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EQUIVARIANT SPECTRAL TRIPLES

AND POINCARÉ DUALITY FOR SUq(2)

PARTHA SARATHI CHAKRABORTY AND ARUPKUMAR PAL

Abstract. Let A be the C∗-algebra associated with SUq(2), let π be the
representation by left multiplication on the L2 space of the Haar state and let
D be the equivariant Dirac operator for this representation constructed by the
authors earlier. We prove in this article that there is no operator other than
the scalars in the commutant π(A)′ that has bounded commutator with D.
This implies that the equivariant spectral triple under consideration does not
admit a rational Poincaré dual in the sense of Moscovici, which in particular
means that this spectral triple does not extend to a K-homology fundamental
class for SUq(2). We also show that a minor modification of this equivariant
spectral triple gives a fundamental class and thus implements Poincaré duality.

1. Introduction

In noncommutative geometry (NCG), spaces are described by a triple (A,H, D),
where A is a ∗-algebra closed under holomorphic functional calculus acting on a
complex separable Hilbert space H and D is an unbounded selfadjoint operator
with compact resolvent that has bounded commutators with elements from the
algebra A. Such a triple is called a spectral triple. In this spectral point of view,
one requires D to be nontrivial in the sense that the associated Kasparov module
should give a nontrivial element in K-homology. One can also formulate the notion
of Poincaré duality in this context. A pair of separable C∗-algebras (A,B) is said
to be a Poincaré dual pair if there exist a class Δ ∈ KK(A ⊗ B,C) and a
class δ ∈ KK(C, A ⊗ B) with the properties δ ⊗B Δ = idA ∈ KK(A,A) and
δ ⊗A Δ = idB ∈ KK(B,B). The element Δ is called a K-homology fundamental
class for the pair (A,B). Poincaré duality is said to hold for a separable C∗-algebra
A if there is a K-homology fundamental class for the pair (A,A). See section 4,
chapter 6 in [6] for a detailed formulation, and [12] for an interesting application.

The existence of a fundamental class can often be deduced from abstract KK-
theory arguments, using the properties of the C∗-algebra in question. But more
interesting from the point of view of noncommutative geometry is an explicit geo-
metric realization of this fundamental class, with possibly other nice features. An
explicit geometric realization of a K-homology class is given by a spectral triple.
Suppose we have a spectral triple (H, π,D) for a C∗-algebra A, where π is faithful.

Received by the editors October 29, 2007 and, in revised form, December 20, 2007.
2010 Mathematics Subject Classification. Primary 58B34, 46L87, 19K35.
The first author acknowledges support from Endeavour India Executive Award 2007, DEST,

Government of Australia.

c©2010 American Mathematical Society
Reverts to public domain 28 years from publication

1



2 PARTHA SARATHI CHAKRABORTY AND ARUPKUMAR PAL

If there is another faithful representation π′ of A on H such that

(1) π′ and π commute,
(2) (H, π′, D) is a spectral triple for A, and
(3) (H, π ⊗ π′, D) gives a K-homology fundamental class for A⊗A,

then we say that the spectral triple (H, π,D) extends to aK-homology fundamental
class. If one replaces condition 3 above with a slightly weaker condition, then one
says that the spectral triples (H, π,D) and (H, π′, D) are rational Poincaré duals
(see [12] for this notion). In an earlier paper ([3]), the authors constructed an
equivariant spectral triple for the quantum SU(2) group that was later analysed
further by Connes in [8]. It is natural to ask whether the triple gives rise to a
fundamental class for SUq(2). This is what we try to answer in this paper.

Let h be the Haar state for the quantum SU(2) group and let π be the repre-
sentation of C(SUq(2)) on L2(h) by left multiplication. In section 2, we make a
detailed analysis of the operators α and β on L2(h). We also introduce and study

two operators α̂ and β̂ that are compact perturbations of α and β, respectively,
and obey the same commutation relations as α and β. These play an important
role in the proof of the main result in section 4. In section 3, we compute the
modular conjugation operator associated with the Haar state. This helps us de-
scribe elements of the commutator in terms of elements of the strong closure of
π(C(SUq(2))). Denote by D the equivariant Dirac operator constructed by the
authors in [3]. In section 4, we prove that there is no operator other than the
scalars in the commutant of π(C(SUq(2))) that has bounded commutator with D.
An important consequence of this is that the equivariant spectral triple does not
give a K-homology fundamental class for SUq(2). In the final section, we show
that Poincaré duality holds for SUq(2). We also give an explicit construction of a
spectral triple that gives a fundamental class for SUq(2).

2. Closer look at the L2 space

In what follows, we will be concerned with the quantum SU(2) group, the spec-
tral triple under consideration being the equivariant spectral triple constructed by
the authors in [3]. To fix notation, let us recall a few things from that paper. Let q
be a real number in the interval (0, 1). Let A denote the C∗-algebra of continuous
functions on SUq(2), which is the universal C∗-algebra generated by two elements
α and β subject to the relations

(2.1) α∗α+β∗β = I = αα∗+q2ββ∗, αβ−qβα = 0 = αβ∗−qβ∗α, β∗β = ββ∗.

Let h denote the Haar state on A and let π : A → L(L2(h)) be the representation
given by left multiplication by elements in A. We will often identify an element
a ∈ A with π(a). αr and βr will stand for αr and βr, respectively, if r ≥ 0, and for

(α∗)−r and (β∗)−r if r < 0. Let D be the operator given by D : e
(n)
ij �→ d(n, i)e

(n)
ij ,

where

(2.2) d(n, i) =

{
2n+ 1 if n �= i,

−(2n+ 1) if n = i.

Then (L2(h), π,D) is an odd equivariant spectral triple of dimension 3 and with
nontrivial K-homology class.

Our objective is to study commutators of the form [D,T ′] with T ′ coming from
the commutant (π(A))′. Any such T ′ can be written as JTJ , where J is the
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modular conjugation operator associated with the Haar state and T comes from
the strong closure (π(A))′′ of π(A). With this in mind, in this section we study the
structures of the operators that constitute (π(A))′′. Recall (cf. [3]) that L2(h) has

a natural orthonormal basis {e(n)ij : n ∈ 1
2N, i, j = −n,−n+ 1, . . . , n}, and the left

multiplication operators in this basis are given by

α : e
(n)
ij �→ a+(n, i, j)e

(n+ 1
2 )

i− 1
2 ,j−

1
2

+ a−(n, i, j)e
(n− 1

2 )

i− 1
2 ,j−

1
2

,(2.3)

β : e
(n)
ij �→ b+(n, i, j)e

(n+ 1
2 )

i+ 1
2 ,j−

1
2

+ b−(n, i, j)e
(n− 1

2 )

i+ 1
2 ,j−

1
2

,(2.4)

where

a+(n, i, j) =
(
q2(n+i)+2(n+j)+2 (1− q2n−2j+2)(1− q2n−2i+2)

(1− q4n+2)(1− q4n+4)

) 1
2

,

a−(n, i, j) =
( (1− q2n+2j)(1− q2n+2i)

(1− q4n)(1− q4n+2)

) 1
2

,

b+(n, i, j) = −
(
q2(n+j) (1− q2n−2j+2)(1− q2n+2i+2)

(1− q4n+2)(1− q4n+4)

) 1
2

,

b−(n, i, j) =
(
q2(n+i) (1− q2n+2j)(1− q2n−2i)

(1− q4n)(1− q4n+2)

) 1
2

.

We will also need the following operators on L2(h):

α̂ : e
(n)
ij �→ â+(n, i, j)e

(n+ 1
2 )

i− 1
2 ,j−

1
2

+ â−(n, i, j)e
(n− 1

2 )

i− 1
2 ,j−

1
2

,(2.5)

β̂ : e
(n)
ij �→ b̂+(n, i, j)e

(n+ 1
2 )

i+ 1
2 ,j−

1
2

+ b̂−(n, i, j)e
(n− 1

2 )

i+ 1
2 ,j−

1
2

,(2.6)

where

â+(n, i, j) = q2n+i+j+1,

â−(n, i, j) = (1− q2n+2i)
1
2 (1− q2n+2j)

1
2 ,

b̂+(n, i, j) = −qn+j(1− q2n+2i+2)
1
2 ,

b̂−(n, i, j) = qn+i(1− q2n+2j)
1
2 .

It is easy to see that α̂ and β̂ are compact perturbations of α and β, respectively.
We will now decompose the space L2(h) as a direct sum of smaller subspaces

and study the behaviour of the above operators with respect to this decomposition.
Note that the set Λ = {(n, i, j) : n ∈ 1

2N, i, j = −n,−n+1, . . . , n} parametrizes the

canonical orthonormal basis for L2(h). For each n ∈ 1
2Z, denote by Λn the minimal

subset of Λ containing the point (|n|,−n,−n) and closed under the translations

(a, b, c) �→ (a+
1

2
, b+

1

2
, c− 1

2
), (a, b, c) �→ (a+

1

2
, b− 1

2
, c+

1

2
).

For n, k ∈ 1
2Z, denote by Λnk the minimal subset of Λn that contains (|n|+|k|,−n+

k,−n− k) and is closed under the translation (a, b, c) �→ (a+ 1, b, c). Thus all the
Λnk’s are disjoint, Λ =

⋃
n Λn, Λn =

⋃
k Λnk. Figure 1 will make it easier to

visualize these sets. Represent the lattice Λ as a pyramid, where the vertical axis
is the n-axis, the top vertex is on the plane n = 0 and n increases downwards.
Then Λn are precisely the vertical cross sections parallel to the plane ABD. The
ones that intersect the triangle BCD correspond to nonnegative values of n, and
the ones that intersect the triangle BDE correspond to nonpositive values of n.
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Figure 1

In particular, Λ0 is the cross section given by the plane ABD. Similarly Λnk are
vertical lines in the plane Λn. The lines that intersect the triangle CDE correspond
to nonnegative values of k and the lines that intersect the triangle BCE correspond
to nonpositive values of k. In particular, Λn0 are the lines that intersect the line
CE.

Let us also note that the family of maps φn : Λn → Λ0 given by

(2.7) φn(a, b, c) = (a− |n|, b+ n, c+ n)

gives bijections between Λn and Λ0 whose restriction to Λnk yields a bijection from
Λnk to Λ0k.

Let Hr denote the closed span of {e(n)ij : (n, i, j) ∈ Λr}, Hrs denote the closed

span of {e(n)ij : (n, i, j) ∈ Λrs}, Pr denote the projection onto Hr and Prs denote
the projection onto Hrs. For an operator T , denote by Trs the restriction PrsTPrs

of T to Hrs. Let Un denote the unitary operator from Hn to H0 induced by the
bijection φn.

Proposition 2.1. Let A stand for α or α̂, and B stand for β or β̂. Then one has

Pn+ 1
2
APn = APn, Pr+ 1

2 ,s
APrs = APrs,(2.8)

BPn = PnB, Pr,s+ 1
2
BPrs = BPrs,(2.9)

PrsB
∗B = B∗BPrs,(2.10)

where n, r, s ∈ 1
2Z.

Moreover, for all n ∈ 1
2N, the operators Unα̂U

∗
n and Unβ̂U

∗
n are independent of

n.

Proof. This is a simple consequence of equations (2.3)–(2.6). �
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Lemma 2.2. α̂ and β̂ satisfy the following commutation relations:
(2.11)

α̂∗α̂+ β̂∗β̂ = I, α̂α̂∗ + q2β̂β̂∗ = I, α̂β̂ − qβ̂α̂ = 0, α̂β̂∗ − qβ̂∗α̂ = 0, β̂∗β̂ = β̂β̂∗.

Proof. The relations follow by direct computation from the actions of α̂ and β̂ given
in equations (2.5) and (2.6). �

The following is a simple consequence of the above commutation relations.

Corollary 2.3. Let γ = β∗β and γ̂ = β̂∗β̂. Then σ(γ̂) = {q2k : k ∈ N} ∪ {0} =
σ(γ), and ker α̂∗ = {0} = kerα∗.

Note that the action of γ̂ on the basis vectors is given by

(2.12) γ̂e
(n)
ij = c+(n, i, j)e

(n+1)
ij + c0(n, i, j)e

(n)
ij + c−(n, i, j)e

(n−1)
ij ,

where

c+(n, i, j) = −q2n+i+j+1(1− q2n+2i+2)
1
2 (1− q2n+2j+2)

1
2 ,

c0(n, i, j) = (q2n+2j(1− q2n+2i) + q2n+2i(1− q2n+2j+2),

c−(n, i, j) = −q2n+i+j−1(1− q2n+2i)
1
2 (1− q2n+2j)

1
2 .

One can check, using (2.12) and (2.10), that ker γ̂ = {0}.
Lemma 2.4. Let r ∈ 1

2N and s ∈ 1
2Z. The restriction Prsγ̂Prs of γ̂ to Hrs is

compact, and the spectrum σ(Prsγ̂Prs) coincides with σ(γ̂).

Proof. Observe that for r ∈ 1
2N, Ur(Prsγ̂Prs)U

∗
r = P0sγ̂P0s. So it is enough to

prove the statement for r = 0.
It is easy to see that P0sγ̂P0s is compact by using equation (2.12). This, along

with the second equality in (2.9) and the fact that β̂ and γ̂ commute, tells us that
σ(P0sγ̂P0s) is independent of s, and consequently σ(P0sγ̂P0s) = σ(P0γ̂P0) and in
fact, this is the same as the essential spectrum σess(P0γ̂P0).

Let us next show that σ(P0γ̂P0) = σ(γ̂). Let K be the operator on H0, given on

the basis vectors e
(n)
i,−i as follows:

(2.13) Ke
(n)
i,−i = c+(n, i,−i)e

(n+1)
i,−i +(q2n+2|i|−q4n−q4n+2)e

(n)
i,−i+c−(n, i,−i)e

(n−1)
i,−i .

It is easy to see that K is compact, the restriction T of P0γ̂P0 − K to H0s is
independent of s, and σ(T ) = σ(γ̂). Hence σ(P0γ̂P0 − K) = σess(P0γ̂P0 − K) =
σ(γ̂). Since σess(P0γ̂P0 −K) = σess(P0γ̂P0), the proof follows. �
Lemma 2.5. The operator γ has trivial kernel. In particular, for all r, s ∈ 1

2Z,
ker γrs = {0}.
Proof. Let P be the projection onto ker γ. Denote by φ the functional φ : T �→
〈e(0)00 , T e

(0)
00 〉. Notice that the restriction of φ to A is the Haar state h, and therefore

from appendix A1 in [15], we know that

φ(χ{q2n}(γ)) = (1− q2)q2n.

Observe that P = χ{0}(γ). Let f(x) =
∑n

k=0 χ{q2k}(x) + χ{0}(x). Then φ(f(γ)) =

1− q2n+2 + φ(P ). Since 0 ≤ f(γ) ≤ 1, we have 1− q2n+2 + φ(P ) ≤ 1 for all n ∈ N.

Therefore φ(P ) = 0, so that Pe
(0)
00 = 0.

From the commutation relations (2.1), it follows that P ∈ π(A)′. Since the vector

e
(0)
00 is cyclic for π(A), it is separating for π(A)′. Therefore we have P = 0. �
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Proposition 2.6. Let r ∈ 1
2N and s ∈ 1

2Z. The operator γrs is compact and

its spectrum σ(γrs) coincides with σ(γ) = {q2k : k ∈ N} ∪ {0}. Moreover each
q2n ∈ σ(γrs) is an eigenvalue of multiplicity 1.

Proof. Observe that γrs = Prs(γ − γ̂)Prs + Prsγ̂Prs. Since γ − γ̂ is compact, and
by Lemma 2.4, Prsγ̂Prs is also compact, it follows that γrs is compact.

Next we claim that σ(γrs) is independent of s. Write T for the operator
Pr,s+ 1

2
βPrs. Then from the commutation relations (2.8)–(2.10), it follows that

|T | = γ
1
2
rs and the partial isometry VT appearing in the polar decomposition of T

has initial space Hrs and final space Hr,s+ 1
2
, so that it can be viewed as a unitary

from Hrs to Hr,s+ 1
2
. Again from the commutation relations (2.8)–(2.10), we have

γr,s+ 1
2
T = (Pr,s+ 1

2
γPr,s+ 1

2
)(Pr,s+ 1

2
βPrs)

= Pr,s+ 1
2
γβPrs

= Pr,s+ 1
2
βγPrs

= (Pr,s+ 1
2
βPrs)(Pr,s+ 1

2
γPr,s+ 1

2
)

= Tγr,s+ 1
2
.

Therefore

γr,s+ 1
2
VTγ

1
2
rs = VTγ

3
2
rs.

Since the range of γ
1
2
rs is dense in Hrs, it follows that V ∗

T γr,s+ 1
2
VT = γrs. Thus

γr,s+ 1
2
and γrs are unitarily equivalent. So their spectrums are the same.

Since PrγPr =
⊕

s γrs, it follows that

(2.14) σ(PrγPr) = σess(PrγPr) = σ(γrs).

Our next claim is that σess(PrγPr) = σ(γ). Let K be the operator in the proof
of Lemma 2.4. We have seen that K is compact, P0s(P0γ̂P0−K)P0s is independent
of s and

σ(P0s(P0γ̂P0 −K)P0s) = σ(γ̂).

Let Kr := U∗
rKUr. Then

Prs(Prγ̂Pr −Kr)Prs = U∗
r (UrPrsU

∗
r (UrPrU

∗
rUrγ̂U

∗
rUrPrU

∗
r −K)UrPrsU

∗
r )Ur

= U∗
r (P0s(P0γ̂P0 −K)P0s)Ur.

Therefore Prs(Prγ̂Pr −Kr)Prs is independent of s and

σ(Prs(Prγ̂Pr −Kr)Prs) = σ(P0s(P0γ̂P0 −K)P0s) = σ(γ̂).

Hence

σess(Prγ̂Pr) = σess(Prγ̂Pr −Kr) = σ(γ̂) = σ(γ).

Finally,

σess(PrγPr) = σess(Pr(γ − γ̂)Pr + Prγ̂Pr) = σess(Prγ̂Pr) = σ(γ).

It follows from (2.4) that

γ(e
(n)
ij ) = k−1(n, i, j)e

(n−1)
ij + k0(n, i, j)e

(n)
ij + k1(n, i, j)e

(n+1)
ij ,
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where

k1(n, i, j) = −q2n+i+j+1

×
( (1− q2n+2j+2)(1− q2n−2i+2)(1− q2n−2j+2)(1− q2n+2i+2)

(1− q4n+2)(1− q4n+4)(1− q4n+4)(1− q4n+6)

) 1
2

,

k0(n, i, j) = q2(n+j) (1− q2n−2j)(1− q2n+2i)

(1− q4n)(1− q4n+2)

+ q2(n+i) (1− q2n+2j+2)(1− q2n−2i+2)

(1− q4n+2)(1− q4n+4)
,

k−1(n, i, j) = −q2n+i+j−1
( (1− q2n−2j)(1− q2n+2i)(1− q2n+2j)(1− q2n−2i)

(1− q4n−2)(1− q4n)(1− q4n)(1− q4n+2)

) 1
2

.

Therefore the operator γrs − q2n is a tridiagonal operator of the form

e
(|r|+|s|+k)
s−r,−s−r �→

{
b0e

(|r|+|s|)
s−r,−s−r + c0e

(|r|+|s|+1)
s−r,−s−r if k = 0,

ake
(|r|+|s|+k−1)
s−r,−s−r + bke

(|r|+|s|+k)
s−r,−s−r + cke

(|r|+|s|+k+1)
s−r,−s−r if k > 0,

with all the coefficients ak, bk and ck nonzero. It follows from this that the kernel
of γrs − q2n can have dimension at most 1. Since γrs is compact, each q2n ∈ σ(γrs)
is an eigenvalue. Therefore each q2n is an eigenvalue of multiplicity 1. �

3. The modular conjugation

We will compute the modular conjugation operator for the Haar state in this
section.

Proposition 3.1. Denote by S the operator a �→ a∗ on A. Then viewed as an

operator on L2(h), the set {e(n)ij : (n, i, j) ∈ Λ} is contained in the domain of S and

(3.1) Se
(n)
ij = (−1)2n+i+jqi+je

(n)
−i,−j .

Proof. Recall (equation 57, page 115, [10]) that if t
(n)
ij denotes the ijth matrix entry

of the irreducible representation indexed by n, then e
(n)
ij ’s are just the normalized

t
(n)
ij ’s, more specifically,

(3.2) e
(n)
ij = q−n+i

(1− q4n+2

1− q2

)1/2

t
(n)
ij .

Therefore {e(n)i,j : (n, i, j) ∈ Λ} is contained in the domain of S and

Se
(n)
i,j =

∑
m,k,l

〈e(m)
k,l , Se

(n)
i,j 〉e

(m)
k,l

=
∑
m,k,l

〈e(n)i,j e
(m)
k,l , 1〉e

(m)
k,l .

By the properties of the Clebsch-Gordon coefficients,

〈e(n)i,j e
(m)
k,l , 1〉 = 0 for n �= m.

From the equation preceding equation (43), p. 74, [10], we get for m = 0, 1, . . . , 2n,

2n∑
l=0

Cq(n, n,m; b− l + n, l − n, b)t
(n)
a−k,b−l+nt

(n)
k,l−n = Cq(n, n,m; a− k, k, a)t

(m)
ab .
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Here Cq(m,n, p; i, j, k) is the Clebsch-Gordon coefficient 〈e(p)k , e
(m)
i ⊗ e

(n)
j 〉. If we

write

A
(b)
mj = Cq(n, n,m; b− j + n, j − n, b), m, j = 0, 1, . . . , 2n,

then the above says that

2n∑
j=0

A
(b)
mjt

(n)
a−k,b−j+nt

(n)
k,j−n = Cq(n, n,m; a− k, k, a)t

(m)
ab

for m = 0, 1, . . . , 2n. Therefore

t
(n)
a−k,b−j+nt

(n)
k,j−n =

∑
m

(A(b)−1
)jmCq(n, n,m; a− k, k, a)t

(m)
ab .

For a = b = 0, the coefficient of t
(0)
00 on the right hand side is

(A(0)−1
)j0Cq(n, n, 0;−k, k, 0),

where A(0) is the matrix ((A
(0)
ij ))ij . Thus,

〈t(n)−k,−j+nt
(n)
k,j−n, 1〉 = (A(0)−1

)j0Cq(n, n, 0;−k, k, 0).

From equation (3.2),

‖t(n)ij ‖ = q−i(2n+ 1)
− 1

2
q = qn−i

(1− q4n+2

1− q2

)− 1
2

.

Hence

(3.3) 〈e(n)−k,−j+ne
(n)
k,j−n, 1〉 = q−2n

(1− q4n+2

1− q2

)
(A(0)−1

)j0Cq(n, n, 0;−k, k, 0).

Let us next find (A(0)−1
)j0. Using equation (73), page 81, [10], we get

A
(0)
mj = Cq(n, n,m;−j + n, j − n, 0) = (−1)2n+mCq−1(n, n,m; j − n,−j + n, 0).

Write D = ((dij)) and B = ((Bij)), where Bm,j = Cq−1(n, n,m; j−n,−j+n, 0) and

dij = δij(−1)2n+i. Then A(0) = DB, so that A(0)−1
= B−1D. Since B has real

entries, it follows from equations (46) and (47), page 75, [10] that B is orthogonal.

Therefore A(0)−1
= BtD. Hence

(A(0)−1
)j0 = (BtD)j0 = (Bt)j0d00 = B0j(−1)2n

= (−1)2nCq−1(n, n, 0; j − n,−j + n, 0).

Using equation (73), page 81, [10] and the equation preceding equation (68), page 81,
[10], we get

(A(0)−1
)j0 = Cq(n, n, 0;−j + n, j − n, 0) = (−1)jq2n−j

(1− q4n+2

1− q2

)− 1
2

and

Cq(n, n, 0;−k, k, 0) = (−1)n+kqn−k
(1− q4n+2

1− q2

)− 1
2

.

Substituting these values in (3.3), we get

(3.4) 〈e(n)ij e
(n)
−i,−j , 1〉 = (−1)2n+i+jqi+j .

Thus we have equation (3.1). �
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In particular, it follows from the above proposition that the operator S is closable.
Let S̄ denote the closure of S. Let J denote the antilinear operator, given on the
basis elements by

(3.5) Je
(n)
ij = (−1)2n+i+je

(n)
−i,−j ,

and let Δ be given by

(3.6) Δe
(n)
ij = q2i+2je

(n)
ij .

Then it follows from (3.1) that S̄ = JΔ
1
2 , and Dom S̄ = DomΔ

1
2 . By lemma 1.5,

[14], it follows that J is the modular conjugation and Δ is the modular operator as-
sociated with the Haar state, and by theorem 1.19, [14], we have π(A)′ = Jπ(A)′′J .

4. The main theorem

Let D be the operator given by (2.2), and let F = signD.

Theorem 4.1. Let T ∈ π(A)′. If [F, T ] is compact, then T is a scalar.

Let J be the modular conjugation operator computed in the previous section.
Then the theorem says that if T ∈ π(A)′′ and [F, JTJ ] is compact, then T must be
a scalar. We will first prove the following special case of the above theorem.

Theorem 4.2. Let f be a complex-valued function on σ(γ). If [F, Jf(γ)J ] is
compact, then f(γ) must be a scalar.

We will need the following simple lemma for the proof of this theorem.

Lemma 4.3. Let A and B be two compact operators with trivial kernel such that
σ(A) = σ(B) and each nonzero element of σ(A) is an eigenvalue of multiplicity 1
for both A and B. Let u be a unit eigenvector of A corresponding to an eigenvalue λ
and let v be a unit eigenvector of B corresponding to the same eigenvalue λ. Assume
that |〈u, v〉| < 1− ε, where ε > 0. Then there is a positive constant c = c(ε, λ, σ(A))
such that

‖A−B‖ ≥ c.

Proof. It follows from the given conditions that there is a unitary U such that
Uu = v and B = UAU∗. Let w be the projection of v onto u⊥, i.e.

w = v − 〈u, v〉u.
Then

‖(A− B)v‖ = ‖(A− λ)v‖ = ‖(A− λ)w‖.
Since (A− λ) is invertible on u⊥, it follows that

‖w‖ = ‖((A− λ)|u⊥)−1(A− λ)w‖ ≤ ‖((A− λ)|u⊥)−1‖‖(A− λ)w‖,
so that

‖A−B‖ ≥ ‖(A−B)v‖ = ‖(A− λ)w‖ ≥ ‖w‖‖((A− λ)|u⊥)−1‖−1.

Observe that

‖((A− λ)|u⊥)−1‖ = (inf{|λ− μ| : μ ∈ σ(A), μ �= λ})−1 < ∞.

Since
1 = ‖v‖2 = |〈u, v〉|2 + ‖w‖2 < (1− ε)2 + ‖w‖2,

the result follows. �
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Proof of Theorem 4.2. Write T := f(γ). Let Q = I−JFJ
2 . Then compactness

of [F, JTJ ] is equivalent to compactness of [Q, T ]. Let wrs = e
|r|+|s|
s−r,−s−r. For an

operator A on H, denote by Ars the operator PrsAPrs. The projection Q commutes
with each Prs and one has

Qrs =

{
|wrs〉〈wrs| if r,−s ∈ 1

2N,

0 otherwise.

Since γ also commutes with Prs, we have

[Q, T ] =
⊕
r,s

[Qrs, Trs] =
⊕

r,−s∈ 1
2N

[Qrs, Trs].

Take � �= m ∈ N and let λ = f(q2�), μ = f(q2m). Recall that for each r ∈ 1
2N,

s ∈ 1
2Z, one has σ(γrs) = {q2n : n ∈ N} ∪ {0}, and each q2n is an eigenvalue of

multiplicity 1. Let urs and vrs be eigenvectors of γ in Hrs corresponding to the
eigenvalues q2� and q2m, respectively. Then Turs = λurs and Tvrs = μvrs. Now

〈urs, [Q, T ](urs − vrs)〉
= 〈urs, Q(λurs − μvrs)〉 − 〈T ∗urs, Q(urs − vrs)〉
= λ〈urs, Qurs〉 − μ〈urs, Qvrs〉 − λ〈urs, Qurs〉+ λ〈urs, Qvrs〉
= (λ− μ)〈urs, Qvrs〉.

In particular,

‖[Q, T ](ur0 − vr0)‖2 ≥ |λ− μ|2|〈ur0, Qvr0〉|2(4.1)

= |λ− μ|2|〈ur0, wr0〉〈wr0, vr0〉|.(4.2)

We will show that for some subsequence rk,

lim
k→∞

〈urk0, wrk0〉 �= 0,(4.3)

lim
k→∞

〈vrk0, wrk0〉 �= 0.(4.4)

Observe that

〈vr0, wr0〉 = 〈Urvr0, Urwr0〉 = 〈Urvr0, w00〉.
Now let Urv00 be an eigenvector of Urγr0U

∗
r corresponding to the eigenvalue q2m.

Let ξ be a unit eigenvector of γ̂ in H00 corresponding to the eigenvalue q2m. Note
that

Urγr0U
∗
r − γ̂00 = Ur(γr0 − γ̂r0)U

∗
r + Urγ̂r0U

∗
r − γ̂00 = Ur(γr0 − γ̂r0)U

∗
r .

Therefore

‖Urγr0U
∗
r − γ̂00‖ = ‖γr0 − γ̂r0‖ = ‖Pr0(γ − γ̂)Pr0‖.

Since γ − γ̂ is compact, it follows that

lim ‖Urγr0U
∗
r − γ̂00‖ = 0.

By Lemma 4.3,

lim |〈Urvr0, ξ〉| = 1.

Let θr ∈ [0, 2π] be such that exp(iθr) = 〈Urvr0, ξ〉. Write ξr = exp(−iθr)ξ. Then
〈Urvr0, ξr〉 = 1 for each r. Choose a subsequence rk such that θrk converges, to say
θ. Let ζ = exp(−iθ)ξ. Then it follows that

lim
k
〈Urkvrk0, ζ〉 = 1.



POINCARÉ DUALITY FOR SUq(2) 11

Therefore

lim
k

‖Urkvrk0 − ζ‖ = 0.

Hence

〈vrk0, wrk0〉 = 〈Urkvrk0, w00〉 = 〈Urkvrk0 − ζ, w00〉+ 〈ζ, w00〉.
The first term converges to zero. Let us show that the second term is nonzero. Let

k = min{n ∈ N : 〈ζ, e(n)00 〉 �= 0}.

Then one has

〈ζ, γ̂kw00〉 = 〈ζ, γ̂ke
(0)
00 〉 �= 0.

Since γ̂ζ = q2mζ, we have

〈ζ, w00〉 = q−2mk〈γ̂kζ, w00〉 = q−2mk〈ζ, γ̂kw00〉 �= 0.

Thus we have (4.4). An identical proof shows that rk will have a further subse-
quence, which we continue to denote by rk by abuse of notation, for which we have
both (4.4) and (4.3).

Since [Q, T ] is compact, [Q, T ](urk0−vrk0) converges to zero. Therefore by (4.2),
we must have λ = μ, i.e. f(q2�) = f(q2m). Since this is true for all � �= m ∈ N,
T = f(γ) must be a scalar. �

Proposition 4.4. Let m,n ∈ Z and let f be a complex-valued function on σ(γ).
Assume m �= 0. If [F, Jαmβnf(γ)J ] is compact, then αmβnf(γ) = 0.

Proof. Assume m > 0, so that αm = αm. Compactness of [F, Jαmβnf(γ)J ] implies
compactness of [Q,αmβnf(γ)]. Since Q is selfadjoint, this implies that the operator
[Q, (f(γ))∗β∗

n(α
m)∗αmβnf(γ))] is compact. Now β∗

n(α
m)∗αmβn is of the form p(γ)

for some polynomial p. By Theorem 4.2 it follows that (f(γ))∗β∗
n(α

m)∗αmβnf(γ))
is a scalar. Suppose it is nonzero. Since (αm)∗αm is a polynomial in γ, we have

(f(γ))∗β∗
n(α

m)∗αmβnf(γ)) = (f(γ))∗β∗
nβnf(γ))(α

m)∗αm.

It would then follow that the kernel of (αm)∗αm is trivial. This implies that the
kernel of α is trivial. But kerα = kerα∗α = ker(1−γ), which is infinite dimensional
by Proposition 2.6. Therefore we must have (f(γ))∗β∗

nα
∗
mαmβnf(γ)) = 0, which

implies αmβnf(γ) = 0.
For m < 0, observe that (αmβnf(γ))

∗ = α−mβ−ng(γ) for some function g and
use the above argument. �

Proposition 4.5. Let n ∈ Z and let f be a nonzero complex-valued function on
σ(γ). If n �= 0, then [F, Jβnf(γ)J ] is not compact.

Proof. As before, compactness of [F, Jβnf(γ)J ] is equivalent to the compactness
of [Q, βnf(γ)]. So it is enough to show that [Q, βnf(γ)] is not compact. Also it is
enough to prove this for n > 0.

Since β and β∗ both have trivial kernel, the partial isometry V appearing in the
polar decomposition of β is unitary and βnf(γ) = V ng(γ) for some function g. Let
m ∈ N be such that λ := g(q2m) �= 0. For r ∈ 1

2N, let vr0 be a unit eigenvector of

γ in Hr0 corresponding to the eigenvalue q2m. For s ∈ 1
2Z, define

vrs := V 2svr0.
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Then vrs is a unit vector in Hrs, and since V commutes with γ, we have γvrs =
q2mvrs. Therefore g(γ)vrs = λvrs for all r, s. We then have

〈vr,n2 , [Q, V ng(γ)]vr0〉 = 〈vr,n2 , QV ng(γ)vr0〉 − 〈vr,n2 , V
ng(γ)Qvr0〉

= λ〈vr,n2 , QV nvr0〉 − 〈g(γ)vr,n2 , V
nQvr0〉

= λ(〈vr,n2 , Qvr,n2 〉 − 〈vr0, Qvr0〉)
= −λ‖Qvr0‖2

= −λ|〈vr0, wr0〉|2.
From the proof of Theorem 4.2, there is a sequence rk such that limk〈vrk0, wrk0〉 �= 0.
Therefore the operator [Q, V ng(γ)] cannot be compact. �

We now have all the ingredients ready for the proof of Theorem 4.1. In order to
make use of these, we need to look at certain operator-valued Fourier coefficients.

Let τ be the action of S1 × S1 on A by automorphisms given by

τz,w :

{
α �→ zα,

β �→ wβ.

Let Vz,w : L2(h) → L2(h) be given by

Vz,we
(n)
ij = z−i−jwi−je

(n)
ij .

Then π(τz,w(a)) = Vz,wπ(a)V
∗
z,w for all a ∈ A. Thus the action extends to a

strongly continuous action of S1 × S1 on the von Neumann algebra π(A)′′. For
T ∈ π(A)′′ and m,n ∈ Z, denote by Fmn(T ) the following operator:

Fmn(T ) =

∫
S1

∫
S1

z−mw−nτz,w(T )dz dw.

Note that the above integral is defined in the strong sense. In case the integrand is
norm continuous, it coincides with the corresponding integral in the norm sense.

Lemma 4.6. Let Tk be a sequence of operators in π(A)′′ that converges strongly
to an operator T . Then for all m,n ∈ Z, the sequence Fmn(Tk) converges strongly
to Fmn(T ).

Proof. Take a vector u ∈ L2(h). Then

Fmn(Tk)u =

∫ ∫
z−mw−nVz,wTkV

∗
z,wu dz dw,

Fmn(T )u =

∫ ∫
z−mw−nVz,wTV

∗
z,wu dz dw.

Since Tk converges strongly to T , for each z, w ∈ S1, we have

lim
k→∞

z−mw−nVz,wTkV
∗
z,wu = z−mw−nVz,wTV

∗
z,wu

and

‖z−mw−nVz,wTkV
∗
z,wu‖ ≤ ‖Tk‖‖u‖

≤ (sup
k

‖Tk‖)‖u‖.

Now an application of the Dominated Convergence Theorem for Banach space val-
ued functions (Theorem 3, page 45, [9]) gives us the required result. �
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Lemma 4.7. Let T ∈ π(A)′′. If Fmn(T ) = 0 for all (m,n) �= (0, 0), then T = f(γ)
for some bounded measurable function f on σ(γ).

Proof. Let B be the *-subalgebra of A consisting of finite linear combinations of
elements of the form αmβnγ

k, where m,n ∈ Z and k ∈ N. Clearly B is dense in A.
Observe that

(1) for any T ∈ B, one has Fmn(T ) = αmβnp(γ) for some polynomial p,
(2) if T = αmβnp(γ) for some polynomial p, then

Fjk(T ) =

{
T if j = m, k = n,

0 otherwise.

Now let T ∈ π(A)′′ with Fmn(T ) = 0 for all (m,n) �= (0, 0). Take any two vectors u
and v in H and let f : S1×S1 → C be the function given by f(z, w) = 〈u, τz,w(T )v〉.
Then by the above condition on T , it follows that all the Fourier coefficients f̂(m,n)
are zero for all (m,n) �= (0, 0). This implies f is a constant function. Since this
is true for any two vectors u and v, it follows that (z, w) �→ τz,w(T ) is constant,
so that for all z, w ∈ S1, we have τz,w(T ) = T . Therefore F00(T ) = T . Let
Tk be a sequence in B that converges strongly to T . By Lemma 4.6, we have s-
limk Fmn(Tk) = Fmn(T ) for all m,n ∈ Z. In particular, we have s-limk F00(Tk) =
F00(T ) = T . Since each F00(Tk) is of the form pk(γ) for some polynomial pk, the
operator T must be of the form f(γ) for some bounded measurable function on
σ(γ). �

Lemma 4.8. Let T ∈ π(A)′′. Then for m,n ∈ Z, the operator Fmn(T ) is of the
form αmβnf(γ) for some function f on σ(γ).

Proof. Since (Fmn(T ))
∗ = F−m,−n(T

∗), it is enough to prove the statement for
m ≤ 0. So assume m ≤ 0. Let Tk be a sequence in B that converges strongly to
T . Then by Lemma 4.6, Fmn(Tk) converges strongly to Fmn(T ). Each Fmn(Tk)
is of the form αmβnpk(γ) = (α∗)|m|βnpk(γ) for some polynomial pk. Now

((α∗)|m|βn)
∗((α∗)|m|βn) = α|m|(α∗)|m|γ|n|,

and kerα∗ = {0} = kerβ = kerβ∗. Therefore the operator (α∗)|m|βn has trivial ker-

nel. Therefore the polar decomposition of (α∗)|m|βn is of the form V
√
r(γ), where

V is an isometry and r is a polynomial. Thus V
√
r(γ)pk(γ) converges strongly to

Fmn(T ). Therefore
√
r(γ)pk(γ) converges strongly to V ∗Fmn(T ). It follows that

V ∗Fmn(T ) = f(γ) for some bounded function f and limk

√
r(x)pk(x) = f(x) for

all x ∈ σ(γ). Define functions p̃ and p̃k on σ(γ) as follows:

p̃(x) =

{
f(x)/

√
r(x) if r(x) �= 0,

0 if r(x) = 0,
p̃k(x) =

{
pk(x) if r(x) �= 0,

0 if r(x) = 0.

Then
√
r(x)pk(x) =

√
r(x)p̃k(x) and f(x) =

√
r(x)p̃(x). This means

√
r(γ)pk(γ)

=
√
r(γ)p̃k(γ) and

√
r(γ)pk(γ) converges strongly to

√
r(γ)p̃(γ). Therefore the

sequence V
√
r(γ)pk(γ) converges strongly to V

√
r(γ)p̃(γ) = (α∗)|m|βnp̃(γ). Hence

Fmn(T ) = (α∗)|m|βnp̃(γ). �

We now turn to the proof of Theorem 4.1.



14 PARTHA SARATHI CHAKRABORTY AND ARUPKUMAR PAL

Proof of Theorem 4.1. Compactness of [F, JTJ ] implies [Q, T ] is compact. Since
Vz,w[Q, T ]V ∗

z,w = [Q, τz,w(T )], it follows that [Q,Fmn(T )] is compact for all m and
n. Since the operator Fmn(T ) is of the form αmβnf(γ) for some function f on
σ(γ), by Propositions 4.4 and 4.5 we get Fmn(T ) = 0 for all (m,n) �= (0, 0). An
application of Lemma 4.7 now tells us that T = f(γ) for some bounded function f .
Hence using Theorem 4.2, we get that T is a scalar. �

Remark 4.9. By the characterization of equivariant spectral triples in [3] (see the
discussion preceding proposition 4.4, [3]), for any equivariant D, signD has to be
of the form 2P − I or I − 2P , where P is the projection onto the subspace spanned

by {e(n)ij : n ∈ 1
2N, n− i ∈ E, j = −n,−n+ 1, . . . , n}, E being some finite subset of

N. A slight modification in the proof of Theorem 4.2 will work for the sign of any
such D.

Corollary 4.10. Suppose T ∈ π(A)′. If [D,T ] is bounded, then T must be a scalar.

Proof. Boundedness of [D,T ] implies compactness of [F, T ]. Therefore the result
follows from Theorem 4.1. �

Remark 4.11. Suppose π is a faithful representation of a C∗-algebra A on a Hilbert
space H and (H, π,D) is a spectral triple for A. If there is another C∗-algebra B
and a faithful representation ρ of B on H such that π(a) and ρ(b) commute for all
a ∈ A, b ∈ B and (H, ρ,D) is a spectral triple for B, then the pair (H, D) together
with the representation π⊗ ρ : a⊗ b �→ π(a)⊗ ρ(b) gives rise to a spectral triple for
A⊗ B and hence an element in the K-homology of A⊗ B.

What the above corollary says is that for the Dirac operator constructed in [3] on
L2(h) along with the representation by left multiplication, such a pair (B, ρ) does
not exist (other than the trivial one: B = C), thereby preventing one from turning
it into a spectral triple for A⊗B in a natural manner. Thus the triple (L2(h), π,D)
does not admit a rational Poincaré dual in the sense of Moscovici ([12]).

Remark 4.12. Note that the Dirac operator we have considered here is the one
equivariant with respect to the right regular representation of the group SUq(2).
Recall ([4]) that a generic Dirac operator equivariant with respect to the left regular

representation is of the form D : e
(n)
ij �→ d(n, i)e

(n)
ij , where

d(n, i) =

{
2n+ 1 if n �= j,

−(2n+ 1) if n = j.

All the results in this section continue to hold for this Dirac operator as well. The
proofs also go through verbatim, except the proof of Proposition 4.5, where one has
to look at commutators [F, Jβnf(γ)J ] for n < 0.

5. K-theory fundamental class

We will show in this section that even though the spectral triple we considered
does not give a fundamental class, a little modification enables one to construct a
fundamental class that gives Poincaré duality.

We start the section with the following straightforward but important observa-
tion.

Theorem 5.1. Poincaré duality holds for A.
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Proof. It follows from the description of the irreducible representations of A ([11])
that it is a type I C∗-algebra. Both A and C(S1) are separable type I C∗-algebras
and have the same K0 and K1 groups. Therefore it follows from Rosenberg and
Schochet ([13]) that A and C(S1) are KK-equivalent. Poincaré duality holds for
C(S1); hence it follows from lemma 3.4 in [2] that Poincaré duality holds for A
also. �

One can see that Poincaré duality is just a consequence of the KK-theoretic
properties of the underlying C∗-algebra. What is of greater interest is to get an
explicit realization of the K-homology fundamental class. Thus we want to identify
explicitly a class in KK(A ⊗ A,C) that will give us a K-homology fundamental
class. As a first step, we will exhibit an element in KK(A, C(S1)) that will give us a
KK-equivalence. We then compose this with the fundamental class for the torus to
construct the desired class. This involves computing the Kasparov product of two
elements, which can sometimes be difficult. As we will see, we avoid computing any
nontrivial Kasparov product by exploiting the special form of the KK-equivalence
we construct.

Lemma 5.2. KK(A,C) ⊗ KK(C, C(S1)) ∼= KK(A, C(S1)). (Here KK(A,B)
means KK0(A,B)⊕KK1(A,B).)

Proof. Observe that KK(A,C) = Z ⊕ Z and KK(C, C(S1)) = Z ⊕ Z. Thus both
are torsion-free and by the Künneth theorem (due to Rosenberg and Schochet,
theorem 23.1.2, [1]), the result follows. �
Lemma 5.3. KK(A, C(S1)) ∼= M2(Z).

Proof. Since KK(C,A) = Z⊕Z, by the universal coefficient theorem (UCT) (the-
orem 23.1.1, [1]) it follows that

KK(A, C(S1)) ∼= Hom(KK(C,A),KK(C, C(S1))) ∼= Hom(Z⊕Z,Z⊕Z) ∼= M2(Z).

Note that in the above isomorphism, an element η ∈ KK(A, C(S1)) is mapped to
the homomorphism given by ξ �→ ξ ⊗ η. �
Lemma 5.4. Let ξi ∈ Ki(A), ζi ∈ Ki(A) and ηi ∈ Ki(C(S1)), i = 0, 1. Define

γ := ζ0 ⊗ η0 + ζ1 ⊗ η1.

Then the map ξ �→ ξ ⊗ γ takes ξ0 to 〈ξ0, ζ0〉η0 and ξ1 to 〈ξ1, ζ1〉η1.
Proof. The proof follows immediately from the observations that ξ0 ⊗ ζ1 ≡ 〈ξ0, ζ1〉
and ξ1 ⊗ ζ0 ≡ 〈ξ1, ζ0〉 are both zero, being elements of K1(C). �
Proposition 5.5. Let σ denote the trivial grading on C. Then the even Fredholm
module (C, σ, ε, 0) gives a generator for K0(A) = Z.

Proof. Since A and C(S1) are KK-equivalent, one has K0(A) = Z. This together
with the simple observation that the pairing 〈[(C, σ, ε, 0)], [1]〉 is 1 gives us the
required result. �

We now put together the two results above to produce a KK-equivalence.

Proposition 5.6. Let ζ1 be the K-homology class of the equivariant triple for A
(under the SUq(2) action), i.e. ζ1 = [(L2(h), π,D)]. Let η1 be the element [z] in
K1(C(S1)). Let ζ0 and η0 be generators for K0(A) and K0(C(S1)), respectively.
Then γ := ζ0 ⊗ η0 + ζ1 ⊗ η1 gives a KK-equivalence between A and C(S1).
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Proof. Recall that KK(C,A) ∼= Z⊕ Z, KK(C, C(S1)) ∼= Z⊕ Z and γ corresponds
to the element ξ �→ ξ ⊗ γ in Hom(KK(C,A),KK(C, C(S1))). Using these identi-
fications, it is now easy to see that γ maps the element 1⊕ 0 to 1⊕ 0 and 0⊕ 1 to

0⊕ 1. In other words, γ is the element

(
1 0
0 1

)
in KK(A, C(S1)) ∼= M2(Z). This,

being an invertible element, gives a KK-equivalence. �

Theorem 5.7. The spectral triple (L2(h)⊕L2(h), π⊕ε,D⊕D) gives a fundamental
class for A = C(SUq(2)).

Proof. Let ρ be the representation of C(S1)⊗ C(S1) on L2(S
1) given by

ρ(f ⊗ g)h = fgh,

and let ∂ = ∂θ be the derivative. Then (L2(S
1), ρ, ∂) gives the standard fundamen-

tal class for C(S1).
Write λ for the class of (L2(S

1), ρ, ∂) inKK1(C(S1)⊗C(S1),C). Then (γ⊗γ)⊗λ
gives a K-homology fundamental class for A. Now

γ ⊗ γ = (ζ0 ⊗ η0 + ζ1 ⊗ η1)⊗ (ζ0 ⊗ η0 + ζ1 ⊗ η1)

= (ζ0 ⊗ η0)⊗ (ζ0 ⊗ η0) + (ζ0 ⊗ η0)⊗ (ζ1 ⊗ η1)

+(ζ1 ⊗ η1)⊗ (ζ0 ⊗ η0) + (ζ1 ⊗ η1)⊗ (ζ1 ⊗ η1)

= (ζ0 ⊗ ζ0)⊗ (η0 ⊗ η0) + (ζ0 ⊗ ζ1)⊗ (η0 ⊗ η1)

+(ζ1 ⊗ ζ0)⊗ (η1 ⊗ η0) + (ζ1 ⊗ ζ1)⊗ (η1 ⊗ η1).

Clearly (η0 ⊗ η0)⊗ λ and (η1 ⊗ η1)⊗ λ are zero. Taking η0 to be [1] and η1 = [z],
it follows that (η0 ⊗ η1)⊗ λ and (η1 ⊗ η0)⊗ λ are both 1. Therefore

(γ ⊗ γ)⊗ λ = ζ0 ⊗ ζ1 + ζ1 ⊗ ζ0.

Taking the spectral triples (L2(h), π,D) and (C, σ, ε, 0) to represent the classes ζ1
and ζ0, respectively, it follows that the triple given by (H, φ,D0), where

H = L2(h)⊕ L2(h), φ(a⊗ b) = π(a)ε(b)⊕ ε(a)π(b), D0 = D ⊕D,

gives the required class. Therefore the restriction of φ to the first copy of A together
with H and D gives a fundamental class for A. �

Remark 5.8. The (2� + 1)-dimensional quantum sphere S2�+1
q is given by the uni-

versal C∗-algebra A� := C(S2�+1
q ) generated by elements z1, z2, . . . , z�+1 satisfying

the following relations:

zizj = qzjzi, 1 ≤ j < i ≤ �+ 1,

z∗i zj = qzjz
∗
i , 1 ≤ i �= j ≤ �+ 1,

ziz
∗
i − z∗i zi + (1− q2)

∑
k>i

zkz
∗
k = 0, 1 ≤ i ≤ �+ 1,

�+1∑
i=1

ziz
∗
i = 1.

The K-theory and the K-homology groups for this algebra A� are known and by
the same argument as in the proof of Theorem 5.1, A� is KK-equivalent to C(S1)
and Poincaré duality holds for A�.
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If one replaces the counit ε for C(SUq(2)) by the functional

zj �→
{
1 if j = 1,

0 if j �= 1,

on A�, and replaces the equivariant spectral triple for SUq(2) by the spectral triple
for S2�+1

q equivariant under the action of SUq(�+1) constructed in [5], then every-
thing in this section goes through for the odd-dimensional quantum spheres.
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