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Abstract. Unitary representations of compact quantum groups have been described as
isometric comodules. The notion of an induced representation for compact quantum groups
has been introduced and an analogue of the Frobenius reciprocity theorem is established.
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Quantum groups, like their classical counterparts, have a very rich representation
theory. In the representation theory of classical groups, induced representation plays
a very important role. Among other things, for example, one can obtain families of
irreducible unitary representations of many locally compact groups as representations
induced by one-dimensional representations of appropriate subgroups. Therefore, it is
natural to try and see how far this notion can be developed and exploited in the case of
quantum groups. As a first step, we do it here for compact quantum groups. First we
give an alternative description of a unitary representation as an isometric comodule
map. This is trivial in the finite-dimensional case, but requires a little bit of work if the
comodule is infinite-dimensional. Using the comodule description, the notion of an
induced representation is defined. We then go on to prove that an exact analogue of
the Frobenius reciprocity theorem holds for compact quantum groups. As an
application of this theorem, an alternative way of decomposing thz action of S U,
on the Podles sphere S7 is given.

Notations. #, A" etc, with or without subscripts, will denote complex separable
Hilbert spaces. () and %,(#) tenote respectively the space of bounded operators
and the space of compact operators on #. o7, &, % etc denote C*-algebras. All the
C*-algebras used in this article have been assumed to act nondegenerately on Hilbert
spaces. More specifically, given any C*-algebra ., it is assumed that there is a Hilbert
space M~ such that of = Z(A) and for ue X', a(u)=0 for all aess/ implies u=0.
Tensor product of C*-algebras will always mean their spatial tensor product. The
identity operator on Hilbert spaces is denoted by I, and on C*-algebras by id. For two
vector spaces X and Y, X ®,,, Y denote their algebraic tensor product.

Let o/ be a C*-algebra acting on . The subalgebras {acB(A'):abeA Vbe ot}
and {aeB(X):ab,bac A Vbesd} of B(A) are called respectively the left multiplier
algebra and the multiplier algebra of /. We denote them by LM (&) and M(«f)
respectively. A good reference for multiplier algebras and other topics in C*-algebra
theory is [4]. See [9] for another equivalent description of multiplier algebras that is
often very useful. :
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1. Preliminaries

1.1 Let & be a unital C*-algebra. A vector space X having a right &/-module
structure is called a Hilbert .«/-module if it is equipped with an /-valued inner product
that satisfies

(1) <%, p0* =<y, x),
(i) {x,x>>0,
(ii) {x,x>=0=>x=0,
(iv) {x,yb> =<{x,yyb for x,yeX, be,

and if ||x|:= || {x, x> ||*/>* makes X a Banach space.

Details on Hilbert C*-modules can be found in [1], [2] and [3]. We shall need a few
specific examples that are listed below. 7

Examples. (a) Any Hilbert space # with its usual inner product is a Hilbert C-
module.

(b) Any unital C*-algebra o/ with {a,b> = a*b is a Hilbert o«/-module.
(c) # ® A, the ‘external tensor product’ of # and ¢, is a Hilbert /-module.
(d) B(A, ), with (S, T) = §*T is a Hilbert Z(#)-module.

1.2 We have seen above that # @ #(A') and #(A, # ® A’) both are Hilbert B(A)-
modules. It is easy to see that the map 9:Zu;® a;~Zu; ® g,() from # &, B(H) to
BA, A @A) extends to an isometric module map from H# RB(A) to
B(A,H# @A), ie. 9 obeys

B, 30> =<x,y), Vx,yeH @ B(X),
8(xb) =9(x)b, VxeH ®B(AH), be B(H).
Thus 9 enibeds HQRQRB(A) in B(A,#RA). Observe two things here: first, if

# = C, 3 1s just the identity map. And, 9 is onto if and only if # is finite-dimensional.

The following lemma, the proof of which is fairly straightforward, gives a very useful
property of 3.

Lemma. Let §; be the map § constructed above with #, replacing #,i=1,2. Let
SeB(Hy, H,) and xe H, @ B(AH). Then 3,((S®id)x) = (SR )9, (x).

1.3 For an operator Te#(# @A), and a vector ue#, let T, denote the operator
v T(u®v) from A" to # @ A It is not too difficult to show that T,e9(# ® (X))
if Te LM(B,(#)® #B(X")). Define a map ¥(T) from # to # ® B(H) by: P(T)(u) =
87(T,). Then ¥ is the unique linear injective contraction from LM (Bo(H)R B(X))
to B(H,# ®B(A')) for which $(¥(T)(w))(v) = T(u@v) Vues#,vex", Te LM(%,
(#)® #(A)). Here are a few interesting properties of this map V. '

PROPOSITION

Let ¥: LM(2(#)Q B(A))~B(H, # ®.43(Jf’ )) be the map described above. Then
we have the following: o ‘

() ¥ maps isometries in LM(% (#) ® B(A')) onto the isometries in B(A, H R B(A))
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(ii) For any Te LM(B,(#)® B(X)) and SeB(H),
(TSR =P(T)°S, ¥(S®I)T)=(S®id)°¥(T).

(1) I f of is any C*-subalgebra of B(A") containing its identity, then Te LM(#,(#)® <)
if and only if range W (T)= # Q@ .

Proof. (i) Suppose Te LM (B,(#)® B(A)) is an isometry. By 1.2, {¥(T)u, ¥(T)v) =
(9T, 9~ YT,)> =<T,, T,>=Cu,v)I for u,ves#’. Thus ¥(T)is an isometry.

Conversely, take an isometry n:# — # ® %(#) and define an operator T on the
product vectors in # ®A4 by T(u®v) =3(n(u))(v), being the map constructed in
1.2. It is clear that T is an isometry. It is enough, therefore, to show that T(|u)<v|® S)e
Bo(H#)® B(A") whenever SeB(A") and u,v are unit vectors in H# such that (u,v> =0
or 1.

Choose an orthonormal basis {e;} for # such that e; = u, e, = v where

e 0 if (u,v>=0,
T i uod=1.

Let m;;=(<e;| @id)m(e;). Then T(Jud<{v|®S)=2Zl|e;><{e,|®@n;, S where the right-
hand s1de converges strongly Since 7(e,)e# ® B(A), it follows that X;m; *r;;
converges in norm. Consequently the right-hand side above converges in norm, which
means T(|u{v|® S)eB,(H) @ B(X).

(ii) Straightforward.

(iii) Take T =|ud<v|® a,u, ve#,acs. For any we ', ¥(T)(w) = {v,wpu®ae# & «.
Since ¥ is a contraction, and the norm closure of all linear combinations of such T7s is
Bo(#)® o, we have range ¥(T) € # @  for all TeZ,(#) ® .

Assume next that' Te LM(%,(#) ® ). Then T(|u)<{u|®NeB,(#)® « for all
ue#. Hence ¥(T(lu){ul®I)(u)e# ® o/, which means, by part (ii), that
¥(T)uweH @  for all ue#. Thus range ¥(T) S H# @ 4.

To prove the converse, it is enough to show that T(|u)<{v|® a)eB,(H#)® A
whenever ae o/ and u, ve# are such that (u,v) = 0 or 1. Rest of the proof goes along
the same lines as the proof of the last part of (i). ‘ |

1.4 Let X', , be two Hilbert spaces, o/; being a C*-subalgebra of #(¢';) contain-
ing its identity. Suppose ¢ is a unital x-homomorphism from &/, to o/,. Then id ® ¢:
S® a—S ® ¢(a) extends to a x-homomorphism from B,(#)® /| t0 B,(H)R L ,.
Moreover {((id ® ¢)(a))b:acB(H)R o, beB(H)® o, } is total in B,(H)Q 5.

Therefore id ® ¢ extends to an algebra homomorphlsm by the following prescription:
for all ae LM(B,(#)® o ,), be By (H)Q A |, ceBo(H)® A 5,

((id ® $)a)(((1d ® $)b)o):= ((1d @) (ab))c.

PROPOSITION

Let ¢ be as above, and \¥; be the map ¥ constructed earlier with A'; replacing . Then
for Te LM(%B,(#)® ,),

(I ® ¢)T1(T) = lPz((id@) ®) 7).
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Proof. Tt is enough to prove that

Kul@d(U @A) (T)1) = ({u| @ id) ¥, ((1d ® §) T)(v), Vu, veH.

. T

Rest now is a careful application of 1.2. ‘ ' |

1.5 Consider the homomorphic embeddings ¢,,: B (H#)® o, = Bo(H) R L, ® ?
and ¢,3:B4(#)Q o , > Bo(H#)® o, ® o/, given on the product elements by %'

$,,@®b)=a@bR]I, ¢,3@®c)=a®RIRc,
respectively. Each of their ranges contains an approximate identity for Bo(H)®

o ® 5, so that their extensions respectively to LM (B, (#) ® . ) and LM (% (#)®
&/ ,) are also homomorphic embeddings.

PROPOSITION

Let ¥,,¥, be as in the previous proposition, and let ¥, be the map ¥ with o A,
replacing . Let Se LM (B,(#)® ), Te LM (%, (%”)@d )- Then

¥o(912(8)$15(T)) = (¥,1() ®id) ¥,(T).

Proof. Observe that for u,,...;u,e,(((¥,(S)u,), ¥ (S)(u)>))<HSII ((Cugy u;> ). i
Therefore ¥, (S)®id is a well-defined bounded operator from #® &/, to :
H @, ®,. Take an orthonormal basis {¢,} for #. Define S;’s and Tjs as ‘
follows:

Sijiom(<e ®I)S(e;®v), T:om>({e)| ® ) T(e; ®).
Let P,i=X{_,le;) (e, Then (¥,(5)® id)(P,®id)¥,(T)(e;) = (¥, (S) ® id)(Z,cpe; ®
T,)= J<n(2 €, ® S,;)® T,;. Hence for ve A", we X', ;}

(¥, (9) ®id)(P,®id)¥,(T)(e;)) (v @ w)

=2 Y a®S,;(0)® Tyw)

jsn k

(Z Yle<e|®5,;® Tﬂ)(e RV W)

j<n k,r

=$12()(P,RI®1)¢,3(T)e,®v@w).

This converges to ¢,,(8)¢;3(T)(e; ® v @ w) as n-> o0. On the otfler hand,

lim (¥, (S) ® id)(P, ® id)¥,(T)(e;) = (¥, (S) ® id)¥,(T) (e;),
which implies lim,, ,3((¥,(S)® id)(P,® id)¥ 2T)(e;)) =3((¥,(S)® id) ¥, (T)(e;)).
Therefore 3((¥,(5)®id) ¥, (T)(e))0®W) = 615(S),a (T) e, ®v®w)_8(‘Po(¢12(S)
¢13(T))(e;)) (v ®w). Thus (¥, (S)® id) ¥, (T) = ¥ o(#12(8)¢15(T)).
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2. Representations of compact quantum groups

2.1 We start by recalling a few facts from [6] on compact quantum groups.

DEFINITION

Let o/ be a separable unital C*-algebra, and u:.o/ — .o/ ® o/ be a unital »-homomorphism.
We call G= (o, ) a compact quantum group if the following two conditions are
satisfied: '

(1) (d®pu=u®id)y, and
(1) {(@a®u(b):a,bes/} and {(I ® a)u(b):a,beo} both are total in &/ ® /.

w is called the comultiplication map associated with G. We shall very often denote the
underlying C*-algebra & by C(G) and the map u by yg.

A representation of a compact quantum group G acting on a Hilbert space 5 is an
element 7 of the multiplier algebra M (%,(+#)® C(G)) that obeys n,,7,; = (id @ w7,
where 7,, and 7, , are the images of 7 in the space M (%,(#)® C(G)® C(G)) under
the homomorphisms ¢,, and ¢, which are given on the product elements by:

$,(@a®b)=a@bRI, ¢,,(a®b)=a@I®b.

A representation 7 is called a unitary representation if nn* = I = n*n. One also has
the notions of irreducibility, direct sum and tensor product of representations. As in
the case of classical groups, any unitary representation decomposes into a direct sum
of finite-dimensional irreducible unitary representations. Let A(G) be the unital
x-subalgebra of C(G) generated by the matrix entries of finite-dimensional unitary
representations of G. Then one has the following result (see [8]).

Theorem. ([8]) Suppose G is a compact quantum group. Let A(G) be as above. Then we
have the following: ‘
(a) A(G) is a dense unital x-subalgebra of C(G) and u(A(G)) < A(G)® ,, A(G).
(b) There is a complex homomorphism ¢: A(G)— C such that
(e®id)p=id = (id ® &) u.
(c) There exists a linear antimultip.licative map k. A(G)— A(G) obeying
m(id @ k) u(a) = e(a) I = m(k ® id) u(a), and x(x(a*)*)=a

for all ae A(G), where m is the operator that sends a®b to ab.

The maps ¢ and x in the above theorem are called the counit and coinverse
respectively of the quantum group G.

22 Let G=(C(G), ug) and H =(C(H), ug) be two compact quantum groups. A C*-
homomorphism ¢ from C(G) to C(H) is called a quantum group homomorphism
from G to H if it obeys (¢ ® P)pg = uy @.

One can show that if G, H are compact quantum groups, then H is a subgroup of
G if and only if there is a homomorphism from G to H that maps C(G) onto C(H).
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2.3 Let G = (&, 1) be a compact quantum group. From now onward we shall assume
that o/ acts nondegenerately on a Hilbert space )¢, i.e. o is a C*-subalgebra of Z(X")
containing its identity. We call a map 7 from # to # R an isometry if
(m(u), m(v) ) = Cu,v)1 for all u,vesl. If 1:# > H ® o is an isometry, then n® id:
u® a—n(u) ®a extends to a bounded map from # @ o to # ® o ® . 7 is called
an isometric comodule map if it is an isometry, and satisfies (7 ® id)w = (I ® p)n. The
pair (5, n) is called an isometric comodule. We shall often just say 7« is a comodule,
omitting the 7.

The following theorem says that for a compact quantum group isometric
‘comodules are nothing but the unitary representations.

Theorem. Let 1 be an isometric comodule map acting on . Then ¥~ *(n) is a unitary

representation acting on #. Conversely, if # is a unitary representation of G on 3, then
(o, ¥ (#)) is an isometric comodule.

We need the following lemma for proving the thecrem.

Lemma. Let (#,7) be an isometric comodule. Then # decomposes into a direct sum of

finite dimensional subspaces # = @, such that each H# , is n-invariant and wt|,_is an
irreducible isometric comodule.

Proof. By 1.3, there is an isometry # in LM (#,(#)® <) such that ¥(#) = n. Using
14 and 1.5, we get #,,%,, = (id ® y)# where R =0, (R), #y3=0,5(R), ¢,, and
¢13 being asin 1.5 with o | = o/, = 7. - ,
Let 4 = {ae/:h(a*a) = 0}. From the properties of the haar state, .# is an ideal in
/. For any unit vector w in #, let Qu)= ([d@h)(#(Juy<u|@I)#*). Then
Q)* = Q(u)eBo (). If Qu) =0, then |#(|u) (u| ® [)#* |2 B,(#)®.#. Therefore
(|u){u| @ NA*eB,(#)® L. It follows then that lup{u|@IeB,(#)® . This
forces u to be zero. Thus for a nonzero u, Q(u) # 0. Choose and fix any nonzero u. Then

Q)@ I)7*
=(id@id®h)(7%12ﬁ:13(|u>(uI®I®I)7%’1"3ﬁ’1"2
=(id®id®h)(7%121%13(lu><u]®I®I)(7%127‘cl3(lu><ul®I®I))*)
= (1d @ id @ h)((id ® W) (#)(id @ p)(|u) <u| @ I)

* ([ ® (@) (id ® p)(lu) <u|® I))*)
= ({d@id @ h)((id ® p)(#(|u) ul @ I))((id ® w)(#(ju) (u] @ D))*)
=({d®@d @ h)((id ® p)(#(|u) (ul @ 1)(id ® w) (1) (u| @ I)#*))
= (4@ id @ h)(id @ p)((jud<u| @ ) %)
=(1d @ ({d @ hyp)((|u) (u| @ I*)
=W I
Thus #(QW)®I) = (QW)®ND#. If P is any finite-dimensional spectral projection of

Q(u), then #(P®I) = (P ® I)#, which means, by an application of part (ii) of 1.3, that
nP=(P®id)n. Standard arguments now tell us that = can be decomposed into

Ve
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a direct sum of finite-dimensional isometric comodules. Finite-dimensional comodules,
in-turn, can easily be shown to decompose into a direct sum of irreducible isometric
comodules. The proof is thus complete. [ |

Proof of the theorem: Let # be a unitary representation. By 1.3, ¥ (#) is an isometry
from # to # ® C(G). Using 1.4 and 1.5, we conclude that W(7) 1s an isometric comodule.

For the converse, take an isometric comodule 7. If 7 is finite-dimensional, it is easy
to see that W™ '(n) is a unitary representaticn. So, assume that =n is infinite-
dimensional. By the lemma above, there is a family {P,} of finite-dimensional
brojections in #(+#) satisfying

P,Py=0,P,, ), P,=1,nP,= (P, ®id)n V. @.1)

such that n|,_, = nP, is an irreducible isometric comodule. 7| p.v 18 finite-dimensional,
therefore ¥ ~(x|,,_,) is a unitary element of LM (%, (P, AR A)=RBP,H#)® . Let us
denote ¥~ *(n) by #. Then the above implies that in the bigger space Z(A# ® A),

(#(P,®D)*(A(P, 1) =P, ®I = (#(P,® D)(#(P, I))*.

The second equality implies that #(P,® I)#* = P,®1I for all o, so that #4* =I. We
already know by 1.3 that #*% = I and by 1.4 and 1.5 that Ry, 75 = (id ® p)#. Thus it
remains only to show that e M(%,(#)® ). It is enough to show that for any
SeB,(H#) and aed, (S®a)teBy(#)® . Now from (2.1) and 1.3, (P, RI) =
(P,® D)% for all o. Therefore (S® a)(P,®DN%E=(SQa)A(P,RIeB,(H#)R <. Since
(S® a)7 is the norm limit of finite sums of such terms, (S ® a)te B, (#)® /. Thus 7 is
a unitary representation acting on . |

2.4 Next we introduce the right regular comodule. Denote by L,(G) the GNS space
associated with the haar state h on G. Then 7 is a dense subspace of L,(G). One can
also see that & ® o/ ‘can be regarded as a subspace of L,(G)® «/. Consider the
mapu:f - ® A

(@), p(b)> = (h@ id) ((a)* u(b)) = (h @ id) u(a*b) = h(a* b)I = {a, b3 |

for all a, be.oZ. Therefore p extends to an isometry from L,(G) into L,(G) ® &7. Denote
it by R. The maps Q@R and (R®id)R both are isometries from L,(G) to
L,(G)® o/ ® o and they coincide on o7. Hence IQUWR=(R®id)R. Thus R is an
isometric comodule map. We call it the right-regular comodule of G. By theorem 2.3,
¥~ 1(R) is a unitary representation acting on L, (G). This is the right-regular represen-
tation introduced by Woronowicz ([8]).

Finally let us state here a small lemma which is a direct consequence of the
Peter-Weyl theorem for compact quantum groups. '

25 Lemma. {ue L,(G):R(u)e L,(G) ®.,C(G)} = A(G).
3, Induced representations

In this section we shall iritroduce the concept of an induced representation and show
that Frobenius reciprocity theorem holds for compact quantum groups. Throughout
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this section G = (C(G), y) will denote a compact quantum group and H = (C(H), itg),

. a subgroup of G. We start with a lemma concerning the boundedness of the left
convolution operator. ‘

3.1 Lemma. Let G=(s,p) be a compact quantum group. Then the map L, >
given by L,(a) = (p ® id) u(a) extends to a bounded operator from L,(G) into itself.

Proof. The proof follows from the following inequality: for any two states p, and p,
on &/, we have

P1((p2%a)*(py%a)) < pyxp,(a*a) Vae o,
where p;*a:= (p, ® id) u(a). u

3.2 Let # be a unitary representation of H acting on the space #,. n: = W¥(#) is then an

isometric comodule map from #, to #,® C(H). Consider the following map from
Ho® Ly(G)to #,® L,(G)R C(G):

I®RC:u® v—u® RO()

where R is the right-regular comodule of G. It is easy to see that this is an isometric
comodule map acting on #,® L,(G).

Let p be the homomorphism from G to H (cf. 2.2). Let # = {ue#,® L,(G):
(I® L,,)u=(id ® p)n ® I)u for all continuous linear functionals p on C(H)}. Thgn
I® ‘.R‘f keeps # invariant; the restriction of I ® R® to # is therefore an isometric
comodule, so that ¥~ ! ((I ® R°)|,,) is a unitary representation of G acting on 3#. We
call this the representgtion induced by 1, and denote it by ind$# or simply by ind #
when there is no ambiguity about G and H.

Let #, and #, be two unitary representations of H. Then clearly we have

() ind #, and ind #, are equivalent whenever #, and 7, are equivalent, and
(i) ind(%, ®#,) and ind #, D ind #, are equivalent.

Before going to the Frobenius reciprocity theorem, let us briefly describe what we
mean by restriction of a representation to a subgroup. Let #¢ be a unitary representa-
tion of G acting on a Hilbert space #,. We call (id® p)#° the restriction of #% to
H and denote it by #%%. To see that it is indeed a unitary representation, observe that
¥((id ® p)#®) = (I ® p) ¥ (#%) which is clearly an isometric comodule. Therefore by

2.3, 2% is a unitary representation of H acting on 5#,. Denote ¥(#%) by n® and
¥(#%H) by nCH,

3.3 Theorem. Let #% and #¥ be irreducible unitary representations of G and H respec-
tively. Then the multiplicity of £ in indS4¥ is the same as that of #f in #9H,

Proof. Let # (25", #7) (respectively # (4, ind

#H)) denote the space of intertwiners
between #%¥ and 4 (

respectively ¢ and ind £¥). Assume that £¢ and #¥ act on X',
and 5, respectively. ", ® C(G) can be regarded as a subspace of ", ® L,(G) and

hence 7%, as a map from ", into #',® L,(G). Since n% =¥ (#°) is unitary, we have
for u,vex",, ‘ :

@, 720 roeraer = B W) 190) o giey) = h(<u 13 ) = < .
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Thus n%X > A ,® L,(G) is an isometry. Let S:,—#, be an element of
F(#9H, #%) (S® I)n€ is then a bounded map from ¢ into #,® L, (G). Denote it by
f(8). It is not too difficult to see that f(S) actually maps ", into 3, and intertwines
#¢ and ind 2%, f:Sr f(S) is thus a linear map from # (%", #¥) to .# (%€, ind #¥).

We shall now show that fis invertible by exhibiting the inverse of f. Take a
T: A ,— A that intertwines £¢ and ind #2¥. For any ue #,, T":= ({u|® I) T is a map
from ", to L,(G) intertwining © and the right regular representation RS of G, i.e.
RE T =(T*®id)n®. Now, = is finite-dimensional, so that z¢(¢" 0) EH o ®,A(G).
Hence R T“(4")) < L 2(G)® 41, A(G). By 2.5, T*(A ") < A(G). Since this is true for all
ueHy, T(H y) € H o ®,,A(G). Therefore (I®&;) T is a bounded operator from X,
to . Denote it by g(T).

For a comodule n and a linear functional p, denote (id ® p)= by n,. Let p be a linear
functional on C(H). Then =fg(T)= n”(I@sG) T= (I®sG)(nH®zd) T= (I®sG)
I®L,,)T=(I®p°p)T. On the other hand, since T1ntertwmes ¢ and ind 7%, we
have ¢(T)(n ), =g(T)I® p)n G'”—g(T)(I®p)(l®p)n = ®¢) Ty, (I®ea)
IR )T=(I®pop)T Thus nlg(T)=g(T)n), for all continuous linear
functionals p on C(H), which 1mp11es g(T)eJr (#9H, ). The map T g(T) is the
inverse of f. Therefore S (2 #¥) = #(#%,ind #¥), which proves the theorem. ]

COROLLARY 1.

For any umtary representation ¢ of G and ¥ of H, the spaces S (A%, #%) and
# (%S, ind #¥) are isomorphic.

COROLLARY 2.

Let H be a subgroup of G and K be a subgroup of H. Suppose Risa umtary representa-
tion of K. Then ind$# and de(lndH #) are equivalent.

34 Actlon of SU,(2) on the sphere 52, has been decomposed by Podles (see [5]). Here
we give an alternatlve way of doing 1t using the Frobenius reciprocity theorem.

Let us start with a few observations. Let u be the function z+z, zeS*, where S* is
the unit circle in the complex plane. Then u is unitary, and generates the C*-algebra‘
C(S*) of continuous functions on S*. Let « and § be the two elements that generate the
algebra C(SU,(2)) and obey the following relations:

a*o+ f*f =1 =aa* + q° BB,
af — ﬁfx=0=dﬂ*—qﬁ*fx B* B = BB*.

The map p:a-u, ﬂ|—->0 extends to a C*-homomorphlsm from C(SU (2)) onto C(S )

It is in fact a quantum group homomorphism. By 2.2, S' is a subgroup of SU(2).
For any ne{0,1/2,1,3/2,.. .}, if we restrict the right-regular comodule R of SU,(2)

to the subspace o, of L,(SU,(2)) spanned by .

{oc*iﬂz"“":i=0,1,... 2n}, Sl ) (3.1)

then we get an 1rreduc1ble isometric comodule. Denote it by u®™. It is a well- known
fact ([6], [7]) that these constitute all the irreducible comodules of SU,(2). If we take
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the basis of #, to be (3.1) with proper normalization, the matrix entries of u™ turn out
to be

s @n=—pat 7/ 2n—i H2i—r+ 1)+ (i —i)2n—j)
\ _ —)(2n-
ug;) - (dg")/dg-")) / Z - 2("" 1)q
.-

r=Gi~jvo \T/g-2\T tJ

i— - +j—i
x o*iTrg2n = rﬁr ] lﬁ*r,
where

k k -, 1__q2
di =3 (r) 2("‘ 1y g @ +1)1_q4n+2r—2k+2;
-

r=0

(r) . (F)y-2(r = 1),5...(1),-> '
)42 (8)g-2ls = Dyezeen(D)yalr = 8)-2(r — s — 1)gze (12

(K)g-=1+q7 2 +q 4+ -+ g7 %2

Since u™ ' = (I ® p)u™, matrix entries of u™|' are given by

2(n—1i) f j e ] .
mpshy u 1 1=J 3.2
@1y {0 if Q). (32)

Therefore if n is an integer then the trivial representation occurs in u™|S' with
multiplicity 1, and does not occur otherwise.

Consider now the action of SU,(2) on 52;. Recall ([5]) that C( 30) ={aeC(SU,(2)):
(p®id)u(a)=I®a} and the actlon is the restriction of u to C(Sg,). From the above
description, C(S2,) can easily be shown to be equal to {aeC( S:O) L, (a)=p(l)a for
all continuous linear functionals p on C(S')}. Therefore when we take the closure of
C(83,) with respect to the invariant inner product that it carries and extend the action
there as an isometry, what we get is the restriction of the right-regular comodule R of
SU,(2) to the subspace # = {ue L,(SU,(2)): L,.,(u) = p(I)u for all continuous linear
functlonals p on C(S*)}, which is nothing but the representation 7 of SU (2) induced
by the trivial representation of S* on C. Hence the multiplicity of 4™ in # is same as
that of the trivial representation of S* in u™|*' which is, from (3.2), 1 if n is an integer

and O if n is not. Thus the action splits into a direct sum of all the integer-spin
representations.
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