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The phrases `transient growth' and `non-norma-
lity' have become common parlance in °uid me-
chanics nowadays. We present these ideas with
a simple two-dimensional system, to enable the
reader to look for transient growth, as a trig-
ger for nonlinear behaviour to set in, in a vari-
ety of situations probably having nothing to do
with °uid mechanics. The article is aimed at un-
dergraduate students of science, engineering, ¯-
nance, etc., and the material is based completely
on the excellent books of Trefethen and Embree,
and Schmid and Henningson [1,2].

Introduction

In many situations, we have to ask a question about
stability. A civil engineer who puts up a tall structure
has to ask herself (or himself) whether the structure will
stand or fall down when disturbed. A chemist has to ask
whether a product of a reaction will be stable. From a
child on a bicycle to a corporate giant in the ¯ckle mar-
ket, none of us is immune to the roller-coaster that the
stability, or otherwise, of systems subject us to. How can
we decide whether a system is stable? For this, we often
need to go back to the example we were once taught,
of a ball in various landscapes. A ball at the bottom of
a well as shown in Figure 1(a) is of course in a stable
equilibrium, meaning that if it is moved away from the
bottom, i.e., perturbed away from its equilibrium state,
it starts oscillating as shown, but no matter what the
magnitude of the initial perturbation is, the oscillations
will decay monotonically due to friction, and the ball
will eventually settle back at the bottom.
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Figure 1. Different stability

scenarios.

Conversely, a ball on top of a hill (Figure1(b)) is in an
unstable equilibrium, since even the smallest perturba-
tion will have it rolling o®. A third possibility is shown
in Figure 1(c), where the present state of the ball is sta-
ble to small perturbations but can be unstable to large
perturbations which may cause the ball to cross the bar-
rier and go to the adjacent well. In Figure 1(d) we have
a boring situation where all positions are the same as
each other and the ball does not choose between them.
The case (c) is of particular interest to us.

What then is `transient growth'? In this article, and
to an increasing number of people, the term means an
incredible situation when `theory' promises us that a
system is stable to small perturbations, but at short
times (i.e., transiently), the `theory' appears to be in-
correct, and we have disturbances growing, sometimes
by many orders of magnitude, even when we carefully
ensure that no disturbance bigger than a certain tiny
size is given to the system. In terms of Figure 1(c), we
could have a situation where we have moved the ball
ever so slightly from the bottom of its present well, but
¯nd the ball in the other well at a much later time! A
system whose dynamics can be thus, would need to be
slightly more complicated than the one shown in the
¯gure. If we had only one plane of oscillation, a small
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barrier and go to the
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Figure 2. Transient growth

of the resultant of two non-

orthogonal vectors.

perturbation would always decay due to friction, but if
the ball were sitting in a three-dimensional landscape,
transient growth is possible. Let us see what we mean
by transient growth in the following section.

2. A Condition for Transient Growth

Let us do a simple exercise with two vectors, ~X1 and
~X2 as shown in Figure 2. We will allow the vectors
to grow or shrink in time while pointing in the same
direction always, i.e., the respective magnitudes X1 and
X2 are functions of time, and the angle between them
stays constant. If the angle between the vectors is ¼¡Á
radians, the magnitude R of the resultant of ~X1 and ~X2

is given by

R2 = (e¡¸1t ¡ Ce¡¸2t cos Á)2 + (Ce¡¸2t sinÁ)2: (1)

When Á = 90o, the vectors would be orthogonal, or nor-
mal to each other, while for any other Á they would
be non-normal; we will use this terminology repeatedly.
It is easy to see that if X1 and X2 were growing with
time, so would the magnitude R of the resultant. In this
paper we are interested in the opposite case, i.e., one
where X1 and X2 decay exponentially, as X1 = e¡¸1t,
and X2 = Ce¡¸2t, where ¸1 and ¸2 are positive con-
stants. Going by our instinct, we expect R to decrease
monotonically too. Surprisingly however, we can some-
times have R increasing for some time before ¯nally de-
creasing. This special situation, where the individual
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vectors are all monotonically shrinking but their resul-
tant grows for some time, is called `transient growth'.
Let us see when and how such transient growth can hap-
pen. For R to grow at any time, we must have

dR

dt
> 0: (2)

For the vectors in Figure 2, upon de¯ning

y ´
exp [(¸2 ¡ ¸1)t]

C
´
z

C
; and r ´

¸2

¸1

; (3)

equation (2) can be rewritten as

y2 ¡ y(1 + r) cosÁ+ r < 0: (4)

Without loss of generality we may choose ¸2 < ¸1, such
that r < 1. The quantity z lies between 0 and 1, so for
C > 0 we must have

y <
(1 + r)

2

2

4cosÁ§

s
µ

1¡ r

1 + r

¶2

¡ sin2 Á

3

5 (5)

for transient growth. For y to be real this implies

Á < sin¡1
µ

1¡ r

1 + r

¶

: (6)

Thus, given a pair of decay rates ¸1 and ¸2, the an-
gle between the vectors must exceed a certain value to
make it possible for their resultant to grow. This con-
dition for transient growth is equivalent to that given
in Trefethen and Embree [1] and Schmid [3] in terms
of the matrix condition (16), (see below). We see from
the above equation that if the two decay rates are very
close to each other, i.e., if r ! 1, the vectors have to
be practically collinear to see any transient growth. On
the other hand, if the two decay rates are di®erent by
many orders of magnitude such that r ! 0, then any
non-normality (departure from orthogonality) is su±-
cient for some transient growth. We will return to this
point later.
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If equation (6) is satis¯ed, it still does not mean that the
resultant of two such vectors will show any growth. It
also matters what the initial magnitude of each vector
is. If however, Á lies in the right range, and we are at
liberty to choose the ratio C of the initial magnitudes
of the vectors, we can always realise a growth in R as
follows. A Á which satis¯es equation (6) may be written
as

cosÁ =
2(h+ 1)

p
r

r + 1
; (7)

where h > 0, and h + 1 (1 + r)=2
p
r. The condition

in (5) for transient growth can then be rewritten as

y < h
p
r[1 +

q
1 + 2=h ]: (8)

For a given pair of decaying vectors, the above condition
determines the range of C for which transient growth is
possible. Since all quantities as de¯ned are positive,
we have chosen the positive root in (5) to arrive at the
above.

We next wish to understand how large a growth in the
resultant we can possibly get. The answer lies in picking
the optimal initial conditions, namely the best C. De-
noting the magnitude of the resultant at the initial time
as R0, we de¯ne a growth parameter G for a given C as

G(t) =

"
R(t)

R0

#2

and Gmax = max
t
G(t): (9)

Setting dG=dC = 0 for the optimum C at a given time,
we get

Coptimum =
(1 + z)§

q
(1¡ z)2 + 4z sin2 Á

2 cosÁ
; (10)

where z is evaluated at the given time. This gives, if
d2G=dC2 < 0, the maximum value attainable by G at
that time. The variation of G with C is shown in


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Figure 3. The maximum

transient growth G
max

as a

function of the initial ratio

C of the magnitudes of the

two vectors. The different

linescorrespondtovarious

values of the angle (180–)

between them, beginning

with = 0o for the topmost

curve, and ending with the

critical value = 3.82o for

the bottom curve shown by

the plus symbols. The

curves in between are for 

=0.4o,0.9o,1.3o,1.7o,2.1o,2.6o,

3.0o and 3.4o respectively.

Any > 3.82o, would ensure

a monotonic decay of the

resultant. Note that the rea-

son G
max

goes to infinity at

small  for C  1 is be-

cause the initial value of

the resultant goes to zero.

This is an artefact of the

object we have chosen to

optimise.

Figure 3 for ¸1 = 8, ¸2 = 7 and various values of Á
ranging from 0 to the critical value sin¡1((1¡r)=(1+r)).
The greater of the two roots of equation (10) gives the
Coptimum. It may be con¯rmed that this condition does
indeed correspond to a maximum by checking the sign
of the second derivative.

The phrases transient growth and non-normality are of-
ten used interchangeably with each other. Indeed, if we
set Á = 90o then

dR

dt
=
¡1

R
(C2¸2e

¡2¸2t + ¸1e
¡2¸1t) ; (11)

which is always less than zero; hence we can have no
growth if the eigenvectors are orthogonal. The above
exercise points out that the converse is often not true,
i.e., non-normality, or Á being di®erent from 90o does
not guarantee transient growth. In fact, we need Á to
be su±ciently far away from 90o, i.e., the system to be
su±ciently non-normal, to obtain transient growth.

What does Gmax mean for our ball in Figure 1(c)? Imag-
ine that the well where the ball is sitting is a three-
dimensional wonky-bowl shaped valley, with its walls
di®erently sloped everywhere. Imagine also that in some
direction the walls give way to a second valley as shown.
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Given that there is

another valley, a

subset of the initial

perturbations can

be such that the

ball goes over the

hump and slides

into the second

valley.

If there were no other valley in the vicinity, the ball
may oscillate with larger amplitude for some time due
to transient growth, but would eventually go back to the
same old valley's bottom. However, given that there is
another valley, a subset of the initial perturbations can
be such that the ball goes over the hump and slides
into the second valley. In other words, this happens
when Gmax is large enough for the resultant of the initial
perturbation in the direction of the barrier to cross it.
A typical matrix system to study this is described in the
next section.

Can the resultant from the optimal perturbation decay
initially and then grow? We leave this section with that
as food for thought for the reader.

3. Transient Growth and Stability

The previous section showed that predictions which seem
intuitively obvious may not always turn out to be true.
Our objective however is not just to show this. We
studied the example above because it is the simplest
explanation of a lot of dynamics seen in many real-life
situations.

To see this better, we consider the dynamics described
by the initial value problem

dX

dt
= A ¤X; X (0) = X0 ; (12)

whereX = [X1X2X3::::Xn]
T , the superscript T denoting

a matrix transpose. When A is independent of X , the
dynamical equation is linear in X. We ¯rst consider

A = ¸1

"
¡1 p

0 ¡r

#

: (13)

Note that any 2£ 2 matrix can be written in the above
form if we align our coordinate system with one of the
eigenvectors. The eigenvalues of A are ¡¸1 and ¡¸2,
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and with
p = (1¡ r) cotÁ=¸1; (14)

~X1 and ~X2 as de¯ned in the previous section form its
eigenvectors. The solution to (12) gives their magni-
tudes as X1 = e¡¸1t, and X2 = Ce¡¸2t. We are familiar
with the resultant of the system, whose square can be
interpreted as the energy of the system. This is because
the dynamics in many real systems, for example a sim-
ple pendulum, can be written in the form of (12), and
the energy is indeed the square of the resultant of the
eigenvectors. In the case of a simple pendulum this is
the sum of the potential and the kinetic energy. In °uid
systems without gravity, the resultant is often nothing
but twice the kinetic energy u2 +v2+w2. We have p = 0
when Á = ¼=2, i.e., when the vectors are orthogonal; A
is then just a diagonal matrix, and the system is inca-
pable of displaying transient growth, as we have seen. In
other words, a necessary condition for transient growth
is that the matrix A should be non-normal.

A matrix M is called normal if

MM y = M yM ; (15)

where M y is adjoint of M . Any other matrix is termed
`non-normal'. Incidentally, self-adjoint matrices form a
subset of normal matrices which satisfy M = My.

The adjoint of a matrix is the transpose of its complex
conjugate in the simplest case. We emphasise again that
since Á will have to satisfy equation (6) before any tran-
sient growth is possible, non-normality is not a su±cient
condition for transient growth. A su±cient condition is
[1]

¸maxfM +MHg > 0; (16)

where ¸max is the largest eigenvalue of M +MH. If we
apply this condition to A to obtain a constraint on Á,
we get back our original condition given by (6).
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If we stopped at a

traditional linear

theory, we would

give ourselves the

possibly erroneous

belief that the ball

will monotonically

go back to the

same steady-state.

Going back again to Figure 1(c) we consider our two

vectors ~X1 and ~X2 as small perturbations in two coordi-
nates of the ball from its position shown. The dynamics
very close to the bottom of this valley is described by
(17). Such a matrix equation is usually a very good ap-
proximation in real-life problems. Assuming A in the
general case has N distinct eigenvalues, the general so-
lution of (12) is

X = V1e
¸1t + V2e

¸2t + ::: ; (17)

where ¸i and Vi are the eigenvalues and the eigenvectors
of the matrix A respectively. We look at two example
matrices, which have only negative eigenvalues. We set
N = 2 for simplicity, but our conclusions hold good for
large N as well. The reader is encouraged to work out
what would happen in the case of repeated eigenvalues.

A1 =

"
¡0:1 50

0 ¡0:2

#

; A2 =

"
¡10 5
5 ¡5

#

: (18)

The eigenvectors of A1 lie at an angle of 0:11o to each
other while those of A2 are 90± apart, i.e., A1 is non-
normal and A2 is normal.

The growth parameter G is the ratio of the energy at
time t to the initial energy, since the energy is de¯ned
here to be merely the square of the magnitude of the re-
sultant R. Note that in di®erent physical problems, we
may need to monitor the growth of di®erent parameters,
and would have to adjust our treatment accordingly.
The maximum attainable value E of the growth para-
meter G at each time is shown in Figure 4 for the two
examples A1 and A2. We use this ¯gure to go back to
our stability analysis. If we stopped at a traditional lin-
ear theory, i.e., after solving the system (12), we would
give ourselves the possibly erroneous belief that the ball
will monotonically go back to the same steady-state. We
now know however, that for a range of initial conditions,
the energy of the small perturbation can grow a lot,
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Figure 4. Evolution of opti-

mal energy E for A
1

and A
2
.

Themonotonicdecayin the

energy of A
2

is seen clearly

in the inset. E is the opti-

mum value attainable by G

at a given time by choosing

theoptimal initialcondition,

i.e., the best C.

In fluid dynamics,

transient growth

occurs quite

commonly, for

example, in the

flow of water

through a pipe.

sometimes by several orders of magnitude, and take the
system into a totally di®erent state. In °uid dynamics,
transient growth occurs quite commonly, for example, in
the °ow of water through a pipe. As mentioned in the
¯nal section, the transient growth of disturbances can
make this °ow change its state from laminar to turbu-
lent.

4. Sensitivity of Eigenvalues: Pseudospectra

We brie°y divert our attention to the concept of `pseudo-
spectra' to see how a pseudospectrum helps in estimat-
ing the transient growth possible in a system. We only
introduce the topic here. Read Trefethen and Embree[1]
for more on it.

The spectrum of a matrix A is the set of its eigenvalues,
denoted by ¾ (A). When we perturb the matrix A by a
small amount ¢A, the perturbed matrix Ap = A+ ¢A
will have a di®erent spectrum. To quantify what we
mean by perturbing by a `small' amount, we ¯rst de¯ne
the `size' of a matrix. The size of a matrix is estimated
by its norm, which may be de¯ned in many ways, but we
use here the Euclidean or L2 norm, also known simply
as the 2-norm. The L2 norm k ¢ k2 for a vector ~v =
[v1; v2; v3:::vn] is kvk2 = (v2

1+v
2
2+v

2
3+:::+v

2
n)

1=2, which is
just the magnitude of its resultant. For a square matrix
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M this norm is the square root of the largest eigenvalue
of MMy or MyM. The L2 norm of A in (13) is thus

kAk2 =
¸1p
2

h
1 + r2 + p2 +

n
(1¡ r2)2

oi

·

+ p4 + 2p2(1 + r2)
o1=2

¸1=2
: (19)

To simplify this discussion we assume the norm of A to
be of order 1. (A matrix whose norm is much larger
or smaller can be scaled appropriately by a constant in
order to satisfy this.) We now perturb A by a matrix
¢A with k¢Ak2 ² << 1. The perturbation matrix
¢A is denoted by

¢A =

"
"1 "2

"3 "4

#

,

where each individual element of ¢A is ², so all the
elements of the perturbed matrix Ap are close to the cor-
responding elements of A. The ² pseudospectrum of a
matrix can be de¯ned in several ways and we will choose
the simplest. Once the maximum size ² of the pertur-
bation is ¯xed, there are of course in¯nitely many ways
to choose ¢A. Each will result in a di®erent spectrum
for Ap. The union of all such spectra for a given ² is
called the ² pseudospectrum of A. Our example consists
of real eigenvalues only, but for a matrix with complex
eigenvalues we may write

¾² (A) =
fz 2 C : z 2 ¾ (A+ ¢A) for all ¢A with k¢Ak ²g ;

and follow the same procedure [1,4]. For a small ² we
expect a small ² pseudospectrum, which is always the
case for a normal matrix. However, when a matrix is
non-normal, the spectrum of Ap can di®er greatly from
that of A, resulting in a large pseudospectrum. Let us
see how this can happen. The eigenvalues of Ap are






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If the

pseudospectrum is

larger than the

perturbation which

caused it, then the

matrix is non-

normal.

¸p =
¸1

2
[¡1¡ r + ²4 + ²1 §

(1¡ 2r + 2²4 ¡ 2²1 + r2 ¡ 2r²4 + 2r²1

+ ²24 ¡ 2²1²4 + ²21 + 4²2²3 + 4p²3)
1=2]: (20)

where we have rescaled ²i by 1=¸1. Neglecting terms of
order ², and remembering that p can be large, (20) can
be reduced to

¸p =
¸1

2
[¡1¡ r § (1¡ r)1=2

q
(1¡ r) + 4²3 cot Á=¸1]:

(21)
When cotÁ is of the order of 1 or smaller, the psue-
dospectrum is small, but when it is large, which hap-
pens when the matrix is substantially far from normal,
the psuedospectrum can be much larger in magnitude
than ². It is also important to note that as the two
eigenvalues become close to each other, i.e., as r ! 1,
the quantity under the square-root symbol above is of
order ²1=2, which is of lower order (i.e., bigger) than ².
Here even for cot Á » 1, i.e., small p, we have a signi¯-
cant pseudospectrum. When the eigenvalues are equal,
i.e., ¸1 = ¸2, an equivalent equation will be

¸p = ¸1 [¡1§
p
²3p] ; (22)

which is the limit of (21) as r ! 1. This procedure can
be repeated for any N £ N matrix, and it will be seen
that if all the eigenvalues are close to each other, the
pseudospectrum will be of size » (²p)1=N , where p is the
magnitude of the o®-diagonal elements. This is much
larger than ², so non-normality can become very impor-
tant in multi-dimensional systems. Thus for any N £N
matrix we can often comment on its non-normality by
just looking at its pseudospectrum; if the pseudospec-
trum is larger than the perturbation which caused it,
then the matrix is non-normal.
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Figure 5. The contours of

the pseudospectra of (a)

matrix A
1
and (b) A

2
in log

10

scale. Note that the scale

of thesecondplot ishugely

magnifiedcomparedto the

first, i.e., the pseudo-spec-

trum of A
2
is much smaller

than that of A
1
.

The pseudospectra ofA1 andA2 studied above are shown
in Figure 5. The di®erent curves represent pseudospec-
tra for di®erent values of ² up to ² = 10¡2. The non-
normal nature of A1 is evident, albeit qualitatively, in
the large size of its pseudospectrum, as opposed to that
of A2. Note in particular that beyond some value of
², the eigenvalues of the perturbed matrix A1p actually
lie in the unstable half-plane. When the eigenvalues
are in the unstable half-plane, i.e., the eigenvalues are
positive, exponential decay is replaced by exponential
growth. The maximum protrusion ®² into this region
gives us a lower limit of the maximum possible transient
growth for a given matrix [4]. For any ² > 0

Gmax ¸
®²(A)

²
: (23)

For A1, for ² = 10¡2 we have ®² = 0:559, which indicates
that Gmax ¸ 55:9, while for ² = 10¡3; ®² = 0:079, indi-
cating Gmax ¸ 79. In Figure 4, we see that Gmax = 125,
satisfying our expectations from the pseudospectra. The
pseudospectra of A2 on the other hand do not cross into
the right half plane even for ²! 1.

5. Non-normality in Fluid Dynamics, and the
Role of Nonlinearity

Non-normality and transient growth are ubiquitous in
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Reynolds showed

that at low flow

velocities the pipe

flow remains

laminar. As the

flow velocity is

increased, some

disturbances begin

to appear in the

pipe flow, which

increase as the

velocity is

increased, until at

high velocities the

entire flow

appears turbulent.

Reynolds found

that the transition

between laminar

and turbulent flow

happens when a

non-dimensional

number attains a

value of about

2000.

many ¯elds, ranging from population dynamics to eco-
nomics, and the reader is encouraged to look everywhere
for them. We discuss the most famous example in °uid
dynamics here. In 1883 Osbourne Reynolds studied the
°ow of water through a pipe. He showed that at low °ow
velocities the pipe °ow remains laminar. As the °ow ve-
locity is increased, some disturbances begin to appear in
the pipe °ow, which increase as the velocity is increased,
until at high velocities the entire °ow appears turbulent.
We will refrain from a mathematically precise de¯nition
of the terms `laminar' and `turbulent'. For our purposes
it is enough to know that laminar °ow through a pipe
is usually steady and predictable. Turbulent °ow on
the other hand is very unsteady, chaotic and vortical.
At some °ow velocity, laminar °ow becomes unstable
and if the velocity is increased progressively, the °ow
ultimately becomes turbulent. Reynolds found that the
transition between laminar and turbulent °ow happens
when a non-dimensional number, which now goes by
his name, attains a value of about 2000. The Reynolds
number is de¯ned for this °ow by ½ UD=¹, where ½ and
¹ are the density and viscosity of the °uid respectively,
D is the diameter of the pipe, and U is the velocity of
the °uid at the pipe centreline. For a given pipe and
given °uid, increasing the °ow velocity thus amounts to
increasing the Reynolds number.

Early theoretical results were at variance with what Rey-
nolds, and anyone since who has seen water °owing
through a transparent pipe, could see plainly. The the-
oreticians asked the question: Is the laminar °ow stable
or not, i.e., does this state ¯guratively correspond to
the bottom of the well we saw in the beginning of this
article? To ¯nd out, they perturbed the laminar solu-
tion by a small amount to see whether the disturbances
would decay or grow. In 1927 Sexl (see e.g., Davey and
Drazin [5]) found that laminar pipe °ow seems stable to
very small perturbations at any Reynolds number. This



455RESONANCE  May 2010

GENERAL  ARTICLE

Anybody with

some background

in dynamics knows

that extremely

complicated and

strange behaviour

may be expected

from non-linear

systems.

result was further strengthened by Davey and Drazin in
1969 who computed the complete set of eigenvalues and
found them all to be damped [5].

Often, when this particular disagreement between the-
ory and experiment takes place, it is sorted out by re-
course to `nonlinearity' (see e.g., Stuart [6]). By this
we simply mean that worrying only about whether a
°ow is unstable when disturbed very slightly from the
`bottom of the well' may not give the correct answer.
We may need to know what happens when it is moved
quite a distance away. The mathematical consequence
is as follows. When we apply a small perturbation X,
we normally discard terms containing X2, X3, etc., as
being too small to make a di®erence to the answer. The
resulting dynamical equation is linear in X, and has the
form of (13). When the disturbance X from the steady
state is large, powers of X greater than 1 cannot be ne-
glected, and the resulting equation is non-linear in X.
Thus `nonlinear stability analysis' usually means that
we have not made the assumption that the initial per-
turbation is small.

Anybody with some background in dynamics knows that
extremely complicated and strange behaviour may be
expected from non-linear systems. The surprising thing
about transient growth, and an important reason to
study it, is that it provides a way by which we can
perturb a linearly stable system by extremely small
amounts, and still have the perturbations grow to large
values, after which non-linear e®ects may no longer be
neglected. We discuss a very simple system to give this
central message, that transient growth can help make a
system leave a locally `stable' state and go to another.

Consider

d

dt

"
X1

X2

#

= A

"
X1

X2

#

¡

"
a1X

2
1

a2X
2
2

#

: (24)

The system has two steady states, de¯ned by X = 0
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Figure6. Solutionsof equa-

tion (24) when A is (a) non-

normal and (b) normal. The

solid line shows the solu-

tion with the second term

on the right-hand side set

to zero, i.e., it constitutes

the linear solution. The

dashed line is the complete

solution. The non-normal

matrix contributes the ini-

tial growth, which is made

useofby thenonlinear term

toreacha newsteady state.

In the normal system how-

ever, since we have begun

with a small X, both solu-

tions show a decaying

trend.

and dX=dt = 0. These two states may be thought of as
describing the two wells in Figure 1(c). Close to the ¯rst
state, we may neglect X 02 (where X 02 = [a1X

2
1 ; a2X

2
2 ]),

but the second term becomes important for larger X.
Figure 6(a) shows the linear transient growth forA = A1

and the nonlinear kick-o® by X 02 to a new state and in
Figure 6(b) with A = A2 we can see that the nonlin-
ear term X 02 does not qualitatively change the solution.
We have chosen a1 = 0:005121 and a2 = 5. In summary,
transient growth provides a mechanism for nonlineari-
ties to set in even when we begin with extremely small
perturbations near a `stable' state.

The simple system described above is roughly analogous
to what is now thought to happen in a pipe °ow. Al-
though the transition from laminar °ow to turbulence is
not well understood even a century and a quarter after
Reynolds, it is becoming increasingly clear to scientists
working on this problem that transient growth is often
an important player in the sequence of events leading
to turbulence. The complicated manner by which tran-
sient growth occurs and triggers nonlinearities in pipe
°ow is beyond the scope of this article, but the inter-
ested reader can look up Trefethen et al [7] for example.
We will only mention here that the governing equations
(derived from the Navier{Stokes and continuity equa-
tions) can be highly non-normal, and involve a large
number
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number of eigenmodes which can interact to give large
transient growth. In the examples presented here, the
transient growth was relatively modest, but in situations
like heated channel °ow [8], transient growth may cause
the disturbance energy to increase by several orders of
magnitude.
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