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Height in splittings of hyperbolic groups
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Abstract. SupposeH is a hyperbolic subgroup of a hyperbolic groupG. Assume there
existsn > 0 such that the intersection ofn essentially distinct conjugates ofH is always
finite. Further assumeG splits overH with hyperbolic vertex and edge groups and the
two inclusions ofH are quasi-isometric embeddings. ThenH is quasiconvex inG. This
answers a question of Swarup and provides a partial converse to the main theorem of
[23].
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1. Introduction

Let G be a hyperbolic group in the sense of Gromov [24]. LetH be a hyperbolic subgroup
of G. We choose a finite symmetric generating set forH and extend it to a finite symmetric
generating set forG. Let 0

H

and0

G

denote the Cayley graphs ofH , G respectively with
respect to these generating sets.

If H is not quasiconvex inG, we would like to understand the group theoretic (or
algebraic) mechanism contributing to the distortion ofH in G. The first examples of
distorted hyperbolic subgroups of hyperbolic groups were fiber subgroups of fundamental
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groups of closed hyperbolic 3-manifolds fibering over the circle. The extrinsic geometry in
this case was studied in detail by Cannon and Thurston [15] and later by the author [36,37].
General examples of normal hyperbolic subgroups of hyperbolic groups have been studied
in [5,41]. A substantially larger class of examples arise from the combination theorem of
Bestvina and Feighn [3]. In fact almost all examples of distorted hyperbolic subgroups of
hyperbolic groups use the combination theorem in an essential way (see [13,38] however).
It is natural to wonder if there are any other methods of building distorted hyperbolic
subgroups. To get a handle on this issue one needs the notion of height of a subgroup [23].

DEFINITION

Let H be a subgroup of a groupG. We say that the elements{g
i

|1 ≤ i ≤ n} of G are
essentially distinct ifHg

i

6= Hg

j

for i 6= j . Conjugates ofH by essentially distinct
elements are called essentially distinct conjugates.

Note that we are abusing notation slightly here, as a conjugate ofH by an element
belonging to the normalizer of H but not belonging to H is still essentially distinct from
H . Thus in this context aconjugateof H records (implicitly ) theconjugating element.

DEFINITION

We say that the height of an infinite subgroupH in G is n if there exists a collection of
n essentially distinct conjugates ofH such that the intersection of all the elements of the
collection is infinite andn is maximal possible. We define the height of a finite subgroup
to be 0.

The following question of Swarup [9] formulates the problem we would like to address
in this paper:

Question.SupposeH is a finitely presented subgroup of a hyperbolic groupG. If H has
finite height, isH quasiconvex inG? A special case to be considered is whenG splits over
H and the inclusions are quasi-isometric embeddings.

We shall answer the above question affirmatively in the special case mentioned.

Theorem 4.6. Let G be a hyperbolic group splitting overH (i.e. G = G1∗H

G2 or
G = G1∗H

) with hyperbolic vertex and edge groups. Further, assume the two inclusions
of H are quasi-isometric embeddings. ThenH is of finite height inG if and only if it is
quasiconvex inG.

The main theorem of [23] states:

Theorem 1.1. If H is a quasiconvex subgroup of a hyperbolic groupG, thenH has finite
height.

Thus the purpose of this paper is to prove the converse direction.
Certain group theoretic analogs of Thurston’s combination theorems [30] were deduced

in [3]. Extending the analogy with [30], in this paper we prove quasiconvexity of certain
surface subgroups.

PROPOSITION 5.1

Let G = G1 ∗

H

G2 be a hyperbolic group such thatG1, G2, H are hyperbolic and the
two inclusions ofH are quasi-isometric embeddings. IfH is malnormal in one ofG1 or
G2 thenH is quasiconvex inG.
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The following corollary is a group-theoretic analog of a theorem of Thurston’s [30].

COROLLARY 5.3

LetM1 be a hyperbolic atoroidal acylindrical3-manifold andS1 an incompressible surface
in its boundary. LetM2 be a hyperbolic atoroidal3-manifold andS2 an incompressible
surface in its boundary. IfS1 andS2 are homeomorphic then gluingM1 andM2 along this
common boundaryS (= S1 = S2) one obtains a3-manifoldM such that

1. π1(M) is hyperbolic.
2. π1(S) is quasiconvex inπ1(M).

2. Preliminaries

We start off with some preliminaries about hyperbolic metric spaces in the sense of Gromov
[24]. For details, see [16,22]. Let(X, d) be a hyperbolic metric space.

DEFINITION

A subsetZ of X is said to bek-quasiconvexif any geodesic joininga, b ∈ Z lies in a
k-neighborhood ofZ. A subsetZ is quasiconvexif it is k-quasiconvex for somek. A map
f from one metric space(Y, d

Y

) into another metric space(Z, d

Z

) is said to be a(K, ε)-
quasi-isometric embeddingif

1

K

(d

Y

(y1, y2)) − ε ≤ d

Z

(f (y1), f (y2)) ≤ Kd

Y

(y1, y2) + ε.

If f is a quasi-isometric embedding, and every point ofZ lies at a uniformly bounded
distance from somef (y) thenf is said to be aquasi-isometry. A (K, ε)-quasi-isometric
embedding that is a quasi-isometry will be called a(K, ε)-quasi-isometry.

A (K, ε)-quasigeodesicis a(K, ε)-quasi-isometric embedding of a closed interval inR.
A (K, 0)-quasigeodesic will also be called aK-quasigeodesic.

DEFINITION  [17,25]

If i : 0

H

→ 0

G

be an embedding of the Cayley graph ofH into that ofG, then the
distortion function is given by

disto(R) = Diam
0

H

(0

H

∩B(R)),

whereB(R) is the ball of radiusR around 1∈ 0

G

.

If H is quasiconvex inG the distortion function is linear and we shall refer toH as
an undistorted subgroup. Else,H will be termed distorted. Note that the above definition
makes sense for metric spaces and their subspaces too.

3. Trees of hyperbolic metric spaces

For a general discussion of graphs of groups, see [47]. In this paper we will deal with
graphs of hyperbolic groups satisfying the quasi-isometrically embedded condition of [3].
We will need some results from [38].
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DEFINITION

A tree (T ) of hyperbolic metric spaces satisfying the q(uasi) i(sometrically) embedded
condition is a metric space(X, d) admitting a mapP : X → T onto a simplicial treeT ,
such that there existδ,ε andK > 0 satisfying the following:

1. For all verticesv ∈ T , X

v

= P

−1
(v) ⊂ X with the induced path metricd

v

is a δ-
hyperbolic metric space. Further, the inclusionsi

v

: X

v

→ X are uniformly proper, i.e.
for all M > 0,v ∈ T andx, y ∈ X

v

, there existsN > 0 such thatd(i

v

(x), i

v

(y)) ≤ M

impliesd

v

(x, y) ≤ N .
2. Lete be an edge ofT with initial and final verticesv1 andv2 respectively. LetX

e

be
the pre-image underP of the mid-point ofe. ThenX

e

with the induced path metric is
δ-hyperbolic.

3. There exist mapsf
e

: X

e

×[0, 1] → X, such thatf
e

|

X

e

×(0,1)

is an isometry onto the
pre-image of the interior ofe equipped with the path metric.

4. f

e

|

X

e

×{0}

and f

e

|

X

e

×{1}

are (K, ε)-quasi-isometric embeddings intoX
v1 and X

v2

respectively.f
e

|

X

e

×{0}

andf

e

|

X

e

×{1}

will occasionally be referred to asf
v1 andf

v2

respectively.

d

v

andd

e

will denote path metrics onX
v

andX

e

respectively.i
v

, i
e

will denote inclusion
of X

v

, X

e

respectively intoX.
We shall need a construction used in [38]. For convenience of exposition,T shall be

assumed to be rooted, i.e. equipped with a base vertexv0. We shall refer toX
v0 asY .

Let v 6= v0 be a vertex ofT . Let v
−

be the penultimate vertex on the geodesic edge path
from v0 to v. Let e denote the directed edge fromv

−

to v. Defineφ

v

: f

e

−

(X

e

−

×{0}) →

f

e

−

(X

e

−

×{1}) as follows:
If p∈f

e

−

(X

e

×{0})⊂X

v

−

, choosex ∈ X

e

such thatp = f

e

−

(x×{0}) and define

φ

v

(p) = f

e

−

(x×{1}).

Note that in the above definition,x is chosen from a set of bounded diameter.
Letµ be a geodesic inX

v

−

, joininga, b ∈ f

e

−

(X

e

−

×{0}). 8
v

(µ) will denote a geodesic
in X

v

joining φ

v

(a) andφ

v

(b). Let X
v0 = Y andi = i

v0.
The next lemma follows easily from the fact that local quasigeodesics in a hyperbolic

metric space are quasigeodesics [22]. Ifx, y are points in a hyperbolic metric space, [x, y]
will denote a geodesic joining them.

Lemma3.1. Given δ > 0, there existD, C1 such that ifa, b, c, d are vertices of aδ-
hyperbolic metric space(Z, d), with d(a, [b, c]) = d(a, b), d(d, [b, c]) = d(c, d) and
d(b, c) ≥ D then[a, b] ∪ [b, c] ∪ [c, d] lies in aC1-neighborhood of any geodesic joining
a, d.

Given a geodesic segmentλ ⊂ Y , we now recall from [38] the construction of a quasi-
convex setB

λ

⊂ X containingi(λ).

Construction of quasiconvex sets

ChooseC2 ≥ 0 such that for alle ∈ T , f

e

(X

e

×{0}) andf

e

(X

e

×{1}) areC2-quasiconvex
in the appropriate vertex spaces. LetC=C1+C2, whereC1 is as in Lemma 3.1.

For Z ⊂ X

v

, let N

C

(Z) denote theC-neighborhood ofZ, that is the set of points at
distance less than or equal toC from Z.
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Step1. Let µ ⊂ X

v

be a geodesic segment in(X
v

, d

v

). Then P(µ) = v. For each
edgee incident onv, but not lying on the geodesic (inT ) from v0 to v, choosep

e

, q

e

∈ N

C

(µ)∩f

v

(X

e

) such thatd
v

(p

e

, q

e

) is maximal. Letv1, . . ., vn

be terminal vertices of
edgese

i

for which d

v

(p

e

i

, q

e

i

) > D, whereD is as in Lemma 3.1 above. Observe that
there are only finitely manyv

i

’s asµ is finite. Define

B

1
(µ) = i

v

(µ)∪

⋃

k=1...n

8

v

i

(µ

i

),

whereµ

i

is a geodesic inX
v

joining p

e

i

, q

e

i

.
Note thatP(B

1
(µ)) ⊂ T is a finite tree.

The reason for insisting that the edgese do not lie on the geodesic fromv0 to v is to
prevent ‘backtracking’ in Step 2 below.

Step2. Step 1 above constructsB

1
(λ) in particular. We proceed inductively. Suppose that

B

m

(λ) has been constructed such that the convex hull ofP(B

m

(λ)) ⊂ T is a finite tree.
Let {w1, . . . , w

n

} = P(B

m

(λ))\P(B

m−1
(λ)). (Note thatn may depend onm, but we

avoid repeated indices for notational convenience.) Assume further thatP

−1
(v

k

)∩B

m

(λ)

is a path of the formi
v

k

(λ

k

), whereλ

k

is a geodesic in(X
v

k

, d

v

k

). Define

B

m+1
(λ) = B

m

(λ)∪

⋃

k=1...n

(B

1
(λ

k

)),

whereB

1
(λ

k

) is defined in Step 1 above.
Since eachλ

k

is a finite geodesic segment in0

H

, the convex hull ofP(B

m+1
λ) is a finite

subtree ofT . Further,P −1
(v)∩B

m+1
(λ) is of the formi

v

(λ

v

) for all v ∈ P(B

m+1
(λ)).

This enables us to continue inductively. Define

B(λ) = ∪

m≥0B
m

λ.

Note that the convex hull ofP(B(λ)) inT is a locally finite treeT1. FurtherB(λ)∩P

−1
(v)

is a geodesic inX
v

for v ∈ T1 and is empty otherwise.

Construction of retraction

One of the main theorems of [38] states thatB(λ) constructed above is uniformly quasi-
convex. To do this we constructed a retraction5

λ

from (the vertex set of)X ontoB

λ

and
showed that there existsC0 ≥ 0 such thatd

X

(5

λ

(x), 5

λ

(y)) ≤ C0dX

(x, y). Recall this
construction from [38]. Letπ

v

: X

v

→ λ

v

be a nearest point projection ofX

v

ontoλ

v

.
5

λ

is defined on
⋃

v∈T1
X

v

by

5

λ

(x) = i

v

·π

v

(x) for x ∈ X

v

.

If x ∈ P

−1
(T \ T1) choosex1 ∈ P

−1
(T1) such thatd(x, x1) = d(x, P

−1
(T1)) and

define5

′

λ

(x) = x1. Next define5
λ

(x) = 5

λ

· 5

′

λ

(x).

Theorem 3.2 [38]. ThereexistsC0 ≥ 0 such thatd(5

λ

(x), 5

λ

(y)) ≤ C0d(x, y) for x, y

vertices ofX. Further, B(λ) is C0-quasiconvex.

We need one final lemma from [38]. Leti : Y → X denote inclusion.
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Lemma3.3. There existsA > 0, such that ifa ∈ P

−1
(v)∩B(λ) for somev ∈ T1 then

there existsb ∈ i(λ) = P

−1
(v0) ∩ B(λ) with d(a, b) ≤ Ad

T

(Pa, Pb). Further, let
v0, v1, . . . , v

n

= v be the sequence of vertices on a geodesic inT connecting the root
vertexv0 to v. There exists a sequenceb = a0, a1, . . . , a

n

= a with a

i

∈ P

−1
(v

i

) ∩ B(λ)

such thatd(a

i

, a

j

) ≤ Ad

T

(Pa

i

, P a

j

) = Ad

T

(v

i

, v

j

).

The above lemma says that we can construct a quasi-isometric section of a geodesic
segment [v0, v] ending ata.

DEFINITION

An A-quasi-isometric sectionof [v0, v] ending ata ∈ P

−1
(v)∩B(λ) is a sequence of

points inX satisfying the conclusions of Lemma 3.3 above.

Note that the quasi-isometric sections considered are all images of [v0, v] wherev0 is
the root vertex ofT . Abusing notation slightly we will refer to the map or its image as a
quasi-isometric section.

So far we have considered a tree of hyperbolic metric spaces. It is time to introduce the
relevant groups.

Let G be a hyperbolic group acting cocompactly on a simplicial treeT such that all
vertex and edge stabilizers are hyperbolic. Also suppose that every inclusion of an edge
stabilizer in a vertex stabilizer is a quasi-isometric embedding. LetG denote the quotient
graphT/G. The metric onT will be denoted byd

T

. AssumeG has only one edge andH
is the stabilizer of this edge. This is the situation whenG splits overH .

SupposeH is a vertex or edge subgroup. Further, supposeH is distorted inG. We
would like to show thatH has infinite height. Here is a brief sketch of the proof of the
main theorem of this paper:

SinceH is distorted, there exist geodesicsλ

i

⊂ 0

H

such that geodesics in0
G

joining
the end points ofλ

i

leave larger and larger neighborhoods of0

H

. From the construction
of B(λ) it follows that the diameters dia(P (B(λ

i

))) → ∞ asi → ∞. The edges ofT can
be lifted to0

G

and one can after a pigeon-hole principle argument look upon these lifts as
conjugating elements. The geodesics inB(λ

i

) ∩ P

−1
(v) can be thought of as elements of

H . Thus asi → ∞ one obtains a sequence of elementsg

i

∈ G such that∩g

−1
i

Hg

i

6= 1.
This proves thatH has infinite height. The next section is devoted to making this rigorous.

4. Proof of Main Theorem

We start our discussion with a basic lemma.

Lemma4.1. If X

v0 = Y is distorted inX, there exist a sequence of geodesicsλ

i

in Y such
thatdia(P (B(λ

i

))) → ∞ asi → ∞, where the diameter is calculated with respect to the
metricd

T

.

Proof. It follows from Lemma 3.3 thatB(λ

i

) lies in anA dia(P (B(λ

i

))) neighborhood of
i(λ

i

) and hence ofY . Further from Theorem 3.2 a geodesic inX joining the end points of
i(λ

i

) lies in a (uniform)C0-neighborhood ofB(λ

i

).
SinceY is distorted inX, there existλ

i

⊂ Y such that geodesics inX joining end points
of λ

i

leave ani-neighborhood ofY for i = 1, 2, . . . .
Hencei ≤ A dia (P (B(λ

i

))) + C.
The lemma follows. �
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Construction of hallways

We would like to construct certain special subsets ofB(λ) closely related to the essential
hallways of Bestvina and Feighn [3]. We retain the terminology.

DEFINITION

A disk f : [0, m]×I → X is a hallway of lengthm if it satisfies:

1. f

−1
(∪X

v

: v ∈ T ) = {0, 1, . . . , m}×I .
2. f mapsi×I to a geodesic inX

v

for some vertex space.
3. (P ◦ f ) : [0, m]×I → T factors through the canonical retraction to [0, m] and an

isometry of [0, m] to T .

DEFINITION

A hallway isρ-thin if d(f (i, t), f (i + 1, t)) ≤ ρ for all i, t .

We will now constructA-thin hallways using the quasi-isometric sections of Lemma
3.3. The arguments are carried out for trees of metric spaces.

Givenλ andx ∈ B(λ) let 6

x

λ

be anA-quasi-isometric section of [v0, P (x)] into B(λ)

ending atx. From Lemma 3.3 such quasi-isometric sections exist. Further, ifa ∈ 6

x

λ

then
defineσ

x

λ

(a) to be a pointi(λ)∩6

x

λ

. The choice involved in the definition ofσx

λ

(a) is
bounded purely in terms ofA.

Lemma4.2. SupposeY = X

v0 is distorted inX. Then there exist geodesicsλ
i

⊂

Y, a

i

, b

i

, x

i

, y

i

∈ B(λ

i

) such that

1. d(x

i

, y

i

) ≤ 1.
2. P(x

i

) = P(y

i

).
3. µ

i

is a geodesic subsegment ofλ

i

in Y joining σ

a

i

λ

i

(x

i

) andσ

b

i

λ

i

(y

i

) with length ofµ
i

greater than or equal toi.

Proof. Suppose not. Then there existsC ≥ 0 such that for all geodesicsλ
i

in Y and all
a

i

, b

i

, x

i

, y

i

∈ B(λ

i

) satisfying

1. a

i

, b

i

, x

i

, y

i

∈ B(λ

i

).
2. d(x

i

, y

i

) ≤ 1.
3. P(x

i

) = P(y

i

).
4. µ

i

is a geodesic subsegment ofλ

i

in Y joining σ

a

i

λ

i

(x

i

) andσ

b

i

λ

i

(y

i

).

We have length ofµ
i

less than or equal toC. For allx ∈ B(λ

i

) choosea ∈ B(λ

i

) such
thatx ∈ 6

a

λ

i

and define

π(x) = σ

a

λ

i

(x).

Recall thatπ(x) is chosen from a set of (uniformly) bounded diameter. Thus we might
as well takea = x. Note thatπ defines a retraction ofB(λ

i

) ontoλ

i

.
For anyx, y ∈ B(λ

i

) such thatP(x) = P(y) we haved(π(x), π(y)) ≤ Cd(x, y).
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Next supposex, y ∈ B(λ

i

), d(P (x), P (y)) = 1 andd(x, y) ≤ A. Assume without loss
of generalityd(P (x), v0) < d(P (y), v0). Then by Lemma 3.3 there existsz ∈ B(λ

i

)∩6

y

λ

i

such thatP(x) = P(z), d(x, z) ≤ 2A and henced(π(x), π(y)) ≤ 2AC + C.
Hence there existsC′ such that for anyλ

i

andx, y ∈ λ

i

, d(π(x), π(y)) ≤ C

′

d(x, y).
Thusλ

i

is uniformly quasiconvex inB(λ

i

) and hence (by Theorem 3.2) inX.
ThereforeY is quasiconvex inX, contradicting the hypothesis. �

DEFINITION

An A-thin hallwayH with endsµ0, µn

trapped byA-quasi-isometric sections61 and62
is a collection of geodesicsµ

i

⊂ X

v

i

, i = 0, . . . , n such that

1. v0, . . ., vn

are successive vertices on a geodesic [v0, vn

] in T .
2. µ

i

joins61(vi

) to 62(vi

).

As beforen is called the length of the hallway.
Note that the geodesics are allowed to have length 0.

COROLLARY 4.3. Existence of hallways

SupposeY is distorted inX. Then there exist geodesicsλ

i

⊂ Y andA-thin hallwaysH
i

with endsλ
i

, η

i

trapped by quasi-isometric sections61i

, 62i

such that the lengths ofλ
i

and the hallwayH
i

are greater thani.

Proof. From Lemma 4.2 there exist geodesicsλ

i

⊂ Y , a

i

, b

i

, x

i

, y

i

∈ B(λ

i

) such that

1. d(x

i

, y

i

) ≤ 1.
2. P(x

i

) = P(y

i

).
3. µ

i

is a geodesic subsegment ofλ

i

in Y joining σ

a

i

λ

i

(x

i

) andσ

b

i

λ

i

(y

i

) with length ofµ
i

greater thani.

Take61i

= 6

a

i

λ

i

62i

= 6

b

i

λ

i

and renameµ
i

asλ
i

(we are abusing notation slightly here).
Passing to a subsequence if necessary and arguing as in Lemma 4.1 we can assume that

the length ofH
i

is greater thani.
The corollary follows. �

Construction of annuli

The discussion so far has not entailed the use of group actions. We would like to establish
a dictionary between the geometric objects constructed above and elements of a groupG

acting onT .
Let G be a hyperbolic group acting cocompactly on a simplicial treeT such that all

vertex and edge stabilizers are hyperbolic. Also suppose that every inclusion of an edge
stabilizer in a vertex stabilizer is a quasi-isometric embedding. LetG denote the quotient
graphT/G. The metric onT will be denoted byd

T

. AssumeG has only one edge andH is
the stabilizer of this edge. This is the situation whenG splits overH . That isG = G1∗

H

G2
or G = G1∗H

. Then by the restrictions on theG-action onT , the inclusions ofH into G

i

are quasi-isometric embeddings.
The stabilizers of edges ofT are conjugates ofH . We can take0

H

= X

v0 = Y ,0
G

= X

andi : Y → X the natural inclusion. Letλ ⊂ Y be a geodesic.
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Recall the construction ofB(λ) from the previous section.B(λ) was constructed as the
union of certain geodesicsλ

i

⊂ X

v

i

. Further, eachλ
i

was in the image of an edge space.
Therefore ifλ

i

hasa
i

, b

i

as its end points, thena−1
i

b

i

∈ H .
We need to now examine the hallways constructed above. LetH = ∪

i=0,... ,n

µ

i

be an
A-thin hallway trapped between quasi-isometric sections61 and62 with endsµ0 andµ

n

.
Note that eachµ

i

is a geodesic subsegment of someλ

i

joining a

i

, b

i

anda

−1
i

b

i

∈ H .
Since edge spaces are (uniformly) quasi-isometrically embedded in vertex spaces, there

exists a constantD1 such that ifµ
i

joins c

i

, d

i

thenc

i

−1
d

i

= u

i

h

i

v

i

, whereh

i

∈ H ,
|u

i

| ≤

D1
2 and|v

i

| ≤

D1
2 . (|.| denotes length.) Also, from the definition ofA-thin hallways

trapped between quasi-isometric sections, we have

61(i) = c

i

,

62(i) = d

i

,

|61(i)
−1

62(i)| ≤

D1

2
for all i.

DEFINITION

An (A + D1)-thin H -hallwayH with endsµ0, µ

n

trapped by(A + D1)-quasi-isometric
sections61 and62 is a collection of geodesicsµ

i

⊂ X

v

i

, i = 0, . . . , n such that

1. v0, . . ., vn

are successive vertices on a geodesic [v0, vn

] in T .
2. µ

i

joins61(vi

) = c

i

to 62(vi

) = d

i

.
3. c

−1
i

d

i

∈ H .

The following lemma is the group-theoretic counterpart of Corollary 4.3 and follows
from the discussion above.

Lemma4.4. SupposeY (= X

v0 = 0

H

) is distorted inX(= 0

G

). Then there exist geodesics
λ

i

⊂ Y and (A + D1)-thin H -hallwaysH

i

with endsλ
i

, η

i

trapped byA + D1-quasi-
isometric sections61i

, 62i

such that the lengths ofλ
i

and the hallwayH
i

are greater
thani.

We would now like to paste two of theseH -hallways together along a common bounding
quasi-isometric section.

Givenn > 0 consider(A+D1)-thin hallwaysH
i

with one endλ
i

⊂ Y = 0

H

of length
n. Clearly there exist infinitely many distinct such from Lemma 4.4 (taking a long enough
hallway with one end inY and truncating it to one of lengthn gives such a hallway).

DEFINITION

The ordered boundary1
H

of an H -hallway H of lengthn trapped by quasi-isometric
sections61, 62 is given by

1

H

= {61(vj−1)
−1

61(vj

), 62(vj−1)
−1

61(vj

), : j = 1 . . . n},

where [v0, vn

] ⊂ T is the geodesic inT to whichH maps underP .
Theith element of the above set will be denoted by1

H

(i).
If the hallway isA + D1-thin, then|6

i

(v

j−1)
−1

6

i

(v

j

)| ≤ A + D1.
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Since there exist infinitely many distinct(A + D1)-thin H -hallways of lengthn and
only finitely many words inG of length less than or equal to(A + D1), there exist (by
the pigeon-hole principle) infinitely many distinctH -hallways of lengthn with the same
ordered boundary1.

Choose two such hallways and glue one to the ‘reflection’ of the other. More precisely,
let H

i

= ∪

j=1...n

µ

ij

for i = 1, 2 be two such hallways. Letµ
ij

havea

ij

, b

ij

∈ X

v

j

⊂ 0

G

as its end points.
Then sinceH

i

are(A+D1)-thin H -hallways with the same ordered boundary, we have

a

−1
ij

b

ij

∈ H,

a

−1
1j

a1,j+1 = a

−1
2j

a2,j+1,

b

−1
1j

b1,j+1 = b

−1
2j

b2,j+1.

Letη
j

denote a geodesic inX
v

j

joininga1j

andc1j

= b1j

b

−1
2j

a2j

. ThenH = ∪

j=1...n

η

j

is an(A + D1)-thin H -hallway. If 1 be its ordered boundary, then it follows from the
above equations that1(2i) = 1(2i − 1) for i = 1. . .n.

DEFINITION

An H -hallway of lengthn with ordered boundary1 is called anH -annulus if1(2i) =

1(2i − 1) for i = 1. . .n.

The above definition is related to the annuli of Bestvina and Feighn [3].
From the above discussion and Lemma 4.4 the following crucial theorem follows:

Theorem 4.5. SupposeY (= X

v0 = 0

H

) is distorted in X(= 0

G

). Then there exist
geodesicsλ

i

⊂ Y and(A + D1)-thin H -annuliH
i

with endsλ
i

, η
i

trapped by(A + D1)-
quasi-isometric sections61i

, 62i

such that the lengths ofλ
i

and the hallwayH
i

are
greater thani. In fact there exist infinitely many distinct suchH -annuli with the same
ordered boundary.

The main theorem of this paper follows from Theorem 4.5 by unravelling definitions.
We state this below.

Theorem 4.6. Let G be a hyperbolic group splitting overH (i.e. G = G1∗H

G2 or
G = G1∗H

) with hyperbolic vertex and edge groups. Further, assume the two inclusions
of H are quasi-isometric embeddings. ThenH is of finite height inG if and only if it is
quasiconvex inG.

Proof. SupposeH is distorted inG. Then from Theorem 4.5 there exists anH -annulus
H = ∪

i=0...n

λ

i

of lengthn such that|λ0| > n. (In fact there are infinitely many distinct
such. However, we start off with one in the interests of notation.)

Let 1 be the ordered boundary ofH. By definition ofH -annulus1(2i) = 1(2i − 1)

for i = 1. . .n. Let c
i

, d

i

be the endpoints ofλ
i

such that

1(2i − 1) = c

−1
i−1ci

= d

−1
i−1di

= 1(2i).

Also c

−1
i

d

i

= h

i

∈ H . Let g
i

= 1(2). . .1(2i). Reading relations around ‘quadrilater-
als’ we have,

h

i−1 = 1(2i)h

i

1(2i)

−1 for all i = 1 . . . n.



Height in splittings of hyperbolic groups 49

Therefore

h0 = g

i

h

i

g

i

−1 for all i = 1 . . . n.

Recall thatP : 0

G

→ T is the projection ontoT . SinceP(c0gi

) 6= P(c0gj

) for i 6= j

we haven essentially distinct conjugatesg
i

Hg

i

−1 whose intersection containsh0 6= 1.
Now we need the fact that there are infinitely many distinctH -annuli (Theorem 4.5)

with the same ordered boundary. Without loss of generality, let this boundary be1 above.
The above argument then furnishes infinitely many distincth ∈ H ∩

i=1...n

g

i

Hg

i

−1.
Thus given anyn > 0 there existn + 1 essentially distinct conjugates ofH whose

intersection is infinite. ThereforeH has infinite height. Along with Theorem 1.1 this proves
the Theorem. �

5. Consequences and questions

Malnormality

We deduce a couple of group-theoretic consequences of Theorem 4.6.

DEFINITION

A subgroupH of a groupG is said to bemalnormalin G if gHg

−1
∩H = 1 for allg /∈ H .

PROPOSITION 5.1

Let G = G1 ∗

H

G2 be a hyperbolic group such thatG1, G2, H are hyperbolic and the
two inclusions ofH are quasi-isometric embeddings. IfH is malnormal in one ofG1 or
G2 thenH is quasiconvex inG.

Proof. Assume without loss of generality thatH is malnormal inG2. Let g ∈ G\H and
h, h1 ∈ H be such thatghg

−1
= h1 6= 1. Let g = a1b1. . .an

b

n

with a

i

∈ G1 and
b

i

∈ G2. Then by normal form for free products with amalgamation ([28], p. 178) we have
b

n

Hb

−1
n

∈ H and henceb
n

∈ H by malnormality ofH in G2. Continuing inductively,
we geta

i

. . .a

n

ha

−1
n

. . .a

−1
i

andb

i

∈ H for all i = 1. . .n. In particularg∈G1. Therefore
H∩gHg

−1
6= 1 impliesg∈G1.

SinceH is quasi-isometrically embedded inG1 we have by Theorem 1.1 thatH has
finite height inG1. Therefore by the above argumentH has finite height inG. Finally by
Theorem 4.6,H is quasiconvex inG. �

The above proposition holds good if malnormal is replaced by height zero.
A similar argument using Britton’s lemma ([28], p. 178) gives the following:

PROPOSITION 5.2

LetG = G1∗H

be a hyperbolic group such thatG1, H are hyperbolic and the two images
H1, H2 of H are quasiconvex inG1. If gH1g

−1
∩H2 is finite for all g ∈ G1 thenH is

quasiconvex inG.

The hypotheses in the above propositions cannot be relaxed as the following example
shows.
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Example.Let G

i

= {a

i

, b1i

, b2i

, c1i

, c2i

|a

i

b

ji

a

−1
i

= c

ji

, j = 1, 2} be two copies (for
i = 1, 2) of a group isomorphic to the free group on 3 generators.

Let H = {b1, b2, c1, c2} be the free group on 4 generators. Leti : H → G1 be given
by sendingb

i

to b

i1 andc

i

to c

i1 for i = 1, 2.
Let j : H → G2 be given by sendingb

i

to b

i2 for i = 1, 2 andc

i

to ‘long words’u
i

in c12 andc22 such that the ‘flare’ condition of [3] is satisfied for the free product with
amalgamationG = G1∗H

G2.
In fact one gets

G = 〈a1, a2, c1, c2|a1a
−1
2 c

i

a2a
−1
1 = u

i

(c1, c2), i = 1, 2〉

such that this is a small cancellation presentation withG hyperbolic.
It is clear that the subgroup generated byc1, c2 is a free group on two generators with

infinite height inG. Hence the amalgamating subgroupH above is of infinite height.
In [30] McMullen shows that glueing an acylindrical, atoroidal hyperbolic 3-manifold to

another hyperbolic atoroidal 3-manifold along a common incompressible boundary surface
S gives a hyperbolic 3-manifold in whichS is quasifuchsian. We deduce the following
group theoretic version of this from Proposition 5.1 above.

COROLLARY 5.3

LetM1 be a hyperbolic atoroidal acylindrical3-manifold andS1 an incompressible surface
in its boundary. LetM2 be a hyperbolic atoroidal3-manifold andS2 an incompressible
surface in its boundary. IfS1 andS2 are homeomorphic then glueingM1 andM2 along
this common boundaryS (= S1 = S2) one obtains a3-manifoldM such that

1. π1(M) is hyperbolic.
2. π1(S) is quasiconvex inπ1(M).

Proof. Hyperbolicity of π1(M) follows from the combination theorem of Bestvina and
Feighn [3]. Quasiconvexity follows from Proposition 5.1 above. �

Using Proposition 5.2 one can deduce similar results.

Graphs of hyperbolic groups

The main argument of this paper does not generalize directly to graphs of hyperbolic
groups satisfying the quasi-isometrically embedded condition. Given a distorted edge or
vertex groupH ⊂ G, the pigeon-hole principle argument of the previous section does
furnish an edge groupH1 of infinite height inG such that a conjugate ofH intersectsH1
in a distorted subgroup ofG.

HoweverH and H1 need not be the same. The basic problem lies in dealing with
quasiconvex subgroups of edge (or vertex) groups that are distorted inG. We state the
problem explicitly:

Question.SupposeG splits overH satisfying the hypothesis of Theorem 4.6 andH1 is
a quasiconvex subgroup ofH . If H1 has finite height inG is it quasiconvex inG? More
generally, ifH1 is an edge group in a hyperbolic graph of hyperbolic groups satisfying the
qi-embedded condition, isH quasiconvex inG if and only if it has finite height inG?
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The above question is a special case of the general question of Swarup on characterizing
quasiconvexity in terms of finiteness of height.

There are two cases where a complete answer to the above question is known. These are
extensions ofZ by surface groups [48] or free groups [5,39]. Both these solutions involve
a detailed analysis of the ending laminations [37].

Other questions

A closely related problem [9,35] can be formulated in more geometric terms:

Question.Let X
G

be a finite 2 complex with fundamental groupG. LetX
H

be a cover of
X

G

corresponding to the finitely presented subgroupH . Let I (x) be the injectivity radius
of X

H

atx.
DoesI (x) → ∞ asx → ∞ imply thatH is quasi-isometrically embedded inG?
A positive answer to this question forG hyperbolic would provide a positive answer to

Swarup’s question.
The answer to this question is negative if one allowsG to be only finitely generated

instead of finitely presented as the following example shows:

Example.Let F = {a, b, c, d} denote the free group on four generators. Letu

i

= ab

i and
v

i

= cd

f (i) for some functionf : N → N. Introducing a stable lettert conjugatingu
i

to v

i

one has a finitely generated HNN extensionG. The free subgroup generated bya, b

provides a negative answer to the question above for suitable choice off . In fact one only
requires thatf grows faster than any linear function.

If f is recursive one can embed the resultantG in a finitely presented group by Higman’s
embedding theorem. But then one might lose malnormality of the free subgroup generated
by a, b. A closely related example was shown to the author by Steve Gersten.

A counterexample to the general question of Swarup might provide a means of con-
structing acyclic non-hyperbolic finitely presented groups without(Z + Z) answering a
question of Bestvina and Brady [9]. SupposeH is a malnormal torsion-free hyperbolic
subgroup of a hyperbolic torsion-free groupG. If H is distorted inG, then doublingG
alongH (i.e.G∗

H

G) one gets a finitely presented acyclic group which is not hyperbolic,
nor does it contain(Z + Z). This was independently observed by Sageev.

On the other hand one might develop an analog of Thurston’s theory of pleated surfaces
[52] for hyperbolic subgroupsH of hyperbolic groupsG following Gromov’s suggestion
about using hyperbolic simplices ([24], §8.3). LetX

G

be a finite 2 complex with funda-
mental groupG. LetX

H

be a cover ofX
G

corresponding to the finitely presented subgroup
H . Let K be a finite complex with fundamental groupH . One needs to consider homo-
topy equivalences betweenK andX

H

. Then one might try to prove a geometric analog of
Paulin’s theorem [42] so as to obtain a limiting action of a subgroup ofH on a limit metric
space (in [42] the limiting object is anR-tree). This would be an approach to answering
the above question affirmatively.

The general problem attempted in this paper is one of characterizing quasiconvexity of
subgroupsH of hyperbolic groupsG purely in terms of group theoretic notions. Swarup’s
question aims at one such characterization. One might like stronger criteria, though this
might be over-optimistic. Consider the following conditions:

1. H ⊂ G is not quasiconvex.
2. H has infinite height inG.
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3. H hasstrictly infinite heightin G, i.e. there exist infinitely many essentially distinct
conjugatesg

i

Hg

−1
i

, i = 1, 2, . . . such that∩
i

g

i

Hg

−1
i

6= ∅.
4. There exists an elementg ∈ G such thatgi

/∈ H for i 6= 0 and∩

i

g

i

Hg

−i

6= ∅.
5. There exists an elementg ∈ G such thatgi

/∈ H for i 6= 0 and∩

i

g

i

H1g
−i

6= ∅ where
H1 is a subgroup ofH isomorphic to a free product of free groups and surface groups.

6. There exists an elementg ∈ G such thatgi

/∈ H for i 6= 0 and∩

i

g

i

H1g
−i

6= ∅ where
H1 is aquasiconvexsubgroup ofH isomorphic to a free product of free groups and
surface groups.

It is clear that(6) ⇒ (5) ⇒ (4) ⇒ (3) ⇒ (2) ⇒ (1) (the last implication follows from
[23]). One would like to know if any of these can be reversed.
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