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ABSTRACT

Localization of underwater acoustic sources is a problem of
great interest in the area of ocean acoustics. There exist several
algorithms for source localization based on array signal processing.
It is of interest to know the theoretical performance limits of
these estimators. In this paper we develop expressions for the
Cramer-Rao-Bound (CRB) on the variance of direction-of-arrival
(DOA) and range-depth estimators of underwater acoustic sources
in a shallow range-independent ocean for the case of generalized
Gaussian noise. We then study the performance of some of the
popular source localization techniques, through simulations, for
DOA/range-depth estimation of underwater acoustic sources in
shallow ocean by comparing the variance of the estimators with the
corresponding CRBs.

1. INTRODUCTION

Underwater acoustic source localization has numerous commercial
as well as military applications. Source localization in ocean
involves estimation of three parameters, viz. range, depth and
DOA. Most localization techniques are based on the concept of
matched field processing (MFP) [1, 2] wherein the measured field
at the sensor array is matched with the replicas of the expected
field for all possible source locations. The efficiency of different
techniques can be assessed by comparing the variance of the
estimators with the corresponding Cramer-Rao bounds (CRBs). All
available results on CRB for the source localization problem are
based on the assumption that the ambient noise is white Gaussian
[3]. But, statistical analysis of ambient noise data in shallow coastal
ocean indicates that the noise has strong impulsive components
(due to snapping shrimp and local shipping activities)[4], and
such noise is well modeled by generalized Gaussian distributions
with heavy tails [5]. In this paper, the CRB for the problems of
DOA and range-depth estimation of underwater acoustic sources
in a shallow range-independent ocean are derived for the case of
additive complex circular white generalized Gaussian noise. This
derivation follows the procedure used by Stoica and Nehorai [6] for
deriving the CRB for the problem of plane wave DOA estimation
in white Gaussian noise. A simple homogeous model of the ocean,
called the Pekeris model[7] which is sufficient to capture most
salient features of acoustic propagation in shallow ocean, is used
in this work. Performance analysis of four widely used local-
ization techniques, viz. linear beamformer (Bartlett processor),
Capon’s minimum variance beamformer, MUSIC, and min-norm
technique[8] is carried out, and simulation results are presented to
compare the variance of these estimators in generalized Gaussian
noise with the corresponding CRBs. It is shown that the CRBs
under heavy-tailed generalized Gaussian noise are significantly
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lower than the corresponding CRBs under Gaussian noise.

2. SOURCE LOCALIZATION

We consider the following well-known algorithms [8] for source
localization, based on the use of a uniform linear array(ULA) of
sensors.

1. MUSIC algorithm, which is based on the eigendecomposition
of the data covariance matrix, estimates the localization
parameters by maximising the MUSIC ambiguity function[
pH(θ ,r,z)VVHp(θ ,r,z)

]−1, where V is the noise subspace.

2. Min-norm algorithm, unlike MUSIC, uses a single vector v
that lies in the noise subspace and which satisfies suitable
constraints. Min-norm achieves a satisfactory accuracy, but
slightly inferior to MUSIC, at a reduced computational cost.

3. Linear beamforming (Bartlett Processor) estimates the
source locations by maximising the spatial power spectrum
pH(θ ,r,z)Rp(θ ,r,z). This technique can be shown to be not
suitable for localization of multiple sources.

4. Minimum variance distortionless beamformer (Capon proces-
sor), which estimates the source position coordinates by max-
imising the ambiguity function

[
pH(θ ,r,z)R−1p(θ ,r,z)

]−1.

A vertical ULA is used for range-depth estimation. It is assumed
that the acoustic properties of the ocean are range-independent, and
the consequent cylindrical symmetry of the ocean is exploited by
the vertical ULA to restrict the search for the source position to two
dimensions (range and depth). A horizontal ULA is used for DOA
estimation, and it is assumed that the source ranges and depths are
either known or have been estimated using a vertical ULA. All
the algorithms mentioned above require an estimate of the array
data covariance matrix which is obtained from a finite number of
snapshots of the array data vector. The algorithms also require an
acoustic propagation model of the ocean, which is briefly described
in the next section.

3. ACOUSTIC PROPAGATION MODEL FOR SHALLOW
OCEAN

Modeling of acoustic propagation in a shallow ocean has to
account for the effects of the ocean boundaries and medium inho-
mogeneity on the propagation of acoustic waves. A simple and
widely used acoustic propagation model for shallow ocean is the
Pekeris model: a homogenous water layer of depth ∆, density ρ and
sound speed c is assumed to be resting over a homogenous fluid
half-space of density ρb and sound speed cb > c. For a point source
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of frequency ω
2π , in the water at a depth zs < ∆, the far-field ap-

proximation to the acoustic pressure at a range r and depth z < ∆,
assuming normal mode propagation [7] , is given by

p(r,z) =
2
√

2π e j π
4

∆

K

∑
i=1

α2
i sin(γizs) sin(γiz)

e jkir
√

kir
, (1)

where K is the number of propagating modes and ki is the wavenum-
ber of the ith normal mode.
The quantity αi is defined as

α2
i =

[
1+

ρ(k2− k2
b)sin2(γi∆)

ρbγ2
i βi∆

]−1

, (2)

with k = ω/c, kb = ω/cb, βi =
√

k2
i − k2

b, and ki =
√

k2− γ2
i .

The parameters ki and γi are respectively the horizontal and ver-
tical wavenumbers of the ith normal mode. The values of γi, i =
1, 2, . . . ,K, can be obtained as the real roots of the equation

ρbγcot(γ∆)+ρ
√

k2− k2
b− γ2 = 0 .

3.1 Horizontal Linear Array

Let J mutually uncorrelated narrowband sources of center fre-
quency ω

2π be located at depths z j and ranges r j , j = 1, 2, . . . ,J,
with respect to the first sensor of a horizontal ULA. The ULA con-
sists of M narrowband sensors located at depth zh and having inter-
sensor spacing d = π

k . Let the bearing angle of the jth source with
respect to the endfire direction of the array be denoted by θ j .
The noisy data vector at the array at time instant t can be written as

y(t) = Ps(t)+n(t) , t = 1,2, . . . ,N , (3)

where s(t) is the J×1 source signal amplitude vector given by

s(t) = [s1(t) s2(t) . . . sJ(t)]T , (4)

n(t) = [n1(t) n2(t) . . . nM(t)]T is the array noise vector that is spa-
tially white, and P is the M× J steering vector matrix given by

P = [ p(r1,θ1,z1) p(r2,θ2,z2) . . . p(rJ ,θJ ,zJ)] . (5)

The noise variance σ2 is assumed to be known.
The jth column of P can be written as

p(r j,θ j,z j) = A(θ j)x j(r j,z j) , (6)

where A(θ j) is an M×K matrix consisting of the steering vectors
for each mode as given below



1 1 ... 1
e jk1dcos(θ j) e jk2dcos(θ j) ... e jkK dcos(θ j)

e j2k1dcos(θ j) e j2k2dcos(θ j) ... e j2kK dcos(θ j)

...
...

. . .
...

e j(M−1)k1dcos(θ j) e j(M−1)k2dcos(θ j) ... e j(M−1)kK dcos(θ j)




,

(7)
and x j(r j,z j) = [x j1 x j2 . . . x jK ]T , j = 1,2, . . . ,J. For the Pekeris
channel, x ji is given by [see Eq (1)]

x ji =
2
√

2π e j π
4

∆
α2

i sin(γiz j) sin(γizh)
e jkir j

√
kir j

. (8)

The (m, j)th element of P is given by

pm, j = pm(θ j) =
K

∑
i=1

x ji exp{− j(m−1)kid cos(θ j)}. (9)

It is assumed that the signal and noise are uncorrelated. The covari-
ance matrix of the array data vector is

R = E[y(t)yH(t)]

= P E[s(t)sH(t)] PH +E[n(t)nH(t)]

= PΣPH +σ2I , (10)

3.2 Vertical Linear Array

The data model is similar to that for the horizontal ULA, bar-
ring a few modifications due to the vertical geometry of the array.
The ULA consists of M narrowband sensors vertically positioned at
depths, z0, z0 +d, z0 +2d, . . . , z0 +(M−1)d, where d is the spac-
ing between sensors. Using the same notation and assumptions as
in the previous case, the covariance matrix of the array data vector
can again be written as

R = PΣPH +σ2I , (11)

where the steering vector matrix P for the present case is indepen-
dent of the bearing angles θ j because of the cylindrical symmetry.
Hence the steering vector matrix may be written as

P = [ p(r1,z1) p(r2,z2) . . . p(rJ ,zJ)] , (12)

The (m, j)th element of P is given by

pm j = pm(r j,z j) =
2
√

2πe j π
4

∆

K

∑
i=1

α2
i sin(γiz j)sin(γizm)

e jkir j

√
kir j

.

(13)

4. CRAMER-RAO BOUND

In this section, the mathematical formulations of the Cramer-Rao
bound (CRB) for the problems of DOA/range-depth estimation
of underwater acoustic sources in a shallow range-independent
ocean are presented for the case of additive complex circular white
generalized Gaussian noise. Our method of derivation is similar
to that of Stoica and Nehorai [6] for the case of plane wave DOA
estimation in white Gaussian noise.

We model the noise samples nm(t) as complex valued. The
complex noise samples are considered to be statistically inde-
pendent both spatially (with respect to index m) and temporally
(with respect to time t ). The marginal pdf of the in-phase and
quadrature components are considered to belong to the generalized
Gaussian class [5]. The Complex-valued noise components
nm(t) = nm(t) + j ñm(t) are considered to have a circularly
symmetric pdf of the form f (n, ñ) = g(

√
n2 + ñ2). Therefore,

nm(t) and ñm(t) have zero mean and are uncorrelated.

The joint pdf f (n, ñ) is given by [9]
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f (n, ñ) =
k

2πΓ
( 2

k
)

B2(k)
exp


−

(√
n2 + ñ2

B(k)

)k

(14)

where B(k) =

[
σ2 2Γ( 2

k )

Γ( 4
k )

] 1
2

,

and Γ(a) =
∫ ∞

0
xa−1e−xdx, is the gamma function.

Equation (14) represents circular Gaussian pdf for k = 2, and circu-
lar heavy tailed generalized Gaussian pdf for k < 2.
The likelihood function of the sampled data y(t) in Eq. (3) can be
written as

l(y) =
N

∏
t=1

M

∏
m=1

k
2πΓ

( 2
k
)

B2(k)
e


−

( |ym(t)−∑J
j=1 pm(θ j )s j (t)|

B(k)

)k


. (15)

Hence, the log likelihood function is given by

L(y;s,Θ) = N M ln

(
k

2π Γ
( 2

k
)

B2(k)

)
+

+
(−1)
Bk(k)

N

∑
t=1

M

∑
m=1




∣∣∣∣∣ym(t) −
J

∑
j=1

pm(θ j)s j(t)

∣∣∣∣∣
k

 , (16)

where y and s are respectively the data vector and signal vector of
samples at all sensor points and all time instants. Θ is the unknown
parameter vector for which we calculate the CRB.
The Fisher Information Matrix Ω is defined as [10]

Ω = E

{(
∂L(y;Θ,s)

∂Ψ

)(
∂ L(y;Θ,s)

∂Ψ

)T
}

, (17)

where Ψ = [ΘT ,sT ]T . The CRB of the ith component of Θ can be
found as the (i, i)th element of the inverse of the Fisher Information
matrix.

4.1 CRB for DOA

For DOA estimation problem, consider Θ = [θ1, . . . ,θJ ]
T . Con-

sidering only DOAs as the unknown parameters, it can be shown
that the CRB for DOA vector Θ is given by

CRB(Θi) =
(

1
I

)
.
(
[Σ]−1

)
ii
, (18)

where Σ =
N

∑
t=1

ℜ
{
SH(t)EH

[
I−P

(
PHP

)−1
PH

]
ES(t)

}
,

S(t) =




s1(t) 0
. . .

0 sJ(t),




E = [e(θ1) . . .e(θJ)] ,

em(θ j) =
∂ pm(θ j)

∂θ j
=

K

∑
i=1

x jidm j,

dm j = e{− j(m−1)kid cos(θi)} [
j(m−1)kid sin(θ j)

]
,

I =
k2Γ( 4

k )

4σ2Γ2( 2
k )

.

4.2 CRB for Range and Depth

For range-depth estimation problem, let Θ =
[
zT rT ]T =

[ z1, . . . ,zJ , r1, . . . ,rJ ]T be the vector of the unknown depth and
range of the sources in Eq. (16).
Now, the CRB for Θ is given by

(CRB(Θ))i =
(

1
I

)
.

([
Σ1 Σ2
Σ3 Σ4

]−1
)

ii

(19)

where Σ1 =
N

∑
t=1

ℜ
{
SH(t)FH

[
I−P

(
PHP

)−1
PH

]
FS(t)

}

Σ2 =
N

∑
t=1

ℜ
{
SH(t)FH

[
I−P

(
PHP

)−1
PH

]
GS(t)

}

Σ3 =
N

∑
t=1

ℜ
{
SH(t)GH

[
I−P

(
PHP

)−1
PH

]
FS(t)

}

Σ4 =
N

∑
t=1

ℜ
{
SH(t)GH

[
I−P

(
PHP

)−1
PH

]
GS(t)

}

F = [f(r1,z1) . . . f(rJ ,zJ)]

fm j = fm(r j,z j) =
∂ pm(r j,z j)

∂ z j
=

=
2
√

2πe j π
4

∆

K

∑
i=1

α2
i cos(γiz j)γisin(γizm)

e jkir j

√
kir j

G = [g(r1,z1) . . .g(rJ ,zJ)]

gm j = gm(r j,z j) =
∂ pm(r j,z j)

∂ r j
=

= 2
√

2π e j π
4

∆ ∑K
i=1 α2

i sin(γiz j) sin(γizm)e jkir j

(
jki− 1

2r j

)
√

kir j

5. PERFORMANCE ANALYSIS : SIMULATIONS

In this section, simulation results are presented to compare the
estimation performance of the MUSIC, min-norm, Bartlett, and
Capon algorithms with the CRB. These comparisons are similar to
those presented by Stoica and Nehorai [11] for the case of plane
wave DOA estimation in white Gaussian noise.

The acoustic signals used for simulations were generated
following the normal mode model discussed in Section 2 for the
Pekeris channel with the following parameters: ρ = 1000 kg/m3,
ρb = 1500 kg/m3, c = 1500 m/s, cb = 1700 m/s, channel depth
∆ = 100 m. We considered a uniform linear array of M = 25
sensors, with intersensor spacing d = λ/2. For DOA estimation
we considered a horizontal ULA at depth zh = 50 m from the
surface, and for range-depth estimation we considered a vertical
ULA with the first sensor just below the ocean surface. Two
narrowband sources with common centre frequency ω

2π = 100 Hz
were assumed to be present at ranges r1 = 3000 m, r2 = 3150 m,
azimuths θ1 = 40◦, θ2 = 50◦ and depths z1 = 60 m, z2 = 75 m. At
this frequency 6 normal modes propagate in the medium. N = 200
data samples at each sensor were used for the estimation of the
covariance matrix R.

Following figures illustrate the performance of the estimators
in two different conditions in the shallow ocean environment, firstly
when the noise statistics is Gaussian in nature and secondly when
the noise has heavy-tailed generalized Gaussian distribution. In this
work, generalized Gaussian noise with value of k = 0.5 in Eq. (14)
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has been used to represent impulsive noise, and k = 2 corresponds
to Gaussian noise.
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Figure 1: MSE and CRB for DOA estimates in Gaussian noise
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Figure 2: MSE and CRB for DOA estimates in GGN (k=0.5)

Figures 1 and 2 show the plots of MSE of DOA estimates (of
the source at θ = 40◦ ) versus input SNR in dB for Gaussian noise
and generalized Gaussian noise (GGN) with k = 0.5 respectively.
Performance of different estimators are compared with the corre-
sponding Cramer-Rao bounds for the above mentioned source and
channel parameters. The MSE for each algorithm at each SNR was
estimated by averaging over 200 Monte Carlo simulations. The
CRB shown in these figures is the average CRB over 200 Monte
Carlo realizations of the random narrowband signal.

Figures 3 and 4 show the plots of MSE of depth estimates (of
the source at z = 60 m ) versus input SNR in dB for Gaussian noise
and GGN with k = 0.5 respectively. Figures 5 and 6 show the plots
of MSE of range estimates (of the source at r = 3000m ) versus input
SNR in dB for Gaussian noise and GGN with k = 0.5 respectively.
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Figure 3: MSE and CRB for depth estimates in Gaussian noise
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Figure 4: MSE and CRB for depth estimates in GGN (k=0.5)

From all these plots we observe that the CRB for non-Gaussian
noise is lower than that for Gaussian noise. This result is in confor-
mity with the known theoretical result that the optimal estimator
has the worst performane for Gaussian noise. The MSEs of all the
algorithms are independent of the noise pdf since these algorithms
depent only on the covariance matrix R and not on the noise pdf.
Also, the performance of MUSIC is the best among all the estima-
tors we have considered, followed by Capon, Min-norm and the
linear beamformer (Bartlett). The linear beamformer yields a poor
performance as it is not suitable for localization of multiple sources.

6. CONCLUSIONS

In this paper we have developed an expression for CRB for the
problem of DOA/Range-Depth estimation of underwater acoustic
sources in a shallow ocean for the case of generalized Gaussian
noise. The performance of MUSIC, Min-norm, Linear beamformer
and Capon beamformer have been studied for estimation of all the
above three parameters in shallow ocean, in terms of the variance
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Figure 5: MSE and CRB for range estimates in Gaussian noise
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Figure 6: MSE and CRB for range estimates in GGN (k=0.5)

of the estimation error. This has been carried out in two different
scenarios: ambient noise being Gaussian and ambient noise being
impulsive. The CRB is higher for Gaussian noise, which is in accor-
dance with the known result that the optimal estimator has the worst
performance in Gaussian noise. None of the estimation algorithms
considered here is dependent on noise pdf, and hence the MSEs of
these algorithms are not affected by the change in noise distribu-
tion. The usefulness of the CRB formula derived in this work is
not limited to the performance studies reported in this paper. It may
also be used to establish the relative efficiency of other estimators
in shallow ocean.
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