MAPPING CLASS GROUPS AND INTERPOLATING
COMPLEXES: RANK

MAHAN MJ

ABSTRACT. A family of interpolating graphs C(S, ) of complexity
¢ is constructed for a surface S and —2 < £ < £(5). For £ =
—2,—1,£(S) — 1 these specialize to graphs quasi-isometric to the
marking graph, the pants graph and the curve graph respectively.
We generalize the notion of a hierarchy and Theorems of Brock-
Farb and Behrstock-Minsky to show that the rank of C(S,¢) is ¢,
the largest number of disjoint copies of subsurfaces of complexity
greater than £ that may be embedded in S. The interpolating
graphs C(S,¢) interpolate between the pants graph and the curve
graph.
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1. INTRODUCTION

1.1. Motivation and Statement of Results. Starting with Masur-
Minsky’s result that the curve complex is hyperbolic [14], the coarse
geometry of mapping class groups has attracted much attention. A
motivating scholium is the following.

Research partly supported by a UGC Major Research Project grant.
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The mapping class group behaves like a mon-uniform rank one lattice
away from the peripheral subgroups and like a higher rank non-uniform
lattice at the peripheral subgroups.

Hyperbolicity of the curve complex is an instance of rank one be-
havior. Intersection patterns of peripheral subgroups and resultant
structures similar to the Tits complex illustrate higher rank behavior.
In this paper, we investigate further this interbreeding of rank one and
higher rank behavior.

There are two pieces of motivation behind this paper:

Motivation 1: Higher rank lattices admit a whole family of com-
pactifications, for instance the Borel-Serre, Reduced Borel-Serre and
toroidal compactifications. These are built from configurations of para-
bolic subgroups. (See Borel-Ji [3] for instance.) Of particular relevance
to this paper is the fact that the Furstenberg (or maximal) boundary is
obtained as a quotient space of the Tits boundary by identifying certain
Weyl chambers at infinity to points. A coarse geometric analog of
such a topological quotienting operation is ”coning” (see be-
low). This intuitive idea will play an important role in the construction
of interpolating graphs.

Moduli spaces too admit such compactifications, of which the Deligne-
Mumford compactification is probably the most well-known. If we look
at the universal cover of the compactified moduli space, we find an in-
tersection pattern of boundary strata. This is encoded in the Curve
Complex C(S5) of a surface S (discovered by Harvey [10] from the above-
mentioned analogy with non-uniform lattices of higher rank). Another
such simplicial complex (originally discovered by Hatcher and Thurston
[11] ) is the pants complex P(S). Recently, Brock [4] has shown that the
pants complex is quasi-isometric to Teichmuller space equipped with
the Weil-Petersson metric. The first aim of this paper is to describe a
collection of simplicial complexes interpolating (in a sense to be made
precise) between the curve-complex C(S) and the pants complex P(S).

Motivation 2: Masur and Minsky develop in [15] a detailed combi-
natorial structure of hierarchies to get a handle on quasigeodesics in
MCG(S). We develop in this paper a related hierarchy of spaces where
the bottom level is given by the curve complex and the top level by
the marking complex (quasi-isometric to the the mapping class group).
Thus in a sense again, we describe a collection of simplicial complexes
interpolating between the curve-complex C(S) and the marking com-

plex M(S).
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The basic point of this paper is to introduce the notion of interpo-
lating graphs and make the observation that existing notions of hier-
archies, etc. have a natural generalization to this situation.
Quasi-isometric Models First off, we describe quasi-isometric mod-
els for these interpolating complexes as they are easy to define. Let
['(S) be a Cayley graph of the mapping class group of a surface S of
genus g with n punctures. Let £(S) = 3g — 3 + n = & denote the
complexity of the surface S. Note that I'(S) depends on the choice of
generators and is therefore well-defined up to quasi-isometry.

We now describe a variety of graphs associated with I'(.S). Fix a &
with —2 < ¢ < & — 1.

Consider all essential (i.e. m-injective) subsurfaces S of complexity
less than or equal to £. These fall into finitely many orbits under the
action of the mapping class group, Si,--- Sk, say. Then we may as-
sume (changing the generating set if necessary) that the Cayley graph
Cyvcaesy C T'(S). Here T'ayees,) denotes the Cayley graph of the
subgroup of MCG(S) stabilizing S; (Dehn twists on boundaries al-
lowed). We may further assume for convenience that the S;’s are max-
imal (i.e. no S; is a proper subset of another S;.) We define I'(S, §)
to be the graph obtained from I'(S) by coning (a la Farb [7]) cosets
of sub-mapping class groups MCG(S;), i.e. by introducing a vertex
vgp for each coset gH of the mapping class group H = MCG(S;) for
each of the above S;’s and joining it by an edge of length % to every
element of gH C I'(S). The main theorem of this paper determines the
rank of I'(S,¢). In the next subsection, we shall give a more intrinsic
(geometric) model C(S, €) quasi-isometric to I'(S, £) with the additional
restriction that it is defined naturally. These shall be termed the in-
terpolating graphs or complexity & graphs for the surface S. Note that
¢ = —1 gives a graph quasi-isometric to the pants graph and § = —2
cones off the trivial sub-mapping class groups corresponding to map-
ping class groups of disks, yielding therefore the mapping class group
(or equivalently the marking graph).

Let r¢ denote the maximum number of disjoint subsurfaces of com-
plexity (£ + 1) that can be embedded in S. Then the main theorem of
this paper states:

Theorem 2.12 : The rank of the interpolating graph C(S,§) of com-
plexity & (> 0) or its quasi-isometric model I'(S, €) is re(S).

Once we set up the framework, the proof is a re-working of that due
to Brock-Farb [5] and Behrstock-Minsky [2]. In the final subsection of
this paper, we shall draw a conjectural picture of the interconnections
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between hierarchies, rank and interpolating graphs. One interesting
fallout is the following.

Conjecture: Rank one implies Hyperbolic
If for £ > 0, r¢(S) = 1is C(S, §) a hyperbolic metric space?

1.2. Complexes Associated to the Mapping Class Group. In
this subsection, we describe the motivating examples: the curve-graph,
the pants graph and the marking graph. We then proceed to give the
promised description of interpolating (or complexity &) graphs.

Curve graph

Case 1: £(5) > 2

The curve graph of S, denoted C(S) is a graph with

1) vertices corresponding to nontrivial homotopy classes of non-peripheral,
simple closed curves on S

2) edges corresponding to pairs of (homotopically distinct) simple closed
curves which can be realized disjointly on S.

Case 2: {(9) =1

Then either g = n = 1 ( S is a one-holed torus ) or ¢ = 0,n = 4
(S is a 4-holed sphere). The vertex set is as in Case 1 above. The
edge set consists of pairs of curves which realize the minimal possible
intersection on S (1 for the one-holed torus, 2 for the 4-holed sphere).

Case 3: £(5)=0
In this case, S is the 3-holed sphere with empty curve-complex as the
vertex set is empty.

Case 4: £(5) =—1

In this case, S is the 2-holed sphere, i.e. an annulus. Fix a point in
each boundary component.

1) Vertices are (homotopy classes of) arcs connecting the give bound-
ary points up to homotopy rel endpoints.

2)Edges are pairs of non-intersecting arcs.

Pants Graph
The pants graph P(S) of S is a graph with

(1) Vertices consisting of pants decompositions of S.

(2) Edges consist of pants decompositions that agree on all but one
curve, and further, those curves differ by an edge in the curve
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complex of the complexity one subsurface (complementary to
the rest of the curves) in which they lie.

Marking Graph

We consider pants decompositions u of S. (We may identify p with a
maximal simplex in C(S)). The set of underlying curves shall be de-
noted base (p). The transversals 7, of p consist of one curve each for
each component of base (i), intersecting it transversely, non-trivially
and minimally (i.e. with minimum non-zero number of intersections.
This number is one or two). A pair ( base (p),7,) of pants decomposi-
tions and transversals shall be referred to as a marking.

A marking (base (1), 7,) is clean, complete if,
1) for each v € base (p1), the transversal curve ¢, to v is disjoint from
the rest of base (p).
2) Each pair (v,t,) fills a non-annular surface W satisfying £(W) =1
and for which dew)(7,t) = 1.

The marking graph or marking complex, M(S) is defined as follows.
Vertices correspond to clean complete markings. The edges of M (S)
are of two types (See Masur-Minsky [15] and also Behrstock-Minsky
2].):

Twist: Replace a transversal curve by another obtained by performing
a full Dehn twist (resp. half-twist) along the associated base curve,
if the transversal curve intersects the base curve in one (resp. two)
points.

Flip: Exchange the roles of a base curve and its transversal curve.
Perform surgery if necessary to reinstate disjointness. (Note that after
switching base and transversal, the disjointness requirement on the
transversals may be violated. However, Masur-Minsky show in [15]
that one can surger the new transversal to obtain one that does satisfy
the disjointness requirement. They further show that only a finite
(uniformly bounded) number of flip moves are possible. )

Lemma 1.1. Masur-Minsky [15] M(S) is quasi-isometric to the
mapping class group of S.

Remark 1.2. [15] Masur and Minsky note that the pants graph is
exactly what remains of the marking complex when annuli (and hence
transverse curves) are ignored.

Interpolating Graphs

We are now in a position to define the (natural or) geometric models
that are the main object of study in this paper.
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Definition 1.3. An interpolating graph or complexity & graph C(S, )
consists of the following.

1) vertices are pants decompositions (or mazximal simplices in the curve
complez)

2) edges are of two types:

a) edges of the pants graph of S

b) additional edges connecting pairs of pants decompositions agreeing
on the complement of a (connected) subsurface of complezity less than
or equal to &

Note that edges of type (2b) above include edges of type (2a) for
¢ > 1. However, in order to include the pants graph as a starting
point, we have mentioned edges of type (2a) separately.

As in [15], the same definitions apply to essential (possibly discon-

n

nected) subsurfaces of S. For a disconnected surface W = LI W,
C(W, &) = [Tiz, C(W5, §).

Remark 1.4. We note that the interpolating complexes C(.5, ) may
be regarded as (quasi-isometric models) unifying the 3 types of com-
plexes given above:

1) £ = & —1: (denoting £(S) by &.) Subsurfaces where moves are con-
sidered are (arbitrary) proper subsurfaces. This gives a model quasi-
isometric to the curve-graph.

To see this, note that all proper pants subgraphs (i.e. pants graphs
of all proper essential subsurfaces) have diameter one in C(S, &) here.
Recall (Remark 1.2) that the pants graph is exactly what remains of
the marking complex when annuli (and hence transverse curves) are
ignored, or equivalently, when all moves on annuli are at distance one
from each other. Thus C(S,€) is quasi-isometric to what one gets from
the marking complex by first forgetting annuli and then all subsurfaces
of complexity &. This is equivalent to coning cosets of all proper map-
ping class subgroups (i.e. mapping class groups of all proper essential
subsurfaces) of the mapping class group of S, which is quasi-isometric
to the curve complex C(S) of S.

An explicit quasi-isometry from C(S) to C(S,£) can be set up by send-
ing any curve ¢ € C(S) to some (any) pants decomposition containing
(. There is a bounded amount of ambiguity in this as the set of pants
decomposition containing ¢ has diameter one in C(S5,€).

2) ¢ = —1: This coincides exactly with the definition of the pants
graph. There are no edges of type (2b) of Definition 1.3 (vacuously).
We mention this case separately to underscore the point that the pants
graph is what one gets when annuli (and hence transverse curves) are
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ignored.

3) £ = —2: Here, moves are restricted to surfaces of complexity —2, i.e.
disks. To correctly interpret this case, the curve graph of the annulus
has to be resurrected and re-instated over the pants graph in order
to get the marking graph. More precisely, if we want to incorporate
the marking graph in our collection, we should define our interpolat-
ing complex starting with the marking complex and then adjoin edges
for moves occurring in subsurfaces of complexity < . i.e. we should
redefine C(S, €) as a graph whose vertex set consists of elements of the
marking graph, and edges between markings coinciding on the com-
plement of a subsurface of complexity < &. (This takes care of the
marking complex; but in all subsequent discussions, it would make the
exposition more awkward. Once we reach the pants graph, the mark-
ing is forgotten in any case - hence the definition here. We include the
marking graph here largely for completeness and to indicate that all
the known graphs associated to the mapping class group are included
in this discussion.

Remark 1.5. Given the definition above, it is easy to see that (for
some, hence any, finite generating set) I'(S,€) is quasi-isometric to
C(S,).

In particular, (up to quasi-isometry) coning Dehn twists gives the
pants complex and coning all proper sub-mapping class groups the curve
complex (see [14] ). Not coning anything (or coning only the trivial sub-
mapping class group for disks) gives the marking complex.

Remark 1.6. A useful heuristic is:
The complexity & graph is what remains of the marking complex when
surfaces of complexity < & are ignored.

1.3. Projections, Hierarchies, Distance Formulae. In this sub-
section, we summarize some of the foundational work of Masur-Minsky
[14] [15], followed by more recent work of Behrstock-Minsky [2]. An
essential tool for the next section is Theorem 1.11 giving a distance
formula for interpolating complexes.

Theorem 1.7. Masur-Minsky [14] For any surface S, the complex
of curves C(S) is an infinite diameter §-hyperbolic space (as long as it
is non-empty).

Definition 1.8. Masur-Minsky [15] Given a subsurface W C S, a
subsurface projection is a map my : C(S) — 2°V) defined as follows.

Case 1: W is not an annulus.

Given any curve v € C(S) intersecting Y essentially, we define my (7y)
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to be the collection of curves (vertices) in C(W) obtained by surgering
the essential arcs of yNW along OW to obtain simple closed curves in
W.

Case 2: W is an annulus.

Here, the curve-graph is assumed to be that for the compactified cover
W of S corresponding to the subgroup m (W). Note that W can be
identified with the annulus. If v intersects W_transversely and essen-
tially, we lift v to an arc crossing the annulus W and let this be my (7).
If v is a core curve of W or fails to intersect it, we let my () = 0.

deow)(p, v) will be used as a short form for degw)(mw (1), 7w (v)).

Next, for any p € C(S,€) and any non-annular W C S the above
projection map induces my : C(S, &) — 26V, This map is simply the
union over v € base(u) of the usual projections 7y (7). As in the case
of curve complex projections, we write dew) (11, V) for dew (mowy (1), Ty (v))-
The distance in the interpolating graph of complexity £ shall be denoted
by d&.

Hierarchies
As summarized in [2], hierarchy paths are quasigeodesics in M (S) with
constants depending only on the topological type of S such that

(1) any two points u, v € M(S) are connected by at least one hi-
erarchy path . The base geodesic of v in C(5) is 3, i.e. B is a
geodesic in C(S) joining base (1) to base (v).

(2) There is a monotonic map v : v — [3, such that v(7,) is a vertex
in base (,) for every =, in 7.

(3) Subsurfaces of S which “separate” p from v in a significant way

must play a role in the hierarchy paths from p to v in the fol-
lowing sense:
There exists a constant My = My(S) such that, if W is an
essential subsurface of S and deqw)(p, ) > Ms, then for any hi-
erarchy path v connecting p to v, there exists a marking ~, in y
with [0W] C base (7,,), where [0W] denotes the free homotopy
class of the multicurve represented by the boundary OW of W.
Furthermore there exists a vertex v in the geodesic 3 shadowed
by ~ such that W C S\ v. This property follows directly from
Lemma 6.2 of [15].

Complexity ¢ Partial Hierarchies
The notion of a partial hierarchy was introduced by Masur and Minsky
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in [15], Sec 4.2, as a hierarchy minus the restriction that every compo-
nent domain must support a tight geodesic. Analogously we may define
a complexity & partial hierarchy as a collection H of tight geodesics in
S satisfying the following;:

(1) There is a main geodesic gy with domain S and initial and
terminal markings I(H), T'(H) respectively.

(2) If b,f € Hand Y C S is a subsurface of complezity greater
than & such that Y is backward (resp. forward) subordinate to
b (resp. f), then H contains a unique tight geodesic k such that
D(k) =Y and k is backward (resp. forward) subordinate to b
(resp. f). This is the only point of difference with a hierarchy.

(3) For every geodesic k in H other than gy, there are b, f € H
such that k is backward (resp. forward) subordinate to b (resp.

f)-

As in the case of hierarchies, any two points p,v € C(S,&) are
connected by at least one hierarchy path . Also, one can define
deow,e)(p, V) as a generalization of dewy(u,v) of [15] by taking pro-
jections of C(W, &) to C(W,&). Then Lemma 6.2 of [15] generalizes to:
There exists a constant My = My(S) such that, if W is an essential
subsurface of S and deqw,e)(p, V) > My (in particular (W) > £), then
for any complexity & hierarchy path + connecting u to v, there exists
a marking 7, in v with [0W] C base (,). Furthermore there exists a
vertex v in the geodesic 3 shadowed by v such that W C S\ v. Further
complexity & hierarchy paths are quasigeodesics in C(W,¢). Similar
generalizations hold for Lemma 6.6 (Common Links) and Lemma 6.7
(Slice Comparison) of [15].

Distance Formulae

Masur—Minsky prove the following distance formula for distances in
the marking complex:

Theorem 1.9. Masur—Minsky [15] If u,v € M(S), then there exists
a constant K(S), depending only on S, such that for each K > K(S)
there exists a > 1 and b > 0 for which:

dms) (s V) Rap Z T fredew)(my (1), v (v))
WCs

Here the threshold function T fx N is defined to be N if N > K and
0 else. Also we write f ~,, gif 1f —b<g <af+b.
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In the final section of [14], Masur and Minsky indicate generalizations
of their main results to the pants complexes. This is explicated in
2], where, Behrstock and Minsky show that this yields the following
formula for distances in the pants complex. They use Remark 1.2 to
forget projections to annuli.

Theorem 1.10. Behrstock-Minsky [2| If u,v € P(S), then there
exists a constant K(S), depending only on the topological type of S,
such that for each K > K(S) there exists a > 1 and b > 0 for which:

dp(g) (,u, I/) ~ab Z TdeC(Y)<7TY<:u)7 7T-Y(V))

non—annular YCS

Exactly analogously, we state the generalization of Theorem 1.10
above to interpolating graphs C(S, £). Here, we disregard subsurfaces of
complexity < & as per Remark 1.6. The proof follows that of Theorems
1.9 and 1.10 above.

Theorem 1.11. If p,v € C(S,€), there exists a constant K(S), de-
pending only on the topology of S, such that for each K > K(S) there
exists a > 1 and b > 0 for which:

de (11, V) ~ap Z T frdew)(my (1), 7y (v))
WCSE(W)>¢

2. RANK OF C(S,¢)

2.1. Lower Bound on Rank of C(5,¢). In this section, we generalize
a result of Brock-Farb [5] to the case of interpolating graphs. The proof
is virtually an exact replica modulo two extra ingredients. First, the
observation in Remark 1.4 that C(W,¢) is quasi-isometric to the curve
complex C(W) if &(W) = £ + 1. The other ingredient is Theorem 1.11
which generalizes Theorem 1.9 and Theorem 1.10.

Recall that a quasifiat in a metric space X is a quasi-isometric em-
bedding of Euclidean n-space in X; also, (Gromov [9] Section 6.2) that
the rank of a metric space X is the maximal dimension n of a quasi-flat
in X.

As in [5], we shall say that S decomposes into essential subsurfaces
Ry, ..., Ry if each R; is essential and if Ry, ..., R, may be modified by
an isotopy so that they are pairwise disjoint and S — Ry U ... U Ry is
a collection of open annular neighborhoods of simple closed curves on
S, each isotopic to a boundary component of some R;.
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Fix £ € N. Let 7¢(S) denote the maximum number k such that S
decomposes into essential subsurfaces Ry, ..., Rg, T such that each R;,
j=1,...,khas {(R;) =&+ 1 and T is either empty or has £(7T") < ¢.

Theorem 2.1. The graph C(S,§) contains a quasi-flat of dimension
re(:S).

Proof: The proof is essentially a reworking in the present context
of complexity ¢ graphs of Theorem 4.2 of [5] by Brock and Farb. By
definition of r, = r(say), the surface S decomposes into subsurfaces

Ry, ..., Rys), T

so that {(R;) = £ + 1 for each j and either T is empty or £(7") < &.

We now construct a quasi-isometric embedding of the Cayley graph
for Z" with the standard generators into the complex C(S,£).

Let {¢;} be a pants decomposition of R; and v a pants decomposition
of T. Along with the core curves of the open annuli in S — Ry U ... U
R, UT, the curves base(c;) and base(y) form a pants decomposition
of S.

We let g;: Z — C(Rj,€) be a (bi-infinite) geodesic so that g;(0) = ;.
Since C(R;,§) is quasi-isometric to C(R;) (Remark 1.4 ) we might as
well assume that ¢g;: Z — C(R;) is a quasigeodesic (though strictly
speaking, we should compose g; with the quasi-isometry between C(R;, )
and C(R;)). Note that the quasi-isometry constants depend only on R;
and hence only on the topology of S. Further, we identify C(R;, &) and
C(R;) via these uniform quasi-isometries. For the rest of this proof,
we shall assume that C(R;,&) = C(R;) rather than just being quasi-
isometric to it.

We define the embedding Q: Z" — C(95,€) as:
Q(klv R kT‘) = (gl(kl)’ s 7g7“(k:7”))

Let k = (k1,...,k,) and [ = ({1,...,1,). Since elementary moves in
the pants graph and hence in C(S,¢) along g; can be made indepen-
dently in each R;, we have

Ae(QUR), QD)) < DIy = sl = dar (K, 1)

which shows that @) is 1-Lipschitz.
Given Rj, the subsurface projection g, (Q(k)) to R; simply picks
out the curve g;(k;) so we have

mr, (Q(K)) = g;(k)).
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Thus, the projection distance

dr,(Q(K), QD) = dr,(g;(k;), g;(1;)) = |k; — 1]
since we are identifying C(R;, &) and C(R;).
By Theorem 1.11, there exists Ky = Ky(S) so that for all K > K

-,

there exist constants a and b so that if we let P = Q(k) and Pr= Q1)
then we have the inequality

> dy (P, Pp) < ade(Py, Pp) + b.
YCSE(Y)>E
deyy (my (Pg),my (Pr)>M

But the left-hand-side of the inequality is bounded below by

max |k; — ;] > M

j r
Thus, () is a quasi-isometric embedding. [
2.2. Upper Bound on Rank of C(5,&). In this section, we generalize
a recent result of Behrstock-Minsky [2] to the context of interpolating
graphs. The proof is again virtually an exact replica. As we shall be
following [2] closely, we shall indicate only the steps in the argument
and the necessary modifications.

Step 1: Coarse Product Regions in C(S5,¢)

First, we describe the geometry of the set of pants decompositions in
C(S,€) containing a prescribed set of base curves. Equivalently, in the
coned-off mapping class group I'(S,¢), such a set corresponds to the
coned off coset of the stabilizer of a simplex in the complex of curves.
These regions coarsely decompose as products as in [2].

Let A be a multicurve in S. Partition S into subsurfaces isotopic
to complementary components of A. Let o(A) denote the subsurface
obtained by discarding the components homeomorphic to Sy 3. This is
called the partition of A.

Theorem 1.11 gives the following generalization of Lemma 2.1 of
Behrstock-Minsky [2].

Lemma 2.2. Let Q(A) C C(S,€) denote the set of pants decomposi-
tions whose bases contain A. Then, sending each (family of base curves
of a) pants decomposition to the restrictions to elements of o(A) we 0b-
tain a quasi-isometric identification

o)~ [ cwe
Ueco(A)E(U)>¢

with uniform constants.
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Step 2: Ultralimits of Q(A)

We refer the reader to [2] Section 1.4 for the necessary background on
ultralimits and asymptotic cones. C¥(S,¢) will denote an asymptotic
cone of C(S,&) and pg a preferred base-point. Let {s,}, € N be a
monotonic sequence of positive numbers such that s, — oo.

Definition 2.3. For a sequence A = {A,} such that lim,, J-dg (0, Q(An)) <
00, define Q“(A) C C¥(S, &) to be the ultralimit of Q(A,,), with metrics
rescaled by 1/s,,.

Also, since the topological type of o(4,,) is w-a.e. constant, we may
define o(A) to be the w-limit of 0(A,)’s. Note also that the complex-
ities £(Up;) are w-a.e. constant for components U,,; of U,,.

Then Lemma 2.2 and the fact that ultralimits commute with finite
products gives the following generalization of Equation 2.2 of [2]:

Lemma 2.4. There is a uniform bi-Lipschitz identification

(a2 [ w9,
Uco(A)e(U)y>¢

Step 3: R-trees and Product Regions in Asymptotic Cones

The following definition is adapted from Behrstock [1] and Behrstock-
Minsky [2].

Definition 2.5. Let W = (W,,) be a sequence of connected subsurfaces
(considered mod w) and = € C*(W,§), Then Fyy 4. C C*(W,§) is
defined as:

Fyw e = {yeC*(W,§): dcw(W,g)(w’ y) =0 for all proper subsets U C W'}.

The next theorem is a version of a theorem due to Behrstock [1]
adapted to our context of interpolation graphs.

Theorem 2.6. Let W = (W,,) be a sequence of connected proper sub-
surfaces of S, and ® € C*(W,§). Any two points y,z € Fyy . . are
connected by a unique embedded path in C*(W ,§), and this path lies in
FW,:I:' In particular, FW, T 1s an R-tree.

Next, for W and x as above, separating product regionsin C*(W ),
denoted Py 4 ., are subsets of Q“(0W) defined as follows:
In the bi-Lipschitz product structure on Q“(OW) (Lemma 2.4), W is
a member of o(OW'). Therefore, C*(W ) appears as a factor. Define
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Pyy ¢ to be the subset of Q“(OW ,¢) consisting of points whose co-
ordlnate in the C*(W,¢) factor lies in Fyy, ;.. The following Lemma
generalizes Lemma 3.3 of [2].

Lemma 2.7. There exists a bi-Lipschitz identification of Py o ¢ with
Fw e ¥ C(W<¢).

Step 4: Global Projection Maps

The following Theorem generalizes Theorem 3.5 of [2] and gives a global
projection map for Fyy .. ¢

Theorem 2.8. Given x € C¥(W ,§), there is a continuous map

D =Py £ C(S.8) = Fyy 1
with these properties:
(1) @ restricted to Pyy ¢ 15 projection to the first factor in the
product structure Py 4. . = Fyy o . x C*(W*, ).
(2) @ is locally constant in the complement of Py T

Step 5: Separating Sets

The sets Py ze S W e ¥ C¥(W* &) give rise to separating sets in
C¥(S,¢) as in Theorem 3.6 of 2].

Theorem 2.9. There is a family L of closed subsets of C¥(S,€) such
that any two points in C¥(S, &) are separated by some L € L. Moreover
each L € L is isometric to C¥(Z,§), where Z is some proper essential
(not necessarily connected) subsurface of S, with r(Z) < r(S).

Step 6: Inductive Dimension

Using the separating sets, we complete the argument as in Theorem
4.1 of [2].

Let ind, Ind and dim denote small inductive dimension, ind, large
inductive dimension, and covering (or topological) dimension respec-
tively. .

Let ind(X) denote the supremum of ind (X" ) over all locally-compact
subsets X’ C X; similarly Ind and dim. Then using Theorem 2.9 above
the argument by Behrstock and Minsky yields

Theorem 2.10. ind(C¥(S,¢)) = Ind(C¥(S,£)) = dim(C¥(S,¢)) =
re(S).
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Since a quasiflat of dimension r would yield a dimension r locally
compact subset of C¥(S, &), Theorem 2.10 immediately gives:

Corollary 2.11. If the graph C(S, &) contains a quasi-flat of dimension
r, then r < re(S).

Combining Theorem 2.1 and Corollary 2.11 we obtain the main the-
orem of this paper:

Theorem 2.12. The rank of the interpolating graph C(S,§) of com-
plexity & is re(S) for &> 0.

2.3. Problems. A number of (hopefully interesting) issues arise from
the notion of interpolating graphs of complexity &.

Conjecture 1: Rank one implies Hyperbolic
If for £ > 0, r¢(S) = 1is C(S, §) a hyperbolic metric space?
This is motivated by

(1) the observation (Remark 1.4 ) that C(S,£(S) — 1) is quasi-
isometric to the curve graph and that in this case, r¢(g)—1 is
clearly one (all of S is embedded in S by the identity map).

(2) Next, for £ = —2, r¢ = 1 means that the maximum number of
disjoint homotopically distinct annuli (connected subsurface of
complexity (—2+ 1 = 1)) that S admits is precisely one. Then
€(S) = 1 and it is precisely these cases that have hyperbolic
marking complex C(S, —2).

(3) £ = —1 corresponds to the pants graph. This case is special
and here the appropriate hypothesis would be 7¢(S) = 1 be-
cause Sy 3 has trivial curve complex; hence in order to get an
infinite diameter curve complex, we have to step up £ = —1 by 2
and then calculate the maximum number of disjoint embedded
subsurfaces of complexity > 1. Brock and Farb [5] show that
the pants graph is hyperbolic iff £(S) = 2 and each of the two
possibilities (5-holed sphere and two-holed torus) admit exactly
one (disjoint) subsurface of complexity 1.

(4) € =1, &(S) = 3. Recent work of Brock and Masur [6] is closely
related to this case. Brock and Masur show that the pants
graph P(S) for £(S) = 3 is strongly hyperbolic relative to cer-
tain sets X, C P(S) consisting of pants decompositions that
contain . This is equivalent to coning off the (products of)
pants subcomplexes of subsurfaces ¥ where £(X) = 1.

Thus the above Conjecture would serve to unify all the above cases.
A similar conjecture has been formulated by Saul Schleimer in [18]
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Problem 2 Is the automorphism group of the interpolating graph
commensurable with the mapping class group MCG(S) ?

This question is a special case of Ivanov’s metaconjecture [12] that
every object naturally associated to a surface S and having a suciently
rich structure has MCG(S) as its groups of automorphisms.

One other piece of motivation is Margalit’s result [13] reducing the
automorphism group of the pants graph to that of the curve complex

C(8S).
Problem 3 There is a hierarchy

where the first term is the marking graph, the second the pants graph,
the last the curve graph.

The map C(S,£) — C(S,£ + 1) is given by coning a collection of
subsets corresponding to curve graphs of subsurfaces of complexity & +
1. Thus the last term is hyperbolic and the preimages of points at each
stage are hyperbolic by Masur-Minsky’s Theorem 1.7. This raises the
hope that the hierarchy paths constructed by Masur and Minsky in [15]
may alternately be inductively constructed in a bottom-up approach
from the curve complex. Further, at each stage we should obtain a
hierarchy path in the interpolating graph C(S5,¢).

Problem 4 (independently due to Yair Minsky [16]. See also Question
10, due to Wise and Behrstock in the Geometric Group Theory Prob-
lems wiki, Section on Relative Hyperbolicity.) Finally, there ought to be
a general geometric structure lying between strong and weak relative
hyperbolicity of which the mapping class group is a special case. Let
us call this putative structure graded relative hyperbolicity (terminology
independently due to Yair Minsky [16] ) . A possible definition would
be the existence of a sequence

Xn_>Xn—1_)"'X1

of spaces and maps where at the ith stage one cones off a collection
C; of (uniformly) quasiconvex hyperbolic subsets of X;. Further, we
demand that X; be hyperbolic.

A toy example is given by X = X,, = I'¢ the Cayley graph of a
hyperbolic group G. H is assumed to be a quasiconvex subgroup of
height n (see Gitik-Mitra-Rips-Sageev [8] for instance). In passing from
X, to X;_1, we cone all cosets of ﬂjzl...i_lnggj_l for essentially distinct
cosets g;H. In this particular case, the role of hierarchy paths might
be taken by electro-ambient quasigeodesics introduced by the author in
[17].
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