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Abstract. Supposéd is a hyperbolic subgroup of a hyperbolic gropAssume there
existsn > 0 such that the intersection efessentially distinct conjugates Hf is always

finite. Further assumé& splits overH with hyperbolic vertex and edge groups and the
two inclusions ofH are quasi-isometric embeddings. Théns quasiconvex irG. This
answers a question of Swarup and provides a partial converse to the main theorem of
[23].
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1. Introduction

Let G be a hyperbolic group in the sense of Gromov [24]. Habe a hyperbolic subgroup
of G. We choose a finite symmetric generating setdaand extend it to a finite symmetric
generating set foG. LetI"'y andI' denote the Cayley graphs &f, G respectively with
respect to these generating sets.

If H is not quasiconvex irG, we would like to understand the group theoretic (or
algebraic) mechanism contributing to the distortionffin G. The first examples of
distorted hyperbolic subgroups of hyperbolic groups were fiber subgroups of fundamental
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groups of closed hyperbolic 3-manifolds fibering over the circle. The extrinsic geometry in
this case was studied in detail by Cannon and Thurston [15] and later by the author [36,37].
General examples of normal hyperbolic subgroups of hyperbolic groups have been studied
in [5,41]. A substantially larger class of examples arise from the combination theorem of
Bestvina and Feighn [3]. In fact almost all examples of distorted hyperbolic subgroups of
hyperbolic groups use the combination theorem in an essential way (see [13,38] however).
It is natural to wonder if there are any other methods of building distorted hyperbolic
subgroups. To get a handle on this issue one needs the notion of height of a subgroup [23].

DEFINITION

Let H be a subgroup of a grou@. We say that the elementg;|1 < i < n} of G are
essentially distinct ifHg; # Hg; for i # j. Conjugates off by essentially distinct
elements are called essentially distinct conjugates.

Note that we are abusing notation slightly here, as a conjugaté by an element
belongirg to the normalize of H but not belongirg to H is still essentialf distind from
H. Thusin this conext a conjugae of H records (implicitly) the conjugatirg element.

DEFINITION

We say that the height of an infinite subgroHpin G is n if there exists a collection of

n essentially distinct conjugates &f such that the intersection of all the elements of the
collection is infinite and: is maximal possible. We define the height of a finite subgroup
to be 0.

The following question of Swarup [9] formulates the problem we would like to address
in this paper:

Question. SupposeH is a finitely presented subgroup of a hyperbolic graugf H has
finite height, isH quasiconvex irG? A special case to be considered is wikiesplits over
H and the inclusions are quasi-isometric embeddings.

We shall answer the above question affirmatively in the special case mentioned.

Theorem 4.6. Let G be a hyperbolic group splitting oveH (i.e. G = G1xy G2 or
G = G1xp) with hyperbolic vertex and edge groups. Furth@sume the two inclusions
of H are quasi-isometric embeddings. Thénis of finite height inG if and only if it is
quasiconvex irG.

The main theorem of [23] states:

Theorem 1.1. If H is a quasiconvex subgroup of a hyperbolic grazghen H has finite
height.

Thus the purpose of this paper is to prove the converse direction.

Certain group theoretic analogs of Thurston’s combination theorems [30] were deduced
in [3]. Extending the analogy with [30], in this paper we prove quasiconvexity of certain
surface subgroups.

PROPOSITION 5.1

LetG = G1 xy G2 be a hyperbolic group such that,, G2, H are hyperbolic and the
two inclusions off are quasi-isometric embeddings.Hf is malnormal in one o061 or
G2 thenH is quasiconvex ifG.
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The following corollary is a group-theoretic analog of a theorem of Thurston’s [30].

COROLLARY 5.3

LetM; be ahyperbolic atoroidal acylindric&@-manifold andS; anincompressible surface
in its boundary. LetM> be a hyperbolic atoroidaB-manifold andS, an incompressible
surface in its boundary. If; andS, are homeomorphic then gluing, and M2 along this
common boundary (= S1 = S»2) one obtains &-manifold M such that

1. m1(M) is hyperbolic.
2. w1(S) is quasiconvex ifr1(M).

2. Preliminaries

We start off with some preliminaries about hyperbolic metric spaces in the sense of Gromov
[24]. For details, see [16,22]. LK, d) be a hyperbolic metric space.

DEFINITION

A subsetZ of X is said to bek-quasiconvexf any geodesic joining:, » € Z lies in a
k-neighborhood o¥. A subsetZ is quasiconveif it is k-quasiconvex for some. A map
f from one metric spac€, dy) into another metric spadeZ, dz) is said to be &K, ¢)-
guasi-isometric embeddirify

1
E(dY()’l, y2)) —€ <dz(f(y1), f(¥y2) < Kdy(y1, y2) + €.

If f is a quasi-isometric embedding, and every poinZaies at a uniformly bounded
distance from some¢ (y) then f is said to be @uasi-isometryA (K, ¢)-quasi-isometric
embedding that is a quasi-isometry will be callegka ¢)-quasi-isometry.

A (K, €)-quasigeodesiis a(K, €)-quasi-isometric embedding of a closed intervakin
A (K, 0)-quasigeodesic will also be calledkaquasigeodesic.

DEFINITION [17,25]

If i : Ty — I'¢ be an embedding of the Cayley graph @finto that of G, then the
distortion function is given by

dista(R) = Diamr,, ("' NB(R)),

whereB(R) is the ball of radiusk around 1€ I'.

If H is quasiconvex irG the distortion function is linear and we shall refer#bas
an undistorted subgroup. Els#, will be termed distorted. Note that the above definition
makes sense for metric spaces and their subspaces too.

3. Trees of hyperbolic metric spaces

For a general discussion of graphs of groups, see [47]. In this paper we will deal with
graphs of hyperbolic groups satisfying the quasi-isometrically embedded condition of [3].
We will need some results from [38].
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DEFINITION

A tree (T) of hyperbolic metric spaces satisfying the g(uasi) i(sometrically) embedded
condition is a metric spadeX, d) admitting a mapP : X — T onto a simplicial treq’,
such that there existe andK > 0 satisfying the following:

1. For all verticess € T, X, = P~1(v) ¢ X with the induced path metrid, is as-
hyperbolic metric space. Further, the inclusigns X, — X are uniformly proper, i.e.
forallM > 0,v € T andx, y € X,, there existev > 0 suchthat/(i,(x), i,(y)) <M
impliesd,(x,y) < N.

2. Lete be an edge of" with initial and final vertices; andv, respectively. LefX, be
the pre-image undeP of the mid-point ofe. ThenX, with the induced path metric is
8-hyperbolic.

3. There exist mapg. : X.x[0, 1] — X, such thatf.|x, 0,1 iS an isometry onto the
pre-image of the interior of equipped with the path metric.

4. felx,x{0y and f.|x, (1 are (K, e)-quasi-isometric embeddings int%,, and X,,
respectively.f.|x,x0; and fe|x,x1; Will occasionally be referred to af, and f,,
respectively.

d, andd, will denote path metrics ok, andX, respectivelyi,, i, will denote inclusion
of X,, X, respectively intaX.

We shall need a construction used in [38]. For convenience of expositishall be
assumed to be rooted, i.e. equipped with a base vege¥e shall refer toX,, asY.
Letv # vg be a vertex off. Letv_ be the penultimate vertex on the geodesic edge path
from vg to v. Let e denote the directed edge fram to v. Defineg, : f._(X._x{0}) —
fe_ (X._x{1}) as follows:

If pef._(X.x{0})CX,_, choosex € X, such thatp = f._(xx{0}) and define

$u(p) = fe_ (xx{1}).

Note that in the above definition,is chosen from a set of bounded diameter.

Letu be ageodesicii,_, joininga, b € f._(X._x{0}). ®,(n) willdenote a geodesic
in X, joining ¢, (a) and¢, (b). Let X, =Y andi = iy,.

The next lemma follows easily from the fact that local quasigeodesics in a hyperbolic
metric space are quasigeodesics [22}. 1§ are points in a hyperbolic metric space, j]
will denote a geodesic joining them.

Lemma3.1. Givené > 0, there existD, C1 such that ifa, b, ¢, d are vertices of a-
hyperbolic metric spacéZ, d), with d(a, [b, c]) = d(a, b), d(d, [b, c]) = d(c,d) and
d(b,c¢) > Dthen[a, b]U[b, c]U]c, d] lies in aC1-neighborhood of any geodesic joining
a,d.

Given a geodesic segmentc Y, we now recall from [38] the construction of a quasi-
convex setB;, C X containingi ().

Construction of quasiconvex sets

ChooseCs > 0 such that for alk € T, f.(X.x{0}) and f.(X.x{1}) areCs-quasiconvex
in the appropriate vertex spaces. (e£C1+C>, whereCy is as in Lemma 3.1.

ForZ c X,, let N¢c(Z) denote theC-neighborhood ofZ, that is the set of points at
distance less than or equal@ofrom Z.



Height in splittings of hyperbolic groups 43

Stepl. Letu C X, be a geodesic segment {X,, d,). Then P(u) = v. For each
edgee incident onv, but not lying on the geodesic (ifi) from vg to v, choosep,, ¢.

€ Nc(w)Nfy(X,) such thatd, (p., ¢.) is maximal. Letvy, .. ., v, be terminal vertices of
edgese; for whichd,(p,, g¢;) > D, whereD is as in Lemma 3.1 above. Observe that
there are only finitely many;’s asu is finite. Define

BY ) = iyl J,_, , o (1),

wherey; is a geodesic ik, joining pe;. g, -

Note thatP (B1(n)) C T is a finite tree.

The reason for insisting that the edgedo not lie on the geodesic fromy to v is to
prevent ‘backtracking’ in Step 2 below.

Step2. Step 1 above construdid (1) in particular. We proceed inductively. Suppose that
B™()) has been constructed such that the convex hult @™ (1)) C T is a finite tree.
Let {wi, ..., w,} = P(B™(W)\P(B™1(1)). (Note thatn may depend om:, but we
avoid repeated indices for notational convenience.) Assume furtheP ttab, )N B™ (1)

is a path of the form,, (Ax), wherex, is a geodesic itX,, ., dy, ). Define

B" () = B" Ul J,_, (B0,

whereB1();) is defined in Step 1 above.

Since eachy is a finite geodesic segmentlin;, the convex hull of? (B +11) is a finite
subtree off'. Further,P~1(v)NB"t1(}) is of the formi,(x,) for all v € P(B"t1(})).
This enables us to continue inductively. Define

B(A) = Up=0B"A.

Note thatthe convex hull @ (B(1)) in T is alocally finite tredy. FurtherB(A\)NP ~1(v)
is a geodesic irX, for v € Ty and is empty otherwise.

Construction of retraction

One of the main theorems of [38] states ti#dt) constructed above is uniformly quasi-
convex. To do this we constructed a retractidnfrom (the vertex set ofx onto B; and
showed that there exist& > 0 such thatix (IT, (x), [T, (y)) < Codx(x, y). Recall this
construction from [38]. Letr, : X, — X, be a nearest point projection &f, onto A,.
[T, is defined on J,, ., X, by

[T, (x) = iy-my(x) for x € X,.

If x € P~X(T \ T1) choosex; € P~1(T1) such thatd(x, x1) = d(x, P~1(T1)) and
defineIT} (x) = x1. Next definell; (x) = Ty, - IT} (x).

Theorem 3.2 [38]. Thaeexists G > 0such thatd (T, (x), [Ty (y)) < Cod(x, y) forx, y
vertices ofX. Further, B()) is Co-quasiconvex.

We need one final lemma from [38]. Let Y — X denote inclusion.
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Lemma3.3. There existsA > 0, such that ifa € P~1(v)NB(}) for somev € Ty then
there existsh € i(x) = P~L(vg) N B(A) with d(a, b) < Ady(Pa, Pb). Further, let
vo, V1, - -. , U, = v be the sequence of vertices on a geodesit iconnecting the root
vertexvg to v. There exists a sequenke= ag, a1, . .. ,a, = a Witha; € P~1(v;) N B(L)
such thatd(a,-,aj) < Adr(Pa;, Paj) = Adr (v, vj).

The above lemma says that we can construct a quasi-isometric section of a geodesic
segment{o, v] ending ata.

DEFINITION

An A-quasi-isometric sectioof [vg, v] ending ata € P~1(v)NB(L) is a sequence of
points in X satisfying the conclusions of Lemma 3.3 above.

Note that the quasi-isometric sections considered are all images,af| fwherevg is
the root vertex ofl". Abusing notation slightly we will refer to the map or its image as a
quasi-isometric section.

So far we have considered a tree of hyperbolic metric spaces. It is time to introduce the
relevant groups.

Let G be a hyperbolic group acting cocompactly on a simplicial Feguch that all
vertex and edge stabilizers are hyperbolic. Also suppose that every inclusion of an edge
stabilizer in a vertex stabilizer is a quasi-isometric embeddingglLatnote the quotient
graphT/G. The metric oril’ will be denoted byi/;. Assumeg has only one edge anfd
is the stabilizer of this edge. This is the situation wiigsplits overH.

SupposeH is a vertex or edge subgroup. Further, suppBsés distorted inG. We
would like to show that? has infinite height. Here is a brief sketch of the proof of the
main theorem of this paper:

SinceH is distorted, there exist geodesigsc I'y such that geodesics if; joining
the end points of; leave larger and larger neighborhooddgf. From the construction
of B(%) it follows that the diameters di®@ (B(%;))) — oo asi — oo. The edges of’ can
be lifted toI" and one can after a pigeon-hole principle argument look upon these lifts as
conjugating elements. The geodesicif.;) N P~1(v) can be thought of as elements of
H.Thus as — oo one obtains a sequence of elemepts G such thahgi‘ng,- # 1.

This proves that{ has infinite height. The next section is devoted to making this rigorous.

4. Proof of Main Theorem
We start our discussion with a basic lemma.

Lemmad.l. If X,, = Y is distorted inX, there exist a sequence of geodesics Y such
thatdia(P(B(1;))) — oo asi — oo, Where the diameter is calculated with respect to the
metricdr.

Proof. It follows from Lemma 3.3 thaB(};) lies in anA dia(P (B(A;))) heighborhood of
i(%;) and hence of . Further from Theorem 3.2 a geodesicXijoining the end points of
i(A;) lies in a (uniform)Co-neighborhood oB(1;).

SinceY is distorted inX, there exisk; C Y such that geodesics iijoining end points
of A; leave an-neighborhood of fori =1,2,....

Hencei < A dia(P(B(};))) + C.

The lemma follows. (|
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Construction of hallways

We would like to construct certain special subset®0f) closely related to the essential
hallways of Bestvina and Feighn [3]. We retain the terminology.

DEFINITION
Adisk f : [0, m]xI — X is a hallway of lengthn if it satisfies:

1. fAUX,:veT)=1{0,1,... ,m}xI.

2. f mapsi x I to a geodesic itX,, for some vertex space.

3. (Pof):[0,m]xI — T factors through the canonical retraction tg#{] and an
isometry of [Qm]to T.

DEFINITION
A hallway is p-thinif d(f (i, 1), f( +1,1)) < p forall i, ¢.

We will now constructA-thin hallways using the quasi-isometric sections of Lemma
3.3. The arguments are carried out for trees of metric spaces.

Giveni andx € B(A) let =7 be anA-quasi-isometric section obg, P(x)] into B(i)
ending atc. From Lemma 3.3 such quasi-isometric sections exist. Furtheg it} then
defineo; (a) to be a pointi(A)NX;. The choice involved in the definition of (a) is
bounded purely in terms of.

Lemmad.2. SupposeY = X,, is distorted inX. Then there exist geodesiés C
Y,a;, b;, xi, yi € B(;) such that

1. d(x,‘, y,-) <1

2. P(x;j) = P(yi)-

3. u; is a geodesic subsegmentigfin Y joining afl_" (x;) and o/{’l_" (y;) with length ofu;
greater than or equal to.

Proof. Suppose not. Then there exigis> 0 such that for all geodesiés in Y and all
ai, bi, x;, yi € B(};) satisfying

1. a;, bi, xi, yi € B(A).

2. d(x,', yi) < 1.

3. P(xj) = P(yi).

4. u; is a geodesic subsegmentigfin Y joining o—fi" (x;) andafi" i).

We have length of:; less than or equal t6. For allx € B();) chooser € B(A;) such
thatx € 2§ and define

m(x) = a)’fi (x).

Recall thatr (x) is chosen from a set of (uniformly) bounded diameter. Thus we might
as well takex = x. Note thatr defines a retraction a8(1;) ontoA;.
For anyx, y € B(;) such thatP(x) = P(y) we haved (it (x), 7(y)) < Cd(x, y).
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Next suppose, y € B(A;),d(P(x), P(y)) = 1landd(x, y) < A. Assume without loss
of generalityd (P (x), vg) < d(P(y), vp). Then by Lemma 3.3 there exigts B(A,-)mzii
such thatP (x) = P(z),d(x, z) < 2A and hencel (7 (x), 7 (y)) < 2AC + C.

Hence there exist6’ such that for any; andx, y € A;, d(w(x), 7 (y)) < C'd(x, y).
Thusa; is uniformly quasiconvex irB(A;) and hence (by Theorem 3.2) i

ThereforeY is quasiconvex irk, contradicting the hypothesis. ]

DEFINITION

An A-thin hallwayX with endsuo, u, trapped byA-quasi-isometric sections; and»
is a collection of geodesigs; C X,,,i =0, ..., n such that

1. v, ..., v, are successive vertices on a geodesici,] in T.
2. u; joins X1(v;) to Za(v;).

As beforen is called the length of the hallway.
Note that the geodesics are allowed to have length O.

COROLLARY 4.3. Existence of hallways

Suppos¢ is distorted inX. Then there exist geodesits C Y and A-thin hallwaysH;
with endsh;, n; trapped by quasi-isometric sectiody;, X»; such that the lengths &f;
and the hallwayH; are greater than.

Proof. From Lemma 4.2 there exist geodesigsC Y, a;, b;, x;, y; € B();) such that

1. d(xi, y,-) <1

2. P(x;) = P(yi)-

3. u; is a geodesic subsegmentigfin Y joining afi" (xi) andafl_" (y;) with length of ;
greater thar.

TakeXy; = 2; Yo = E'A’; and rename; asi; (we are abusing notation slightly here).

Passing to a subsequence if necessary and arguing as in Lemma 4.1 we can assume that
the length ofH; is greater than.

The corollary follows. Il

Construction of annuli

The discussion so far has not entailed the use of group actions. We would like to establish
a dictionary between the geometric objects constructed above and elements of &group
acting onT.

Let G be a hyperbolic group acting cocompactly on a simplicial Feguch that all
vertex and edge stabilizers are hyperbolic. Also suppose that every inclusion of an edge
stabilizer in a vertex stabilizer is a quasi-isometric embeddingglLatnote the quotient
graphT /G. The metric or” will be denoted byl;. Assumej has only one edge arfd is
the stabilizer of this edge. This is the situation wiigsplits overH . ThatisG = G1*y G2
or G = G1*g. Then by the restrictions on thi@-action onT, the inclusions off into G;
are quasi-isometric embeddings.

The stabilizers of edges @fare conjugates df. We cantaké'y = X,, =Y, I'¢g = X
andi : Y — X the natural inclusion. Let C Y be a geodesic.
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Recall the construction a8 (1) from the previous sectiorB(A) was constructed as the
union of certain geodesids C X,,. Further, each; was in the image of an edge space.
Therefore ifA; hasq;, b; as its end points, thezr}*lbi € H.

We need to now examine the hallways constructed abovelletU;—q . ,u; be an
A-thin hallway trapped between quasi-isometric sectibpandX, with endsuo andu,, .

Note that eaclu; is a geodesic subsegment of somgoining a;, b; andai‘lbi € H.

Since edge spaces are (uniformly) quasi-isometrically embedded in vertex spaces, there
exists a constanD; such that ifu; joins ¢;, d; thenc;~1d; = u;h;v;, whereh; € H,
lui| < 5 andjv;| < Bt. (.| denotes length.) Also, from the definition 4fthin hallways
trapped between quasi-isometric sections, we have

X1() = ¢,
2o(i) = d;,

D
IZ13) 1203 < 71 for all i.

DEFINITION
An (A + D1)-thin H-hallway H with endspug, w, trapped by(A + Dj)-quasi-isometric
sectionsx; andX; is a collection of geodesigs; C X,,,i =0, ..., n such that

1. vp, ..., v, are successive vertices on a geodesicy,] in T.
2. ;i joins 1(v;) = ¢; to X2(v;) = d;.
3. ¢7ld e H.

The following lemma is the group-theoretic counterpart of Corollary 4.3 and follows
from the discussion above.

Lemma4.4. Supposé (= X,, = 'y) isdistorted inX (= I'g). Then there exist geodesics
Ai C Y and (A 4+ D1)-thin H-hallwaysH; with ends;, n; trapped byA + D1-quasi-
isometric section&1;, ¥y; such that the lengths of; and the hallwayH; are greater
thani.

We would now like to paste two of thegg-hallways together along a common bounding
quasi-isometric section.

Givenn > 0 considerA + D1)-thin hallwaysH; with one endv; C Y = 'y of length
n. Clearly there exist infinitely many distinct such from Lemma 4.4 (taking a long enough
hallway with one end i and truncating it to one of lengihgives such a hallway).

DEFINITION
The ordered boundargy; of an H-hallway H of lengthn trapped by quasi-isometric
sectionsxy, X is given by

Ay = {Z1(0j—1) 121 (v)), T2(vj—1) 1 T1(v)),: j = 1...n},

where po, v,] C T is the geodesic iff' to which’H maps underP.
Theith element of the above set will be denotedby (i).
If the hallway iSA + Ds-thin, then|%; (v;—1) ~1%; (v;)| < A + D1.
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Since there exist infinitely many distin€d + Dj)-thin H-hallways of lengthn and
only finitely many words inG of length less than or equal &\ + D1), there exist (by
the pigeon-hole principle) infinitely many distingt-hallways of length: with the same
ordered boundanry.

Choose two such hallways and glue one to the ‘reflection’ of the other. More precisely,
letH; = Uj—1._,u;j fori = 1, 2 be two such hallways. Let;; haveq;;, b;; € Xy; CTg
as its end points.

Then sinceéH; are(A + D1)-thin H-hallways with the same ordered boundary, we have

-1
a;; bijj € H,
-1 =gl
alj alj+1 = a2j az, j+1,
-1 -1
blj by jy1= b2j b2 j11.

Letn; denote a geodesic X, joiningas; andc; = bljbz_jlazj. ThenH = Uj—1. 4n;
is an(A + D1)-thin H-hallway. If A be its ordered boundary, then it follows from the
above equations that(2i) = A(2i — 1) fori = 1.. .n.

DEFINITION

An H-hallway of lengthn with ordered boundarw is called anH -annulus ifA(2i) =
AQRi—1fori =1...n.

The above definition is related to the annuli of Bestvina and Feighn [3].
From the above discussion and Lemma 4.4 the following crucial theorem follows:

Theorem 4.5. SupposeY (= X,, = I'y) is distorted in X(=T'g). Then there exist
geodesics,; C Y and(A + D1)-thin H-annuliH; with endsh;, n; trapped by A + Dj)-
quasi-isometric sectionX;, Xo; such that the lengths of; and the hallwayH; are
greater thani. In fact there exist infinitely many distinct suéhrannuli with the same
ordered boundary.

The main theorem of this paper follows from Theorem 4.5 by unravelling definitions.
We state this below.

Theorem 4.6. Let G be a hyperbolic group splitting oveH (i.e. G = G1xy G or
G = G1xp) with hyperbolic vertex and edge groups. Furth@sume the two inclusions
of H are quasi-isometric embeddings. Thé&nis of finite height inG if and only if it is
guasiconvex irG.

Proof. SupposeH is distorted inG. Then from Theorem 4.5 there exists Hnannulus
‘H = Ui—o..,2; Of lengthn such thatig| > n. (In fact there are infinitely many distinct
such. However, we start off with one in the interests of notation.)

Let A be the ordered boundary &f. By definition of H-annulusA (2i) = A(2i — 1)
fori = 1...n. Letc;, d; be the endpoints of; such that

AQi = 1) = ¢ e =d di = A2D).

Also ci_ld[ =h; € H. Letg; = A(2)...A(2i). Reading relations around ‘quadrilater-
als’ we have,

hi—1 = AQRihi AL forall i =1...n.



Height in splittings of hyperbolic groups 49
Therefore
ho = gil’ll‘gi_l forall i=1...n.

Recall thatP : T'¢ — T is the projection ontd'. SinceP (cog;) # P(cog;) fori # j
we haven essentially distinct conjugatesH g; ! whose intersection contaithg # 1.

Now we need the fact that there are infinitely many distiieannuli (Theorem 4.5)
with the same ordered boundary. Without loss of generality, let this boundaxyabeve.
The above argument then furnishes infinitely many distinetH N;—1_, gi Hgi *.

Thus given any: > 0 there exist: + 1 essentially distinct conjugates &f whose
intersection is infinite. Therefo® has infinite height. Along with Theorem 1.1 this proves
the Theorem. O

5. Consequences and questions

Malnormality

We deduce a couple of group-theoretic consequences of Theorem 4.6.

DEFINITION
A subgroupH of a groupG is said to benalnormalin G if gHg*NH = 1forallg ¢ H.

PROPOSITION 5.1

LetG = G1 xy G2 be a hyperbolic group such thaty, G2, H are hyperbolic and the
two inclusions off are quasi-isometric embeddings.Hf is malnormal in one o6 or
G, thenH is quasiconvex iiG.

Proof. Assume without loss of generality that is malnormal inG». Letg € G\ H and
h,h1 € H be such thaghg™t = hy # 1. Letg = aib1...anb, With a; € G1 and
b; € G». Then by normal form for free products with amalgamation ([28], p. 178) we have
b,Hb;' € H and hencé, € H by malnormality ofH in G,. Continuing inductively,
we geta;. . .a,,han_l. . .ai_l andb; € H foralli = 1...n. In particularge G. Therefore
HNgHg 1 # 1impliesgeG.

Since H is quasi-isometrically embedded &y we have by Theorem 1.1 th&t has
finite height inG1. Therefore by the above argumdtithas finite height irG. Finally by
Theorem 4.6H is quasiconvex irG.

The above proposition holds good if malnormal is replaced by height zero.
A similar argument using Britton’s lemma ([28], p. 178) gives the following:

PROPOSITION 5.2

LetG = G1xy be a hyperbolic group such thét;, H are hyperbolic and the two images
Hi, H> of H are quasiconvex itG1. If gHig~NH> is finite for all g € G1 thenH is
quasiconvex irG.

The hypotheses in the above propositions cannot be relaxed as the following example
shows.
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Example.Let G; = {a;, b1;, b2, c1i, c2,-|a,~bj,-alfl = ¢ji, j = 1,2} be two copies (for
i =1, 2) of a group isomorphic to the free group on 3 generators.
Let H = {b1, bo, c1, c2} be the free group on 4 generators. LetH — G1 be given
by sendingp; to b;1 andc; toc;p fori =1, 2.
Letj : H — G2 be given by sending; to b;» for i = 1, 2 andc; to ‘long words’u;
in c12 andcp2 such that the ‘flare’ condition of [3] is satisfied for the free product with
amalgamatiorG = G1xy Go.
In fact one gets

-1 -1 .
G = (a1, az, c1, c2laa, “ciazay - = ui(c1, c2),i = 1,2)

such that this is a small cancellation presentation withyperbolic.

It is clear that the subgroup generateddayc; is a free group on two generators with
infinite height inG. Hence the amalgamating subgralipabove is of infinite height.

In [30] McMullen shows that glueing an acylindrical, atoroidal hyperbolic 3-manifold to
another hyperbolic atoroidal 3-manifold along a common incompressible boundary surface
S gives a hyperbolic 3-manifold in which is quasifuchsian. We deduce the following
group theoretic version of this from Proposition 5.1 above.

COROLLARY 5.3

LetM1 be a hyperbolic atoroidal acylindric&-manifold andS; an incompressible surface
in its boundary. LetM> be a hyperbolic atoroidaB-manifold andS, an incompressible
surface in its boundary. 1§71 and S are homeomorphic then glueing; and M; along
this common boundary (= S1 = S»2) one obtains 8-manifold M such that

1. m1(M) is hyperbolic.
2. w1(S) is quasiconvex ifr1(M).

Proof. Hyperbolicity of 7r1(M) follows from the combination theorem of Bestvina and
Feighn [3]. Quasiconvexity follows from Proposition 5.1 above. L]

Using Proposition 5.2 one can deduce similar results.

Graphs of hyperbolic groups

The main argument of this paper does not generalize directly to graphs of hyperbolic
groups satisfying the quasi-isometrically embedded condition. Given a distorted edge or
vertex groupH C G, the pigeon-hole principle argument of the previous section does
furnish an edge groufl; of infinite height inG such that a conjugate @f intersectsH;
in a distorted subgroup af.

However H and H; need not be the same. The basic problem lies in dealing with
quasiconvex subgroups of edge (or vertex) groups that are distorted\ive state the
problem explicitly:

Question. Supposes splits overH satisfying the hypothesis of Theorem 4.6 afidis

a quasiconvex subgroup &f. If H; has finite height irG is it quasiconvex irG? More
generally, ifH; is an edge group in a hyperbolic graph of hyperbolic groups satisfying the
gi-embedded condition, iH quasiconvex irG if and only if it has finite height irG?
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The above question is a special case of the general question of Swarup on characterizing
quasiconvexity in terms of finiteness of height.

There are two cases where a complete answer to the above question is known. These are
extensions o by surface groups [48] or free groups [5,39]. Both these solutions involve
a detailed analysis of the ending laminations [37].

Other questions

A closely related problem [9,35] can be formulated in more geometric terms:

Question.Let X be a finite 2 complex with fundamental groGp Let X ; be a cover of
X corresponding to the finitely presented subgrélid_et I (x) be the injectivity radius
of Xy atx.

Does! (x) — oo asx — oo imply that H is quasi-isometrically embedded @?

A positive answer to this question far hyperbolic would provide a positive answer to
Swarup’s question.

The answer to this question is negative if one all@ws$o be only finitely generated
instead of finitely presented as the following example shows:

Example.Let F = {a, b, ¢, d} denote the free group on four generators.i,et ab’ and
v; = cdf® for some functionf : N — N. Introducing a stable letterconjugatingu;
to v; one has a finitely generated HNN extens@nThe free subgroup generateddy
provides a negative answer to the question above for suitable chofcérofact one only
requires thatf grows faster than any linear function.

If fisrecursive one can embed the result@im a finitely presented group by Higman’s
embedding theorem. But then one might lose malnormality of the free subgroup generated
by a, b. A closely related example was shown to the author by Steve Gersten.

A counterexample to the general question of Swarup might provide a means of con-
structing acyclic non-hyperbolic finitely presented groups with@ut- Z) answering a
question of Bestvina and Brady [9]. Suppadeis a malnormal torsion-free hyperbolic
subgroup of a hyperbolic torsion-free groap If H is distorted inG, then doublingG
alongH (i.e. Gxy G) one gets a finitely presented acyclic group which is not hyperbolic,
nor does it contaiiZ + Z). This was independently observed by Sageev.

On the other hand one might develop an analog of Thurston’s theory of pleated surfaces
[52] for hyperbolic subgroup#/ of hyperbolic groups following Gromov’s suggestion
about using hyperbolic simplices ([24], §88.3). Lét be a finite 2 complex with funda-
mental groufG. Let X iy be a cover o ; corresponding to the finitely presented subgroup
H. Let K be a finite complex with fundamental grodp. One needs to consider homo-
topy equivalences betwedhandX . Then one might try to prove a geometric analog of
Paulin’s theorem [42] so as to obtain a limiting action of a subgroug oh a limit metric
space (in [42] the limiting object is dR-tree). This would be an approach to answering
the above question affirmatively.

The general problem attempted in this paper is one of characterizing quasiconvexity of
subgroupdd of hyperbolic group& purely in terms of group theoretic notions. Swarup’s
guestion aims at one such characterization. One might like stronger criteria, though this
might be over-optimistic. Consider the following conditions:

1. H C G is not quasiconvex.
2. H has infinite height irG.
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3. H hasstrictly infinite heightin G, i.e. there exist infinitely many essentially distinct
conjugateg; Hg; *,i = 1,2,...suchthat, g; Hg; > # 0.
There exists an elemegte G such thag’ ¢ H fori # 0 andn;g' Hg™" # 0.
There exists an elemegite G such thag’ ¢ H fori # 0 andN; g’ H1g~" # ¥ where
Hj is a subgroup off isomorphic to a free product of free groups and surface groups.
6. There exists an elemegite G such thaig’ ¢ H fori # 0 andn; g' Hig~ # ¥ where
H, is aquasiconvexsubgroup ofH isomorphic to a free product of free groups and
surface groups.

ok

Itis clear that6) = (5) = (4) = (3) = (2) = (1) (the last implication follows from
[23]). One would like to know if any of these can be reversed.
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