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Abstract

A new proof for the completeness of the coherent states D(α) | f > for

the Heisenberg Weyl group and the groups SU(2) and SU(1, 1) is presented.

Generalizations of these results and their consequences are disussed.
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Introduction

Resolution of the identity operator in terms of the eigenstates of suitable operators proves

to be an important calculational tool in quantum mechanics. One comes across numerous

instances where quantum mechanical calculations are greatly simplified by a judicious use

of the resolution of the identity in terms of the eigenstates of appropriate operators. Among

the various resolutions of the identity, the one which has played a key role in quantum

optics is that in terms of the coherent states | α > [1-3], the eigenstates of the annihilation

operator

1

π

∫

d2α | α >< α |= I , (1)

where

| α >= D(α) | 0 > ; D(α) = exp(αa† − α∗a) ; [a, a†] = I . (2)

The coherent states | α > together with (1) have not only led to new calculational tech-

niques but also led to new conceptual developments such as the notion of quasi probability

distributions.

The proof of (1) found in most text books on quantum optics and quantum mechanics

proceeds by expanding | α > in terms of Fock states and carrying out the α-integration

and by using the completeness of Fock states. In recent times states like D(α) | n >, the

displaced number states [4-6], have been used in quantum optics and it is known that these

also form a complete set for each n [5]. In fact, from a group theoretic point of view [7,8]

one has a more general result

1

π

∫

d2αD(α) | f >< f | D†(α) = I , (3)

where | f >, referred to as the fiducial state, is any fixed normalizable state. (In (3) it has

been assumed that | f > is normalized to unity.) The states

| α; f >= D(α) | f > , (4)
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are referred to as generalized coherent states. (To avoid confusion with other notions of

generlized coherent states, we would, hereafter, refer to them as f -coherent states.) The

choice | f >=| n > in (3), for instance, leads to the resolution of the identity in terms of the

displaced number states. The group theoretical proof of (3), using Schur’s Lemma, is based

on the following observations

(a) D(β) provide an irreducible representation (upto a phase) of the Heisenberg Weyl

group.

(b) the operator

X1(f) ≡
1

π

∫

d2αD(α) | f >< f | D†(α) , (5)

commutes with the D(β)’s and hence, by Schur’s Lemma, is proportional to the identity

operator

X1(f) = c(f)I , (6)

(c) the constant c(f) can be calculated by taking the matrix element of X1(f) between any

normalizable state. (For consistency, c(f) should be < ∞ which, for coherent states

for certain groups leads to restrictions on the fiducial states.) For the Heisenberg-Weyl

group, it is easy to show that for any fiducial state | f >; < f | f >= 1, c(f) = 1 and

hence one has (3). By expanding | f > in terms of Fock states (3) may equivalently

be written as

1

π

∫

d2α | α; n >< α; m |= Iδnm ; | α; n >≡ D(α) | n > . (7)

The considerations given above apply to other groups like SU(2) and SU(1, 1) as well

[7,8]. For the case of SU(2)

[S+, S−] = 2Sz ; [Sz, S±] = ±S± , (8)

one has

3



X2(m) ≡
2S + 1

4π

∫

d2ζ

(1+ | ζ |2)2
| ζ ; m >< ζ ; m |= I , (9)

where

| ζ ; m >≡ D(ξ) | S, m > ; D(ξ) = exp(ξS+ − ξ∗S−) , (10)

and | S, m > are eigenstates of S2 and Sz. The variables ζ and ξ are related to each other

as follows

ξ =
θ

2
e−iφ ; ζ = tan

θ

2
e−iφ , (11)

and the integration in (9) is over the entire ζ-plane.

Similarly, for SU(1, 1)

[K−, K+] = 2Kz ; [Kz, K±] = ±K± , (12)

realized via

K+ =
1

2
a†2 ; K− =

1

2
a2 ; Kz =

1

2
(a†a +

1

2
) , (13)

one has

X3(n) ≡
1

2π

∫ d2ζ

(1− | ζ |2)2
| ζ ; 2n + 1 >< ζ ; 2n + 1 |= Iodd , (14)

where

| ζ ; 2n + 1 >≡ D(ξ) | 2n + 1 > ; D(ξ) = exp(ξK+ − ξ∗K−) ; Kz | 2n + 1 >= (n +
3

4
) | 2n + 1 > ,

(15)

and ζ and ξ are related to each other as follows

ξ =| ξ | e−iφ ; ζ = tanh | ξ | e−iφ . (16)

The operator Iodd in (14) denotes the unit operator in the odd sector of the Fock space.

Iodd ≡
∞
∑

k=0

| 2k + 1 >< 2k + 1 | , (17)
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and the integration in (14) is over the unit disc centered at the origin in the complex ζ-plane.

New proof of completeness of f-coherent states

We first consider (3). To prove (3) in a rather elegant way we make use of the following

results:

(i) resolution of the identity (1) in terms of coherent states.

(ii) the fact that an operator is uniquely determined by its diagonal elements [9].

< β | G | β >= 1 for all β if and only if G = I . (18)

Now consider the operator X1(f)

X1(f) ≡
1

π

∫

d2αD(α) | f >< f | D†(α) . (19)

Consider the diagonal elements of X1(f)

< β | X1(f) | β > =
1

π

∫

d2α < β | D(α) | f >< f | D†(α) | β > ,

=
1

π

∫

d2α < 0 | D†(β)D(α) | f >< f | D†(α)D(β) | 0 > , (20)

which on using the algebraic property of the displacement operator D(α)

D†(β)D(α) = D(α − β) exp[(β∗α − βα∗)/2] , (21)

reduces to

< β | X1(f) | β >=
1

π

∫

d2α |< 0 | D†(β − α) | f >|2 . (22)

On rewriting the integrand (22) in terms of coherent states and changing the variable of

integration (22) becomes

< β | X1(f) | β > =
1

π

∫

d2α |< β − α | f >|2

=
1

π

∫

d2α < f | α >< α | f >

= < f |
1

π

∫

d2α | α >< α | f >= 1 . (23)
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Thus the diagonal coherent elements of X1(f) for all values of β are equal to unity and

therefore using the property (18) we conclude that

X1(f) = I . (24)

This constitutes a direct proof of the completeness of the f -coherent states of the Heisenberg-

Weyl group.

Next we consider the SU(2) case. In this the analogues of (i) and (ii) above are

(i) completeness of the atomic coherent states | ζ ;−S > [10]

2S + 1

4π

∫ d2ζ

(1+ | ζ |2)2
| ζ ;−S >< ζ ;−S |= I , (25)

(ii) < ζ ;−S | G | ζ ;−S >= 1 for all ζ if an only if G = I. (26)

We consider the diagonal matrix elements of X2(m) defined in (9) between the atomic

coherent states | ζ ′;−S >. We follow the same procedure as above and use the following

algebraic properties.

D(ξ1)D(ξ2) = D(ξ3) exp[iΦ(ξ1, ξ2)Sz] , (27)

where

Φ(ξ1, ξ2) =
1

i
ln

[

1 − ζ1ζ
∗
2

1 − ζ∗
1ζ2

]

, (28)

and

ζ3 =
ζ1 + ζ2

1 − ζ∗
1ζ2

. (29)

Further, under the change of variables from ζ2 to ζ3 the measure of integration in (9) is

invariant

d2ζ2

(1+ | ζ2 |2)2
=

d2ζ3

(1+ | ζ3 |2)2
. (30)

Using these relations we obtain

< ζ ′;−S | X2 | ζ ′;−S >=
2S + 1

4π

∫

d2ζ ′′

(1+ | ζ ′′ |2)2
< S, N | ζ ′′;−S >< ζ ′′;−S | S, N > ,

(31)
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which, on using the completeness of the atomic coherent states yields

< ζ ′;−S | X2(m) | ζ ′;−S >= 1 for all ζ ′ , (32)

and hence X2(m) = I. It is important to note that the fiducial state in this case must be an

eigenstate of Sz otherwise the phase factor which arises from the use of (27) will not cancel.

Similarly, in the SU(1, 1) case, we use the following algebraic properties.

D(ξ1)D(ξ2) = D(ξ3) exp[iΦ(ξ1, ξ2)Kz] , (33)

where

Φ(ξ1, ξ2) =
1

i
ln

[

1 + ζ1ζ2

1 + ζ∗
1ζ2

]

, (34)

ζ3 =
ζ1 + ζ2

1 + ζ∗
1ζ2

. (35)

The measure of integration is invariant under the change of variables from ζ2 to ζ3

d2ζ2

(1− | ζ2 |2)2
=

d2ζ3

(1− | ζ3 |2)2
. (36)

On using the completeness of | ζ ; 1 >, one can show that

< ζ ; 1 | X3(n) | ζ ; 1 >= 1 for all ζ , (37)

and hence X3(n) = I.

Outlook:

We have thus shown that

∫

dµ(ζ)D(ζ) | f >< f | D†(ζ) = I , (38)

for the f -coherent states for the three groups considered above. The relation (38) is amenable

to further generalisations. In the case of Heisenberg- Weyl group, by expanding the state

| f > in (38) in terms of the number states | n > one obtains

∫

dµ(ζ)D(ζ) | m >< n | D†(ζ) = Iδmn , (39)
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and hence

∫

dµ(ζ)D(ζ) | f1 >< f2 | D†(ζ) = I < f1 | f2 > . (40)

In view of (39), one has

∫

dµ(ζ)D(ζ)ρoD
†(ζ) = I , (41)

where ρo is an arbitrary density matrix. For SU(2) and SU(1, 1), (38) implies (41) with ρo

subject to the conditions

[ρo, Sz] = 0 and [ρo, Kz] = 0 , (42)

respectively. It may be noted that, in the context of Heisenberg-Weyl group, resolutions of

the identity of the type (41) have been derived by Vourdas and Bishop [11] for two specific

choices of ρo. The fact that, for the Heisenberg-Weyl group (41) is valid for an arbitrary ρo

does not seem to be generally appreciated.

The results given above enable us to derive interesting identities involving orthogonal

polynomials. For example the following integral1 involving the Jacobi polynomials P (α,β)
n (x)

[12]

1

2

[

Γ(n + 1) Γ(p + 3/2)

Γ(p + 1) Γ(n + 3/2)

]

∫ 1

o

dx

(1 − x)1/2
xp−n

[

P p−n,1/2)
n (1 − 2x)

]2
= 1 , (43)

can be derived from (38) by applying it to the SU(1, 1) case and using the relations2

< 2m + 1 | D(ξ) | 2n + 1 > = e−i(m−n)φ

[

Γ(n + 1)Γ(m + 3/2)

Γ(m + 1) Γ(n + 3/2)

]1/2

(| ζ |)m−n(1− | ζ |2)3/4

1A direct proof of (43) appears to be difficult. We have succeeded in proving it using Racah

identities [13].

2Expressions for these matrix elements in terms of associated Legendre functions may be found

in [7].
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P (m−n,1/2)
n (1 − 2 | ζ |2) for m ≥ n , (44)

= e−i(n−m)φ

[

Γ(m + 1) Γ(n + 3/2)

Γ(n + 1) Γ(m + 3/2)

]1/2

(− | ζ |)n−m(1− | ζ |2)3/4

P (n−m,1/2)
m (1 − 2 | ζ |2) for m ≤ n , (45)

In conclusion, we also note the possibility of using relations like (1) to construct new classes

of quasi-probability distributions. Thus, for instance, for any density operator ρ, one can

define a generalised Q-function as follows

Q(ζ) = Tr[ρD(ζ)ρoD
†(ζ)] (46)

We hope to discuss this in detail elsewhere.
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