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ABSTRACT
Bearing estimation of underwater acoustic sources is an

important aspect of passive localization in the ocean. The
performance of all bearing estimation techniques degrades
under conditions of low signal-to-noise ratio (SNR) at the
sensor array. The degradation may be arrested by denois-
ing the array data before performing the task of bearing es-
timation. In the last few years, there has been considerable
progress in the use of the wavelet transform for denoising sig-
nals. It is known that the traditional wavelet transform, which
is a linear transformation, can be used for denoising sig-
nals in Gaussian noise; but this method is not suitable if the
noise is strongly non-Gaussian. Statistical measurements of
ocean acoustic ambient noise data indicate that the noise may
have a significantly non-Gaussian heavy-tailed distribution in
some environments. In this work, we have explored the pos-
sibility of employing nonlinear wavelet denoising [1, 2], a
robust technique based on median interpolation, to improve
the performance of bearing estimation techniques in ocean in
a strongly non-Gaussian noise environment. We propose the
application of nonlinear wavelet denoising to the noisy signal
at each sensor in the array to boost the SNR before perform-
ing bearing estimation by known techniques such as MUSIC
and Subspace Intersection Method [3]. Simulation results are
presented to show that denoising leads to a significant reduc-
tion in the mean square errors (MSE) of the estimators, and
enhancement of resolution of closely spaced sources.

1. INTRODUCTION
Bearing estimation of underwater acoustic sources is a prob-
lem of great interest in the area of ocean acoustics. Pop-
ular direction-of-arrival (DOA) estimation techniques such
as MUSIC, ESIPIT and min-norm algorithms, developed for
plane wave DOA estimation, yield biased bearing estimates
in the ocean due to the multimode nature of acoustic propa-
gation in ocean. Unbiased bearing estimate can be obtained
using matched field processing techniques [4], but these tech-
niques involve a computationally expensive search in a 3-
dimensional space. Recently Lakshmipathi and Anand [3]
have developed a subspace intersection method(SIM) which
requires only a one-dimensional search. But all these meth-
ods provide reliable bearing estimates only if the SNR is suf-
ficiently high and the data model is accurate. There is a sig-
nificant degradation in the performance if the SNR is low.
Therefore, SNR enhancement becomes a necessary part of
array precessing at low SNR.

In this paper, the problem of improving the performance
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of the bearing estimator in shallow ocean in strongly non-
Gaussian noise, with heavy tailed distribution, is considered.
The motivation for this noise model is provided by the fact
that ocean acoustic noise is known to have a strongly non-
Gaussian heavy-tailed distribution under many conditions
of practical interest [5, 6]. Conventional wavelet denoising
techniques [7] based on a linear wavelet transform do not
work well when the noise is strongly non-Gaussian. Hence
we propose the use of nonlinear wavelet transform based on
median interpolation[1, 2] for denoising the array data be-
fore performing the bearing estimation. Simulation results
are presented to show that even under very low SNR condi-
tions the bearing estimation performance of MUSIC and SIM
can be improved significantly by using the proposed method.

2. ACOUSTIC PROPAGATION MODEL FOR
SHALLOW OCEAN

Modeling of acoustic propagation in a shallow ocean has to
account for the effects of the ocean boundaries and medium
inhomogeneity on the propagation of acoustic waves. A sim-
ple and widely used acoustic propagation model for shallow
ocean is the Pekeris model: a homogenous water layer of
depth ∆, density ρ and sound speed c is assumed to be rest-
ing over a homogenous fluid half-space of density ρb and
sound speed cb > c. For a point source of frequency ω

2π , in
the water at a depth zs < ∆, the far-field approximation to
the complex envelope of the acoustic pressure at a range r
and depth z < ∆, assuming normal mode propagation [8] , is
given by
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2
√
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where K is the number of propagating modes and km is the
wavenumber of the mth normal mode. The quantity αm is
defined as
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with k = ω/c, kb = ω/cb, βm =
√

k2
m− k2

b, and km =
√

k2− γ2
m. Let J narrowband sources of center frequency w

2π
be located at depths zi and ranges ri, i = 1, 2, . . . ,J, with
respect to the first sensor of a horizontal uniform linear ar-
ray(ULA). The ULA consists of M narrowband sensors lo-
cated at depth zh and having intersensor spacing d = π

k . Let
the bearing angle of the ith source with respect to the endfire
direction of the array be denoted by θi. The noisy data vector



at the array at time instant t can be written as

y(t) = Ps(t) +n(t) , (3)

where s(t) is the J× 1 source signal amplitude vector, n(t)
is the array noise vector that is spatially white, and P is the
M× J steering vector matrix given by

P = [ p(r1,θ1,z1) p(r2,θ2,z2) . . . p(rJ ,θJ ,zJ)] . (4)

The ith column of P can be written as

p(ri,θi,zi) = A(θi)xi(ri,zi) , (5)

where A(θi) is an M×K matrix consisting of the steering
vectors for each mode as given below

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1 1 ... 1
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...
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
,

(6)
and xi(ri,zi) = [xi1 xi2 . . . xiK ]T , i = 1,2, . . . ,J. For the
Pekeris channel, xim is given by [see Eq. (1)]

xim =
2
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∆
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. (7)

The sources are assumed to be mutually uncorrelated with
mean zero, and with identical exponentially decaying auto-
correlation functions

E[si(t)s∗l (u)] = σ 2
s δi,l e−α|t−u| . (8)

It is also assumed that the signal and noise are uncorrelated.
The covariance matrix of the array data vector is

C = E[y(t)yH (t)] = PΣPH + σ 2I , (9)

where Σ = diag[σ 2
1 , σ2

2 , . . . σ 2
J ] is the source correlation

matrix.

3. BEARING ESTIMATION
3.1 MUSIC
The MUSIC algorithm for 3-dimensional source localization
is a generalisation of the MUSIC algorithm for plane wave
DOA estimation. If the columns p(r1,θ1,z1), . . .p(rJ ,θJ ,zJ)
of the matrix P in Eq. 4 are linearly independent, they span
the signal subspace S defined as

S = span{u1, u2, . . .uJ}, (10)

where u1,u2 . . .uJ are the signal eigenvectors (correspond-
ing to the J largest eigenvalues) of the data eigenvector ma-
trix C. A sufficient condition for linear independence of the
vectors p(ri,θi,zi), i = 1,2, . . .J is that [3] the array length M
is greater than or equal to K(J+1). Let V = [uJ+1 . . .uM ]
be the matrix whose columns are the noise eigenvectors
uJ+1, . . .uM . The steering vector p(r,θ ,z) is orthogonal to
the columns of V if and only if (r,θ ,z) is an element of the
set {(r1,θ1,z1), . . . (rJ ,θJ ,zJ)}, or equivalently,

pH(r,θ ,z)VVHp(r,θ ,z) = 0 , (11)

if and only if (r,θ ,z) ∈ {(r1,θ1,z1), . . . (rJ ,θJ ,zJ)}. Hence
the estimates of the source coordinates (ri,θi,zi), i = 1, . . . ,J
are provided by the J largest peaks of the MUSIC spectrum
defined as

BMUSIC(r,θ ,z) =

[
∑M

m=J+1 |pH(r,θ ,z) um|2
||p(r,θ ,z) ||2

]−1

.(12)

MUSIC provides high resolution estimates of all the source
coordinates. However, it involves a computationally expen-
sive 3-dimensional search which is redundant if only the
bearing estimates are required.
3.2 Subspace Intersection Method
The subspace intersection method (SIM) is an elegant and
simple bearing estimation technique that requires only a one-
dimensional search [3]. The steering vector defined in Eq (5)
is a linear combination of columns of the matrix A(θi). If we
define the modal subspace M (θi) as the span of the columns
of A(θi), then p(ri,θi,zi) ∈M (θi). If M ≥ K(J + 1), if the
bearing angles θ1,θ2, . . . ,θJ are distinct, it can be shown [3]
that the modal subspace M (θ ) and the signal subspace S
intersect if and only if θ ∈ {θ1,θ2, . . . , θJ}.

To obtain a bearing estimator that uses the above prop-
erty, define the M×L matrix D(θ ) as

D(θ ) = [d1(θ ) d2(θ ) . . . dL(θ )] , (13)

where L = K + J,

di(θ ) =

{
a(θ ,ki)√

M
if 1≤ i≤ K

ui−K if K + 1≤ i≤ K + J
,

a(θ ,ki) = [1 e jkidcos(θ) . . . e j(M−1)kidcos(θ)]T . (14)

Hence, θ ∈ {θ1,θ2, . . . ,θJ} if and only if

di(θ ) ∈ span{d1(θ ), d2(θ ), . . . , di−1(θ )} , (15)

for some i∈ {K +1, K +2, . . . , K +J}. Let the matrix D(θ )
be Q-R decomposed as

D(θ ) = Q(θ )R̄(θ ) , (16)

where Q(θ ) = [q1(θ ) q2(θ ) . . . qL(θ )] is an M×L matrix
whose columns qi(θ ) are orthonormal vectors and the ma-
trix R̄(θ ) is an L×L upper triangular matrix with elements
r̄mi(θ ). The columns of D(θ ) are related to the columns of
Q(θ ) through the equation

di(θ ) =
i

∑
m=1

r̄mi(θ )qm(θ ) , i = 1,2, . . . ,L . (17)

From Eqs. (14), (15) and (17), it follows that

min
K+1≤i≤L

|r̄ii(θ )|= 0 if and only if θ ∈ {θ1,θ2, . . . ,θJ} .
(18)

This condition can be utilized to obtain an estimator which
constructs D(θ ) and calculates r̄ii(θ ) for each i. At the true
bearing angles, Eq (18) holds. The SIM spectrum is defined
as

BSI(θ ) =

[
min

K+1≤i≤L
|r̄ii(θ )|

]−1

. (19)



4. NONLINEAR WAVELET TRANSFORMS BASED
ON MEDIAN INTERPOLATION

Nonlinear wavelet transform is also called Median Interpo-
lating Pyramid Transform (MIPT). Central to this approach
is the notion of the Median Interpolating (MI) refinement
scheme [2].
4.1 Median-Interpolating Refinement
Given a function f on an interval I,let med( f |I) denote a me-
dian of f for the interval I, defined by

med( f |I) = in f{µ : m(t ∈ I : f (t)≥ µ)≥m(t ∈ I : f (t)≤ µ)},
(20)

where m() denotes the Lebesgue measure on ℜ. Now sup-
pose we are given a triadic array {m j,k}3 j−1

k=0 of numbers
representing the medians of f on the triadic intervals I j,k =

[k3− j,(k + 1)3− j) :

m j,k = med( f |I j,k) 0≤ k < 3 j, j ≥ 0. (21)

The goal of median-interpolating refinement is to use the
data at scale j to infer behavior at the finer scale j + 1,
obtaining imputed medians of f on the intervals I j+1,k[2].
1.Interpolation : For each interval I j+1,k, find a quadratic
polynomial π j,k satisfying the condition:

med(π j,k|I j,k+l) = m j,k+l f or −1≤ l ≤ 1. (22)
2.Imputation : Obtain approximate medians at the finer
scale by setting

m̃ j+1,3k+l = med(π j,k|I j+1,3k+l) f or l = 0,1,2. (23)

4.2 Pyramid Algorithm
Given a discrete data set yi, i = 0, . . . ,n− 1 where n = 3J is
a triadic number, we use the nonlinear refinement scheme to
decompose and reconstruct such sequences.The algorithms
for computing the forward MIPT and inverse MIPT are given
below.
ForwardMIPT: Pyramid Decomposition
1. Initialization: Set j=J and j0 ≥ 0.
2. Calculate block medians m j,k = med(yi : i/n ε I j,k)
3. Calculate m̃ j,k = Q(m j−1,k), where Q, called the refine-
ment operator, is a map for predicting the medians at finer
scale from the medians at coarser scale as described in the
previous section.
4. Calculate detail corrections α j,k = m j,k − m̃ j,k
5. If j = j0 + 1, set m j0,k = med(yi : i/n ε I j0,k) and termi-
nate the algorithm.Else set j = j−1 and go to 2.
InverseMIPT: Pyramid Reconstruction
1. Initialization: Set j = j0 + 1.
2. Reconstruction by refinement: m j,k = Q(m j−1,k) + α j,k
3. Iteration: If j = J go to 4,else set j = j + 1 and
go to 2.
4.Termination: Set yi = mJ,i, i = 0,1,....n-1.
4.3 Denoising by Thresholding
Denoising of a signal is done in 3 steps:
1. Pyramid Decomposition(FMIPT) of the signal.
2. Thresholding coefficients: Coefficient amplitudes smaller
than t j at scale j are judged negligible,as noise rather than
signal. It has been proved [2] that, for any noise distribution,
maximum amplitude of coefficients at scale j have a very
high probability of being below

t j =
√

3J− jF−1


1

2
+

1
2

√

1−
(

1
2J3J

) 2
3J− j


 , (24)
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Figure 1: SNR gain as a function of input SNR.

where F is CDF of the noise distribution.
3. Pyramid Reconstruction (IMIPT) of the signal.

5. SIMULATION RESULTS
Simulation results on the performance of the bearing es-
timation techniques using data preprocessed by Nonlin-
ear Wavelet Denoising (NWD) is presented in this sec-
tion. The ocean is modeled as a Pekeris channel with :
ρ = 1000 kg/m3, ρb = 1500 kg/m3, c = 1500 m/s, cb =
1700 m/s, ∆ = 100 m. A Horizontal ULA of M sensors with
λ/2 spacing is assumed to be present at depth zh = 50 m.
We consider 729 snapshots(a triadic number is considered
for carrying out the MIPT) of the signal at each sensor.
All sources are assumed to have a narrow bandwidth with
α = 1

200 and a common centre frequency ω
2π = 100 Hz. At

this frequency 6 normal modes propagate in the medium.
The sources are assumed to be mutually uncorrelated. It is
also assumed that the signal and noise are uncorrelated. We
consider iid noise with Generalized Gaussian (GG) pdf

f (x) = a exp(−b|x|p), 0< p≤ 2, (25)

where a = pΓ1/2(3/p)

2Γ3/2(1/p)
, b =

[
Γ(3/p)
Γ(1/p)

]p/2
.

Consider two sources at (r1,θ1,z1) = (4000 m,50◦,20 m)
and (r2,θ2,z2) = (5000 m,60◦,30 m). Fig. 1 shows plots of
SNR gain Vs. input SNR for both linear wavelet denois-
ing (LWD) and (NWD). The noise is assumed to have gener-
alised Gaussian pdf with p = 0.5. The results are calculated
by averaging over 100 Monte-Carlo simulations. It is ob-
served that NWD outperforms LWD. SNR gain increases as
input SNR is reduced.

Fig. 2 illustrates the improvement in the performance
of the bearing estimator MUSIC after denoising. The fig-
ure shows plots of MUSIC spectrum obtained using a 15
element array. The source locations were (r1,θ1,z1) =
(4000 m,70◦,20 m) and (r2,θ2,z2) = (4000 m,74◦,20 m).
Noise has generalised gaussian distribution with p = 0.5 and
SNRin = -5 dB. It is observed that the NWD preprocessed
data resolves the sources while the undenoised data does not.

Similarly Fig. 3 shows the plots of SIM spectrum with
a 60 element array, with and without denoising.Two sources
are assumed to be at bearing angles θ1 = 40◦ and θ2 = 45◦,
other parameters are the same as fig. 2. Once again, an im-
proved performance due to NWD can be seen.

Tables 1 lists the root mean square errors (RMSE)
of bearing estimates calculated over 100 Monte-
Carlo simulations for SNR=-5 dB with two dif-
ferent GG noise distributions with p=0.5 and p=1.
Three sources with source locations (r1,θ1,z1) =
(4000 m,50◦,20 m),(r2,θ2,z2) = (5000 m,60◦,30 m)
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Figure 2: Spectral MUSIC for generalised Gaussian noise
(p=0.5) using (a)undenoised signal,(b)nonlinear wavelet de-
noised signal. 2 sources are present at 700 and 740
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Figure 3: SIM for generalised Gaussian noise (p=0.5) using
(a)undenoised signal,(b)nonlinear wavelet denoised signal. 2
sources are present at 400 and 450

Table 1: RMSE of DOA Estimates
MUSIC θ1 = 500 θ2 = 600 θ3 = 700

GGN(p=0.5) Undenoised 0.974 4.52 0.153

Denoised 0.481 2.809 0.098

GGN(p=1) Undenoised 1.254 4.409 0.115

Denoised 1.040 3.313 0.115

SIM θ1 = 500 θ2 = 600 θ3 = 700

GGN(p=0.5) Undenoised 2.043 2.431 1.456

Denoised 0.827 1.862 1.320

GGN(p=1) Undenoised 2.492 2.990 1.451

Denoised 1.851 2.881 1.155

and (r3,θ3,z3) = (6000 m,70◦,40 m)were considered.
Computational results clearly show that denoising leads to a
reduction in the RMSE of the bearing estimates.

Figures 4 and 5 show the plots of RMSE of bearing
estimate (of the middle source at 60◦) versus input SNR
in dB. These figures clearly show that nonlinear wavelet
denoising improves the performance of the bearing estima-
tors by decreasing the mean square errors of the bearing
estimates even at input SNR as low as -10 dB.
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6. CONCLUSIONS
We have shown,in this paper, that the application of nonlin-
ear wavelet transform for denoising the signal received at the
sensor array in ocean in a strongly non-Gaussian noise en-
vironment leads to an enhancement in the performance of
the bearing estimators. The above denoising technique can
enhance the noisy signal even at very low SNRs. We have
shown through simulations that there is a SNR gain of about
15 dB at an input SNR of about -10 dB.This helps us to en-
hance the capability of the bearing estimators to resolve two
closely spaced sources in ocean and also reduces RMSE of
the bearing angle estimates of the sources. This technique
can be readily extended to obtain improved range-depth esti-
mation of acoustic sources in the ocean.
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