


ON THE IMPLEMENTATION OF 2-BAND CYCLIC FILTERBANKS

M.Ramkumar, G.V. Anand� and Ali N. Akansu

New Jersey Center for Multimedia Research
Department of Electrical and Computer Engineering

New Jersey Institute of Technology
University Heights, Newark, NJ 07102-1982

� Dept of Electrical Communication Engineering
Indian Institute of Science
Bangalore, India 560012.

ABSTRACT

The concept of cyclic filter banks was introduced independently in
Ref. [1] and [2], though in [1], a different nomenclature was used.
“Cyclic filter banks” is a superset of the traditional non-cyclic fil-
ter banks, and readily suggest implementation of subband filtering
through DFT. In this paper we show that the DFT implementation
is also advantageous for the conventional FIR filter banks. The
discussions in this paper concentrate on the more frequently used
2-band decompositions. However, extensions to M bands is not
difficult.

1. INTRODUCTION

A concise theory of cyclic filter banks was presented in Ref [2].
In the traditional M-band, FIR perfect reconstruction (PR) filter
banks, all the M filters are orthogonal to linear shifts byM . In
cyclic filter banks on the other hand, the filters are orthogonal to
cyclic shifts. As filters orthogonal to linear shifts are also orthog-
onal to cyclic shifts, cyclic filter banks have more degrees of free-
dom than the traditional FIR PR filter banks. Cyclic filter banks are
thus a superset of the traditional non-cyclic filter banks (though it
is a misnomer to call the traditional filter banks whichsatisfythe
properties of cyclic filter banksnon-cyclicit does serve to separate
them fromstrictly cyclic filter banks.) One should also note that
a strictly cyclic filter bank satisfying PR conditions for a length
N, will not in general, satisfy the conditions for some other length
N1 6= N . On the other hand, conventional FIR PR-filter bank of
lengthL will satisfy cyclic PR conditions if zero-padded to any
lengthN � L.

The increased degrees of freedom for cyclic filter banks as
opposed to non-cyclic filter banks promise more optimal filters.
However, traditional optimization techniques (which are based on
factorization of para-unitary systems [3]) used for deriving non-
cyclic filter banks with desired characteristics can not be used for
deriving strictly cyclic filter banks. This is due to the fact that
strictly cyclic para-unitary systems can not be factorized like the
non cyclic para-unitary systems [2].

It has been suggested in Ref. [4] that subband filtering can be
implemented by cyclic filtering. In this paper we take a closer look
at the algorithm for cyclic implementation of subband filtering.
We show that cyclic implementation of subband filtering is much

faster than one would expect at first glance. This is especially true
for recursive filtering and non-separable 2-D filtering. The main
purpose of this paper is to derive from first principles, an efficient
implementation of cyclic filtering (especially for real data and real
filters) and compare computational complexities of traditional FIR
and cyclic implementations (in the traditional implementation, for
a data length ofN , and filter lengthL, each of theN subband
coefficients is obtained as the inner-product ofL neighboring data
points withL filter coefficients). Obviously, since cyclic subband
filters of lengthN are a superset of FIR subband filters of any
lengthL � N (and zero-padded to lengthN ), the implementation
proposed in this paper can also be used for FIR subband filters.

Let x 2 <N be the data vector. Leth; g 2 <N be subband
filters of support less than or equal toN . When the size of the data
is finite, as in this case, then the two band subband decomposition
of the data may be seen as aN �N block transform [5]. The or-
thonormal basis vectors of the transform matrixTN�N areh and
otherN=2� 1 vectors obtained by alternate cyclic shifts ofh, and
g andN=2 � 1 vectors obtained from alternate cyclic shifts ofg.
The subband coefficients are the projections of the data vectorx
on the basis vectors. Therefore theN=2 subband coefficients cor-
responding to each of the filtersh andg respectively are obtained
as

xh(m) =

N�1X
n=0

x(n)h(n� 2m); m = 0; : : : ;
N

2
� 1; (1)

xg(m) =

N�1X
n=0

x(n)g(n� 2m); m = 0; : : : ;
N

2
� 1: (2)

Obviously,x can be obtained fromxh andxg using the inverse
transform matrix, which in this case is just the transpose ofT.

In the next section we show how the filtersh andg are derived.
In Section 3 we show how the forward and inverse transforms can
be implemented efficiently using the FFT algorithm.



2. CYCLIC 2-BAND FILTERBANKS

Let h 2 <N andh $ H , where$ denotes a discrete Fourier
transform (DFT) pair. Let

he(n) = h(2n); ho(n) = h(2n+ 1); n = 0; : : : ;
N

2
� 1: (3)

As h is orthogonal to alternatecyclicshifts,
N

2
�1X

n=0

fhe(n)he(n� p) + ho(n)ho(n� p)g = �(p): (4)

LetH e $ he andH o $ ho. Taking the DFT of both sides of
Eqn. (4),

H e:H
�

e +H o:H
�

o = [1 1 � � � 1] 2 <
N

2 (5)

where(; :; ) stands for the Hadamard product (multiplication of
corresponding elements) of two vectors. It can be easily shown

that thelth elements ofH e andH o are given by

He(l) =

N

2
�1X

n=0

h(2n) exp

�
�j2�nl

N
2

�
=

H(l) +H(l+ N
2
)

2

Ho(l) =
1

2
exp

�
j2�l

N

�h
H(l)�H(l+

N

2
)
i
: (6)

Substituting Eqn. (6) into Eqn. (5) and simplifying,

jH(l)j2 + jH(l+
N

2
)j2 = 2 for l = 0; � � � ;

N

2
� 1: (7)

Equation (7) is a necessary and sufficient condition for the vec-
tor h to be orthogonal to all its alternate circular shifts. Note that
in addition to the freedom in selecting the DFT magnitudes ofH ,
there is complete freedom in the choice of their phases (except, of
course ifh has to be real, onlyN

2
� 1 phase values are indepen-

dent). NowN
2

orthonormal basis vectors can be obtained fromh.
We now want to obtainN

2
complementary basis vectors, to com-

plete the basis for<N . Let g be a vector which is also orthogonal
to its alternate shifts. Then

jG(l)j2 + jG(l+
N

2
)j2 = 2 for l = 0; � � � ;

N

2
� 1: (8)

Since we desireg and its alternate cyclic shifts to complement the
basis vectors derived fromh, g should further satisfy

N

2
�1X

n=0

fhe(n)ge(n� p) + ho(n)go(n� p)g = 0; (9)

where,ge(n) andgo(n) are respectively the even and odd indexed
elements ofg. Taking the DFT of Eqn. (9),

He(k)G
�

e(k) +Ho(k)G
�

o(k) = 0 8 k: (10)

Using Eqn. (6), and similar relations forGe(l) andGo(l), Eqn.
(10) can be rewritten as

H(k)G�(k) = �H(k+
N

2
)G�(k +

N

2
): (11)

Equation (11) is satisfied if we choose

G(k) = H�(k +
N

2
) exp

�
j2�k

N

�
exp (j�) (12)

where� is an arbitrary phase angle. Choosing� = 0, we get

g(n) = (�1)n�1h(N � 1� n): (13)

3. FAST IMPLEMENTATION OF CYCLIC SUBBAND
FILTERING

In this section, we will show that the cyclic subband decomposition
and reconstruction can be implemented efficiently using the FFT
algorithm.

3.1. Cyclic Decomposition or Forward Transform

Define

yh(m) =

N�1X
n=0

x(n)h(n�m); m = 0; � � � ; N � 1 (14)

and

yg(m) =

N�1X
n=0

x(n)g(n�m); m = 0; � � � ; N � 1: (15)

LetYh $ yh andY g $ yg. Taking the DFT of Eqns. (14) and
(15),

Yh(k) = X(k)H�(k); andYg(k) = X(k)G�(k): (16)

In view of Eqn. (17), we can obtain the transform coefficients
xh(m) andxg(m) by sub-sampling the IDFTs ofYh andY g.
Alternatively, from Eqns (1),(2), (14), and (15), we have

xh(m) = yh(2m); xg(m) = yg(2m): (17)

Therefore,

xh(m) = yh(2m) =
1

N

N�1X
k=0

Yh(k) exp
�
j4�mk

N

�

=
1

N

N

2
�1X

k=0

Zh(k) exp
�
j4�mk

N

�
; (18)

where

Zh(k) = Yh(k) + Yh(k +
N

2
); k = 0; : : : ;

N

2
� 1: (19)

Similarly,

xg(m) =
1

N

N

2
�1X

k=0

Zg(k) exp
�
j4�mk

N

�
: (20)

where

Zg(k) = Yg(k) + Yg(k +
N

2
); k = 0; : : : ;

N

2
� 1: (21)

Thusxh(m) andxg(m) can be determined by computing the
N
2

-point IDFTs ofZ h andZ g, instead of computing theN -point
IDFTs ofYh andY g and sub-sampling them.

The implementation of the forward transform ofx thus con-
sists of the following steps

1. Obtain the DFTX of x.

2. Compute the Hadamard productsYh = X :H � andY g =
X :G�.

3. Split theN -vectorYh into two N
2

-vectors and add them to
obtain theN

2
-vectorZ h. Form theN

2
-vectorZ g from the

N -vectorY g in a similar fashion.

4. Obtainxh andxg as the IDFTs ofZ h andZ g respectively.



3.2. Reconstruction from Cyclic Subband Coefficients - In-
verse Transform

Let X h andX g denote the periodic extensions of theN
2

-point
DFTs ofxh andxg respectively, i.e.,

Xh(k) =

N

2
�1X

m=0

xh(m) exp
�
�j4�km

N

�
; k = 0; : : : ; N � 1; (22)

Xg(k) =

N

2
�1X

m=0

xg(m) exp
�
�j4�km

N

�
; k = 0; : : : ; N � 1; (23)

It can be shown that (see Appendix)

x(n) =
1

N

N�1X
k=0

[Xh(k)H(k) +Xg(k)G(k)] exp
�
j2�nk

N

�
(24)

The implementation of the inverse transform therefore, consists of
the following steps:

1. Obtain theN
2

length DFTs ofxh andxg.

2. Make periodic extensions of these DFTs to lengthN to ob-
tainX h andX g .

3. Compute the Hadamard productsX h:H andX g:G.

4. Compute the IDFT ofX h:H +X g:G to obtainx.

3.3. Computational Complexity

The implementation of cyclic subband decomposition and recon-
struction (for a signal size ofN ) both require the computation of
2 FFTs of lengthN

2
, 1 FFT of lengthN , and 2 Hadamard prod-

ucts of complexN -vectors. Since these complexN -vectors are
DFT of realN -vectors, each Hadamard product involves aboutN

2

complex multiplications. Each complex multiplication can be im-
plemented using 3 real multiplications [6, 7]. The computation of
the FFT of a real signal of lengthN (whereN is a power of2)
involvesN

2
(log2N � 3) multiplications [6, 7]. FFT implementa-

tion of subband filtering would therefore needN
2
(log2N � 3) +

3N + 2N
4
(log2

N
2
� 3) = N(log2N � 0:5) multiplications. On

the other hand, the traditional FIR filter implementation requires
NL multiplications. The FFT implementation would therefore be
computationally less expensive ifL � log2N .

It is more common however to have many levels of decompo-
sition. Thekth level of decomposition results in2k bands. Note
that (for the intermediate levels) we do not need to obtain the size
N

2k
-IDFTs of levelk and therefore the sizeN

2k
-DFTs at the begin-

ning of levelk + 1 (in other words, steps 1 and 4 of the forward
transform algorithm). For the last level however, we have to per-
form the sizeN

2k
-IDFTs. The intermediate levels will just need

Hadamard products of the outputs of the previous levels with the
filters of the present level (in the DFT domain). On the other hand,
conventional implementation of subband filtering has the same
computational complexity for each level. So while ak level con-
ventional subband decomposition (decomposition into2k bands)
will needkNL multiplications, it can be easily seen that a cyclic
filtering implementation will need onlyN(log2N+(5k�6)=2) (1
FFT of sizeN and Hadamard product for level 1, only Hadamard
products for levels 2 to k-1, Hadamard product and2k FFTs of

size N

2k
for thekth level). As an example, ifN = 256 andk = 5

(or 32 band decomposition of a vector of length 256), the con-
ventional implementation would need 10240 multiplications (for
L = 8), while cyclic filtering would need only 4480 multiplica-
tions for anyL � N . As another example, let us consider separa-
ble 2-D subband decomposition of an image of size512�512 into
1024 spatial frequency bands. The traditional FIR filtering (with
L = 8) would need 20971520 multiplications. On the other hand,
cyclic implementation would need only 9699328 multiplications.

Perhaps the most important application of cyclic filtering would
be for 2-D subband decomposition withnon-separablefilters. If
E ;F ;G;H 2 <N�N are mutually orthogonal basis matrices, all
of which are also orthogonal to their alternate shifts (in horizontal
and vertical directions), then, the forward transform coefficients
of X 2 <N�N can be obtained the same way as the 1-D case,
except that the 1-D DFT is replaced by 2-D DFT. IfY e is the
Hadamard product of the 2-D DFTs ofE andX , then, the sub-
band coefficientsXe(m;n) (which are also the even indexed IDFT
coefficients ofY e), can be obtained as theN

2
� N

2
point 2-D IDFT

of

Ze(k; l) = Ye(k; l) + Ye(k; l+N=2) + Ye(k +N=2; l)

+ Ye(k +N=2; l +N=2); (25)

where,k; l = 0 � � � N
2
� 1. In the same fashion, the other forward

transform coefficientsXf (m;n),Xg(m;n) andXh(m;n) can be
obtained.

The reconstruction or inverse transform is obtained by taking
the N

2
� N

2
point 2-D IDFTs ofXe(m;n), Xf (m;n), Xg(m;n)

andXh(m;n) and cyclically extending them to a size ofN �
N . The Hadamard products of the cyclic extensions with the 2-
D DFTs of the corresponding four filters are added together and
the inverse 2-D DFT is taken to obtainX . Note that the com-
putational complexity does not depend on whether the subband
filters are separable or not. So this would facilitate non-separable
subband filtering with computational complexity comparable to or
most often less than conventionalseparablesubband filtering.

4. CONCLUSIONS

In this paper we have made an in-depth analysis of the compu-
tational complexities of the traditional (FIR) implementation and
cyclic implementations for subband filtering. We have shown, that
cyclic filtering is definitely preferable for longer filters. It is es-
pecially advantageous to use cyclic implementations for recursive
filtering, and when non-separable two dimensional filters are used.

5. APPENDIX

5.1. Proof of Eqn. (24)

x(n) =
1

N

N�1X
k=0

[Xh(k)H(k) +Xg(k)G(k)] exp
�
j2�nk

N

�

= T1(n) + T2(n): (26)

Consider the first term,T1(n) of (26),

T1(n) =
1

N

N�1X
k=0

Xh(k)H(k) exp
�
j2�nk

N

�
(27)



=
1

N

N�1X
k=0

N

2
�1X

m=0

xh(m) exp
�
�j4�mk

N

�

H(k) exp
�
j2�nk

N

�
(28)

As xh(m) = yh(2m), andyh $ Yh, we have

xh(m) =
1

N

N�1X
l=0

Yh(l) exp
�
j4�ml

N

�
(29)

Substituting forxh(m) from Eqn. (29) into Eqn. (28), we obtain

T1(n) =
1

N2

N�1X
k=0

N

2
�1X

m=0

N�1X
l=0

Yh(l)H(k)

exp

�
j2�[2ml + nk � 2mk]

N

�

=
1

N

N�1X
l=0

N

2
�1X

m=0

n
1

N

N�1X
k=0

H(k)

exp

�
j2�k(n� 2m)

N

�o
Yh(l) exp

�
j4�ml

N

�

=
1

N

N�1X
l=0

Yh(l)

N

2
�1X

m=0

h(n� 2m) exp
�
j4�ml

N

�
:

For evenn, i.e. n = 2q, we haveh(n � 2m) = he(q �m) (see
Eqn. (3)). Therefore,

T1(2q) =
1

N

N�1X
l=0

n N

2
�1X

m=0

he(q �m) exp
�
j4�ml

N

�o
Yh(l)

=
1

N

N�1X
l=0

n q+1�N

2X
p=q

he(p) exp
�
�j4�lp

N

�o

Yh(l) exp
�
j4�lq

N

�
:

=
1

N

N�1X
l=0

He(l)Yh(l) exp
�
j4�lq

N

�
: (30)

Substituting forHe(l) from Eqn. (6) into Eqn. (30),

T1(n) =
1

N

N�1X
l=0

1

2

h
H(l) +H(l+

N

2
)
i
Yh(l)

exp
�
j2�ln

N

�
for evenn: (31)

Similarly it can be easily shown that

T1(n) =
1

N

N�1X
l=0

1

2

h
H(l)�H(l+

N

2
)
i
Yh(l)

exp
�
j2�ln

N

�
for oddn: (32)

Similar expressions can be derived forT2(n) to obtain

T2(n) =

8<
:

1

N

PN�1

l=0
1

2

h
G(l) +G(l+ N

2
)
i
Yg(l) exp

�
j2�ln

N

�
1

N

PN�1

l=0
1

2

h
G(l)�G(l+ N

2
)
i
Yg(l) exp

�
j2�ln
N

�
for even and oddn respectively.

In view of Eqns. (12) and (7)),

H�(l)H(l+
N

2
) +G�(l)G(l+

N

2
) = 0: (33)

jH(l)j2 + jG(l)j2 = 2: (34)

Combining Eqn. (16), viz.,

Yh(k) = X(k)H�(k); andYg(k) = X(k)G�(k);

with the equations forT1(n) andT2(n), and using Eqns. (33) and
(34),

T1(n) + T2(n) =
1

N

N�1X
l=0

X(l) exp
�
j2�ln

N

�
= x(n): (35)
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