displayed in Fig (5a) by the two
dashed lines. As previously, there is a marked transition in this N = 1 case,
between the non-bistable behaviour for η >> 0 and the bistable behaviour for
η << 0. Since the two time-scales here correspond to overall rates at long and
short times, and not effective eigenvalues, the distribution of rates is different
below threshold - eigenvalues with a low weighting do not contribute very much
to the final rate. For this reason, we see no direct evidence for the fast time-scale
below threshold, which corresponds to the relaxation of higher order eigenstates.

In the region of long time-scale ‘barrier-hopping’, the extrapolation tech-
nique used here is less reliable. One cannot accurately estimate these long-time
tails on the correlation function, purely from short-time information. This can
be seen most clearly in the way that the slower of the two time-scales goes off
the bottom of the logarithmic graph. At this stage, the longest time-scale is
negative, indicating that the rational function approximation has broken down,
and would predict an infinite or diverging spectrum. Obviously, the extrapo-
lation is severely inaccurate at this point, and cannot be used this far above
threshold.

5.2.2 Amplitude correlations - N=4 case

One might expect that the rational approximations used here should improve
above threshold as N increases, as the equations are not bistable for large N .
This hypothesis proves to be valid, as we show by the use of numerical stochas-
tic techniques in the following sections. However, the improvement can already
be seen in Fig (5b). In Fig (5b), which gives G(1) at N = 4, the slowest relax-
ation times above threshold are slightly too small compared to the exponential
method, which indicates that the ratio of relaxation times is still too large for
this method to give correct extrapolations, although the situation is much better
than in the bistable case with N = 1.

17



5.2.3 Intensity correlations - N=1 case

For intrinsically non-bistable quantities like G(2)(τ) the problems above do not
occur at all, as shown in Fig (5c), which graphs G(2) at N = 1. Here the results
of both extrapolation methods give similar behaviour. This is not immediately
evident from the graphs, as the rates defined here do not have identical interpre-
tations. In fact, the generic method of rational function extrapolation is actually
better than the exponential method in this case. In order to demonstrate this
in detail, we must turn to the full spectral calculation, which include both the
relaxation rates and the relative weights.

Before turning to the spectral results, we note that the two-time correlation
function for the quadratic correlations in the rational approximation have quite a
simple form. Extrapolating to large τ using the rational function approximation
as above, we obtain

G(2)(τ) ≃ [M(2) − [M(1)]2]

[
exp−

(
a′τ + b′τ2

1 + c′τ

)]
, (51)

where, using the result M(2) = 1/2 − ηM(1),

a′ = 4M(1)/(1 − 2ηM(1) − 2[M(1)]2) ,

c′ =

(
a′2
3

+ 4 +
2

3
η2 − 1 − ηM(1)

M(1)
a′

)
/

(
1 − ηM(1)

M(1)
− a′

2

)

b′

c′
= a′ − a′

(
1 − ηM(1)

M(1)
− a′

2

)2

/

(
a′2
3

+ 4 +
2

3
η2 − 1 − ηM(1)

M(1)
a′

)
.(52)

It is interesting to note from Fig(5c), that even for N = 1, the x2 variable
is clearly not bistable, and shows no sign of the characteristic long time-scales
of bistable variables. Instead, there is a critical slowing-down near η = 0, with
shorter time-scales at all other η values. This also agrees with the exponential
extrapolation results.

5.3 Spectral results

Having computed a long-time extrapolation to the two-time correlation function,
it is now possible to calculate the spectrum. A simple Lorentzian spectrum is
generated by the first order stochastic diagrams. This approximation we shall
see is surprisingly close to the correct spectrum even for finite N values, es-
pecially at high frequencies. The reason for this is that the middle to high
frequency spectral behaviour is mostly due to the change in slope in the two
time correlation function near τ = 0, due to the fact that the steady state corre-
lation function must be a function of |τ |. The low frequency spectral behaviour
near ω = 0 has additional contributions due to the τ → ∞ behaviour of the
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correlation function, which is not always given accurately using a first order
expansion in τ . The lowest order spectral contribution is therefore

S(1)(ω) = 2G(1)(0)Re

∫ ∞

0

dτe−a|τ |+iωτ =
1

a2 + ω2
, (53)

where a = 1/[2〈R〉] is defined as in the previous sections. Thus, in the large N
limit we expect to find that:

lim
N→∞

S(1)(ω) =
4R2

η

(1 + (2Rηω)2
. (54)

To higher order, it is necessary to choose which extrapolation method to use.
The procedure of extrapolating the correlation function to large τ by expanding
it as a series of exponentially decaying terms, is simple to Fourier transform,
since this clearly results in:

S(ω) = G(0)

p′∑

n=1

2gnλn

λ2
n + ω2

. (55)

This results in a Fourier transform as a sum of Lorentzian components. For the
three previous cases treated of N = 1, N = 4, and the intensity spectrum for
N = 1, the spectrum thus obtained is plotted in Fig (6a) -(6c) for various values
of η. The clear progression from bistable behaviour, to spontaneous symmetry-
breaking, to non-bistable behaviour, is shown in these three graphs; as the peak
spectral intensity is greatly reduced for the spectra with shorter characteristic
time-scales.

While this procedure has advantages as far as calculating the Fourier trans-
form is concerned, it is not always the best extrapolation. Accordingly, we also
consider a straightforward numerical Fourier transform, which can be used to
calculate the spectrum from the rational function approximation to the corre-
lation functions.

5.4 Direct numerical simulation

As there are no exactly known analytic expressions for these spectra, we have to
resort to stochastic numerical techniques to check the accuracy of the spectrum
using the truncated diagram method. Thus, in order to determine the accuracy
of the correlation function, a direct simulation of the relevant stochastic differ-
ential equations was used. These simulations employed a strongly convergent
semi-implicit numerical algorithm [24], with checks on both numerical sampling
error and truncation error due to finite step-size. The actual algorithm used
employed four iterations of the nonlinear implicit equations at each step. After
starting the trajectories in a Gaussian distribution with variance equal to the
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known steady state variance, each trajectory was integrated for a total elapsed
time much longer than the correlation time.

Typically, t = 100 − 400 was the maximum time used, with longer times
being employed for calculations above threshold, where the correlation time
is longer. In the simulations, the total number of trajectories employed was
106, in order to reduce the sampling error to typically about 0.1 − 0.2% at
low frequencies - although this typically rose to about 0.5% above threshold,
presumably because of the highly non-Gaussian individual trajectory statistics
in these cases. Sampling errors were checked by subdividing the results into
1000 sub-ensembles, which were numerically Fourier transformed and averaged
individually. The spectral results were then averaged over the sub-ensembles,
and the error-bar in the overall mean was estimated using standard Gaussian
distribution error estimates – on the basis that sub-ensemble means should have
a Gaussian distribution according to the central limit theorem.

By reducing the time step to a small value (typically ∆t = 0.01 − 0.05),
the errors due to the finite step-size were typically kept to below 0.5%. This
was estimated by calculating all spectra at two different step-sizes, but with the
same underlying stochastic noise terms, and comparing the results. The two
error-bars were added to give the final numerical error-estimates. No significant
error from finite spectral windowing was found, although this would be expected
to give problems in the extreme bistable regions.

By comparing with exact zero-frequency results, this technique of error-
estimation proved a reliable method, in the sense that the discrepancies were of
the expected size.

Thus, for example, the numerical spectrum for the case of N = 1 at threshold
(η = 0) has the calculated value of S(0) = 0.966± 0.007, using 106 trajectories,
a window of tMAX = 200, and a step-size of ∆t = 0.025. The error due to the
finite step-size contributes ±0.005 to the total error. The corresponding exact
result, as explained in the next section, is S(0) = 0.975 - giving a slightly greater
actual numerical error than the estimated one standard-deviation error-bar. By
comparison, the extrapolated exponential series analytic result is S(0) = 0.970,
which is very close to the exact result.

For the case of N = 1 above threshold (η = −1.5) the calculated numerical
simulation value is S(0) = 10.01 ± 0.10, using 106 trajectories, a window of
tMAX = 400, and a step-size of ∆t = 0.05. Because the step-size is relatively
large (in order to maximize the time-window), the error-bar in this case is mostly
due to the finite step-size, which contributes an error of ±0.08 to the total error.
The corresponding exact result is S(0) = 10.11 - within the estimated error-bars.
By comparison, the extrapolated analytic result is S(0) = 9.06, which gives an
increased extrapolation error, as expected.

The resulting numerical estimate of S(n)(ω) was:

S(n)
num(ω) = lim

T→∞
< |∆x̃n

i (ω)|2 > /T , (56)
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where the Fourier transform ∆x̃n
i (ω) is defined as

∆x̃n
i (ω) =

∫ T

0

dteiωt[xn
i (t) − 〈xn

i (t)〉] . (57)

5.5 Comparison of results

The results of the two procedures, i.e. stochastic diagrams and numerical sim-
ulations, are compared in Figs (7), (8) and (9) for N = 1, N = 4 and the
intensity spectrum with N = 1 respectively. In each figure there are four lines,
which are the Lorentzian approximation (dotted line), the rational approxi-
mation (dashed-dotted line), the second order exponential series extrapolation
(dashed line) and the direct numerical simulations (solid line).

In each figure there are sub-figures which correspond to different values of
the driving field η, which are taken through a range of values from far below
threshold to above threshold. We notice that agreement is generally excellent
(close to the simulation error-bars) for all methods below threshold. Errors are
always worst at low frequencies, where the results are the most sensitive to the
extrapolation error at long times. They are also worst for the single exponential
extrapolation than the higher-order extrapolation methods, as expected, and
usually best for the exponential series method.

5.5.1 Amplitude correlations - N=1 case

Below threshold, Fig (7a) shows the four different spectral results near zero-
frequency, thus giving a magnified view of the results. Errors are much smaller
at higher frequencies, where all the techniques agree to within the simulation
error-bars. It can be seen that the exponential series method (dashed line) gives
the best low-frequency agreement to the simulation (solid line). The residual
difference is about equal to the intrinsic numerical discretization and sampling
errors, while the other two methods give small, but marginally significant dis-
crepancies.

In Fig (7b), at the critical point of η = 0, the exponential series gives a
prediction at N = 1 of S(0) = 0.9702. This is in quite remarkable agreement
with the simulated value of S(0) = 0.966±0.007. By comparison, the other two
methods are again either significantly higher (rational logarithmic), or lower
(Lorentzian approximation).

Above threshold, however, in Fig (7c), we see that the agreement is outside
the error-bars even for the exponential series method, thus indicating a reduced
accuracy in the long-time extrapolation. This is expected, in view of the fact
that the long-time eigenvalue is an exponential function of η - rather than a finite
algebraic expression, as would be generated from the stochastic diagrams. Here
the errors increase to about 15% for η = −1.5, at zero frequency, in the rational
approximation, with much worse errors in the single exponential approximation.
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However, in this case the exponential series still gives the best result, with an
error of less than 10% .

5.5.2 Amplitude correlations - N=4 case

Fig (8) shows the spectrum of x(t) as a function of η at N = 4. In Fig (8a),
with η = 1 (below threshold) the difference between the various approximations
and the numerical simulation is about equal to the sampling error-bars obtained
with 106 trajectories. Thus, it is not possible to distinguish between any of the
extrapolations in this case. At threshold, in Fig (8b), the differences increase,
and the exponential series method is clearly better than a single exponential
extrapolation. Above threshold, in Fig (8c), the accuracy of both the single ex-
ponential and the rational extrapolation diminishes, relative to the exponential
series method - due to the two dominant eigenvalues in this case. For N = 4,
the above threshold error with the rational extrapolation reduced to 7%, as the
multiple time-scale problem is less significant in this case. The error in the ex-
ponential series method is less than 1%, i.e., of the same order as the intrinsic
sampling errors.

5.5.3 Intensity spectrum - N=1 case

Fig (9) shows the spectrum of x2(t) as a function of η as given by the dif-
ferent approximations. We see that there are obvious differences between this
and the previous cases. As x2(t) is not bistable, the spectrum does not have a
large ‘spike’ as η → −∞. This means that, unlike the previous examples, the
agreement between the rational function extrapolation and simulation methods
remains of the order of the numerical sampling error-bars even above thresh-
old. Since it would presumably require more than 106 trajectories to resolve
the differences in these spectral results, we have not attempted to accurately
estimate the extrapolation errors here. For this problem, it is clear that the
analytical theory is rather competitive with numerical simulations, which are
always subject to numerical sampling error. The nearly perfect agreement for
rational function extrapolation is a surprising result, given that it is obtained
from only a small number of stochastic diagrams. In this case, the exponential
series method gives slightly worse results, presumably because there are several
competing eigenvalues rather than just two.

5.6 Exact results

Although the agreement between the analytic results and the numerical simula-
tions is generally excellent (except for bistable variables) there are some features
worth a closer examination. Firstly, we emphasize again that discrepancies are
only evident at low frequencies. This is simply because the correlation function
tails, although only contributing a small part of the spectrum, cannot always
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be accurately extrapolated from the short time power series expansion. This
discrepancy at or below the critical point is always small (of order of 1− 2% at
the critical point η = 0). The error is naturally larger in the simpler Lorentzian
approximation, but in no case does it exceed 5% with η = 0. Secondly, the low
frequency extrapolation error is larger above threshold as η → −∞, especially
in the bistable case of x(t) spectrum with N = 1. This result is expected, since
calculation of the slow eigenvalue in this case requires an infinite series in η.

In the particular case of N = 1, the zero frequency spectrum is known
exactly [7] and is given by

S(n)(0) = 4

∫ ∞

−∞

dx
[f (n)(x)]2

Peq(x)
, (58)

where

f (n)(x) = −
∫ x

−∞

dx1[x
n
1− < xn >]Peq(x1) . (59)

Here Peq(x) denotes the normalized equilibrium distribution. The discrepancy
between this exact result at N = 1, and the approximate spectra, is given in
Fig (10).

In the bistable case of S(1), it is clear that the error increases very rapidly
as η → −∞, especially for the single exponential and rational approximations.
The reason for this is due to the well known bifurcation of the deterministic
steady state in this case, when η << 0. The system can only switch from one
solution near x = η to the other near x = −η, on exponentially long time scales.
This can be seen on comparing Fig (11), which is computed at the deterministic
threshold of η = 0, with an above threshold numerical simulation in Fig (12).
In this region and above, a multiple time scale technique would give the best
results, with other methods being used to estimate the slow eigenvalue. As we
are interested here in the critical region around η = 0, we simply note this
problem here, rather than pursuing it in further detail. Techniques for dealing
with multiple time-scales of these barrier-hopping equations were first developed
by Kramers[25], and are quite well understood.

This type of problem is greatly reduced for N > 1, where there is a tan-
gential diffusion above threshold, rather than barrier-hopping. This results in
an increasing accuracy of the present technique for large N , as the system dy-
namics reduces to just two time-scales, both of which have finite expression
in terms of η. In this limit, the behaviour is closely analogous to the well-
known problem of diffusion in a curved space. While there are no examples of
physical systems with such large-dimensional order-parameters, many physical
systems (like the laser above threshold, or Bose-Einstein condensates) display
this type of spontaneous symmetry breaking accompanied by tangential diffu-
sion in phase-space. The case chosen (N = 4) is typified by a two mode laser
with inhomogeneous broadening, so there is no strong mode-competition. As
we have seen, the stochastic diagram method gives very accurate results when
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compared with numerical simulations. However, we have no exact result in this
case.

Multiple time-scale problems do not occur in the case of non-bistable quan-
tities like x2(t) whose spectrum is given in Fig. (10b). The exponential series
method gives good agreement, as expected. Agreement with the rational func-
tion extrapolation in this case is excellent even above threshold. It is so good
that the exact spectral result at ω = 0 cannot be told apart from the approxi-
mate value, so we have not included the rational approximation in this graph.

6 Summary

The stochastic diagram technique is a method of classifying iterative terms in
a stochastic power series expansion in time, so that terms of the same order
in time are grouped together. This involves analyzing the deterministic and
stochastic order, since they give rise to different types of contributions.

In this paper we have used this technique to analyze critical amplitude and
intensity spectra, by considering either exponential series or logarithmic ratio-
nal function extrapolation. The results are inherently non-perturbative, and are
very accurate except in bistable regions. Thus, the results are valid at the criti-
cal point, where linearized spectra diverge. Good results are also obtained even
above threshold using exponential series extrapolation, when there is sponta-
neous symmetry-breaking. The technique works especially well for intrinsically
non-bistable quantities like the intensity or radial spectrum. In these cases, we
find that rational function extrapolation is of greater accuracy.

The general feature of these results for the case of the cubic stochastic pro-
cess, is that we see the expected critical slowing down at the threshold or crit-
ical point at η = 0. Below threshold, there is rather stable behaviour, except
at high dimensionality where the outward entropic effects of the phase-space
volume are increasingly important. Above threshold, there is a bistable region
for N = 1, where our methods do not converge quickly, due to the exponentially
long time-scales involved. For this region, asymptotic methods involving mul-
tiple time-scales would be more suitable. For N > 1, our method gives much
better results than for N = 1 above threshold, since the dynamics in this region
are then dominated by a type of phase-diffusion at fixed radius, rather than by
barrier-hopping.

The problems treated here were of a relatively simple type, to allow com-
parisons with exactly known results. We emphasize that the stochastic diagram
approach is rather general. It is not restricted to equilibrium correlations, al-
though extrapolation is not always possible in transient calculations. Nor is
it restricted to problems just involving temporal variation: partial stochastic
differential equations can also be treated in this way.

In summary, this novel stochastic diagram technique appears to have many
possible applications for calculations involving stochastic differential equations.
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Appendix

In this appendix we briefly outline the details of the calculations leading to the
result given in (34), using the rules given in Fig (4).

The contributions to the diagrams in Fig (3a) can easily be written down as
follows

x̃i
(0)(t) = e−ηtvi

x̃i
(1/2)(t) = wi(t) (1)

Next, evaluating the diagrams with one vertex in Fig (3b), gives:

x̃i
(1)(t) = −fijkl

∫ t

0

dt1e
−η(t+2t1)vjvkvl

x̃i
(3/2)(t) = −3fijkl

∫ t

0

dt1e
−η(t+t1)wj(t1)vkvl (2)

The next order terms in Fig (3c) include both one-vertex terms with additional
noise factors, and two-vertex nested integral terms:

x̃i
(2)(t) = 3fijkl

[
−

∫ t

0

dt1e
−ηtwj(t1)wk(t1)vl

+ flmnp

∫ t

0

dt1e
−η(t+2t1)vjvk

∫ t1

0

dt2e
−2ηt2vmvnvp

]

x̃i
(5/2)(t) = 3fijkl

[
−

∫ t

0

dt1e
−η(t−t1)wj(t1)wk(t1)wl(t1)

+ 3flmnp

∫ t

0

dt1e
−η(t+2t1)vjvk

∫ t1

0

dt2wm(t2)e
−ηt2vnvp

+ 2flmnp

∫ t

0

dt1e
−η(t+t1)vjwk(t1)

∫ t1

0

dt3e
−2ηt3vmvnvp

]
(3)

Finally, the relevant third order terms are:

x̃i
(3)(t) = 3fijkle

−ηt

[
flmnp

∫ t

0

dt1wj(t1)wk(t1)

∫ t1

0

dt2e
−2ηt2vmvnvp

+ 3flmnp

∫ t

0

dt1e
−2ηt1vjvk

∫ t1

0

dt2wm(t2)wn(t2)vp
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+ 6flmnp

∫ t

0

dt1e
−ηt1vjwk(t1)

∫ t1

0

dt2e
−ηt2wm(t2)vnvp

− fkmnpflqrs

∫ t

0

dt1e
−2ηt1vj

∫ t1

0

dt2e
−2ηt2vmvnvp

∫ t1

0

dt3e
−2ηt3vqvrvs

− 3flmnpfpqrs

∫ t

0

dt1vjvk

∫ t1

0

dt2vmvn

∫ t2

0

dt3e
−2η(t1+t2+t3)vqvrvs

]
.

(4)

In the above equations summation over repeated indices is implied. The next
step consists in
(a) multiplying the above expressions by vi = xi(0) and summing over i
(b) averaging the resulting expressions over the noise sources and the initial
values and adding up all the contributions.
This leads to

〈x(t) · x(0)〉
N

= e−ηt 1

N
〈v · v〉 − 1

N
fijkl〈vivjvkvl〉

∫ t

0

dt1e
−η(t+2t1)

+
3e−ηtfijkl

N

[
−δjk〈vivl〉

∫ t

0

dt1

∫ t1

0

dt2e
−2η(t1−t2)

+ flmnp〈vivjvkvmvnvp〉
∫ t

0

dt1

∫ t1

0

dt2e
−2η(t1+t2)

+ flmnpδjk〈vivmvnvp〉
∫ t

0

dt1

∫ t1

0

dt2

∫ t1

0

dt3e
−2η(t1−t2+t3)

+ 3flmnpδmn〈vivjvkvp〉
∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3e
−2η(t1+t2−t3)

+ 6flmnpδkm〈vivjvnvp〉
∫ t

0

dt1

∫ t1

0

dt3

∫ t3

0

dt2e
−η(t1−t2)

− fkmnpflqrs〈vivjvmvnvpvqvrvs〉
∫ t

0

dt1

(∫ t1

0

dt2e
−η(t1+2t2)

)2

− 3flmnpfpqrs〈vivjvkvmvnvqvrvs〉

×
∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3e
−2η(t1+t2+t3)

]
. (5)

For the symmetric case with fijkl given by fijkl = [δijδkl+δikδjl+δilδjk]/(3N) ,
the above results can be simplified. This is not essential to the method, and
neither is the use of a steady-state initial condition at this stage. On explicitly
carrying out the summations, we obtain

〈x(t) · x(0)〉
N

=
e−ηt

N

[
〈v · v〉 − 1

N
〈(v · v)2〉

∫ t

0

dt1e
−2ηt1
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− (N + 2)

N
〈v · v〉

∫ t

0

dt1

∫ t1

0

dt2e
−2η(t1−t2)

+
3

N2
〈(v · v)3〉

∫ t

0

dt1

∫ t1

0

dt2e
−2η(t1+t2)

+
(N + 2)

N2
〈(v · v)2〉

∫ t

0

dt1

∫ t1

0

dt2

∫ t1

0

dt3e
−2η(t1−t2+t3)

+
3(N + 2)

N2
〈(v · v)2〉

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3e
−2η(t1+t2−t3)

+
2(N + 8)

N2
〈(v · v)2〉

∫ t

0

dt1

∫ t1

0

dt3

∫ t3

0

dt2e
−η(t1−t2)

− 3

N3
〈(v · v)4〉

∫ t

0

dt1

(∫ t1

0

dt2e
−η(t1+2t2)

)2

− 9

N3
〈(v · v)4〉

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3e
−2η(t1+t2+t3)

]
. (6)

Finally, replacing the initial averages by equilibrium averages and expanding
the time integrals in powers of t we obtain

〈x(t) · x(0)〉
N

= M(1)

[
1 − ηt +

1

2
η2t2 − 1

6
η3t3 + · · ·

]

− M(2)

[
t − 2ηt2 +

13

6
η2t3 + · · ·

]

− (N + 2)

N
M(1)

[
1

2
t2 − 5

6
ηt3 + · · ·

]

+ 3M(3)

[
1

2
t2 − 3

2
ηt3 + · · ·

]

+
(N + 2)

N
M(2)

[
5

6
t3 + · · ·

]
+

2(N + 8)

N
M(2)

[
1

6
t3 + · · ·

]

− M(4)

[
5

2
t3 + · · ·

]
. (7)

On collecting coefficients of like powers of t we are led to the expression (34)
for the short time expansion of the two-time correlation function in the N-
dimensional case with rotational symmetry. This also agrees with the earlier
result of Eq (12), for the simpler case of N = 1 and η = 0 – as expected.
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Figure 1: Diagrammatic representation of the iterative solution of the cubic
stochastic equation to zeroth and first order.

Figure 2: Diagrammatic representation of the iterative solution of the cubic
stochastic equation to second order.

Figure 3: Diagrammatic representation of the iterative solution of the cubic
stochastic equation reordered by collecting together the diagrams which con-
tribute to the same power of τ . The power of τ that each diagram contributes,
is equal to the number of vertices plus half the number of crosses. Figs (a)
-(d) indicate successively higher order diagrams, including fractional stochastic
orders.

Figure 4: The rules for writing down the contribution of a given diagram.

Figure 5: The dependence of the apparent relaxation rates on the loss rate
η as given by the exponential series (solid line) and rational function (dotted
line) extrapolations. Note that the two types of extrapolation implicitly define
different types of relaxation rate. In each graph, the lower of the two lines
corresponds to the slower relaxation rate, the upper to the faster relaxation
rate. Cases treated are for (a) G(1), N = 1; (b) G(1), N = 4; (c) G(2), N = 1.

Figure 6: The approximate equilibrium spectrum for range of values of η, using
the exponential series method. Cases treated are for (a) S(1)(ω), N = 1; (b)
S(1)(ω), N = 4; (c) S(2)(ω), N = 1.

Figure 7: Comparison of the equilibrium spectrum S(1)(ω) of x(t) for N = 1
as given by stochastic numerical simulations (solid line), exponential series ex-
trapolation (dashed line), rational function extrapolation (dashed-dotted line),
Lorentzian approximation (dotted line) for (a) η = 1, (b) η = 0, (c) η = −1.5.
Error-bars for discretization and sampling errors at zero frequency are: (a)
∆S = 0.002 , (b) ∆S = 0.007 , (c) ∆S = 0.1.

Figure 8: Comparison of the equilibrium spectrum S(1)(ω) of x(t) for N = 4
as given by stochastic numerical simulations (solid line), exponential series ex-
trapolation (dashed line), rational function extrapolation (dashed-dotted line),
Lorentzian approximation (dotted line) for (a) η = 1, (b) η = 0, (c) η = −1.5.
Sampling error-bars at zero frequency are: (a) ∆S = 0.002 , (b) ∆S = 0.01 ,
(c) ∆S = 0.1.
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Figure 9: Comparison of the equilibrium spectrum S(2)(ω) of x2(t) for
N = 1 as given by exact numerical simulations (solid line), exponential se-
ries extrapolation (dashed line), rational function extrapolation (dashed-dotted
line), Lorentzian approximation (dotted line) for (a) η = 1, (b) η = 0, (c)
η = −1.5. Sampling error-bars at zero frequency are: (a) ∆S(2) = 0.0003 , (b)
∆S(2) = 0.001 , (c) ∆S(2) = 0.004.

Figure 10: Comparison of the equilibrium spectrum for N = 1 at zero fre-
quency as given by the exact analytic expression (solid line), exponential se-
ries extrapolation (dashed line), rational function extrapolation (dashed-dotted
line), Lorentzian approximation (dotted line) for a range of values of η. Cases
treated are: (a) S(1)(0); (b) S(2)(0).

Figure 11: A sample numerical run showing critical fluctuations of x(t) at
threshold, for the case η = 0, N = 1 .

Figure 12: A sample numerical run showing bistability of x(t) above threshold,
for the case η = −1.5, N = 1 .
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