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Abstract

The fundamental group of a closed surface of genus at least two admits
a natural action on the curve complex of the surface with one puncture.
Combining ideas from previous work of Kent-Leininger-Schleimer and Mi-
tra, we construct a Universal Cannon-Thurston map from a subset of the
circle at infinity for the closed surface group onto the boundary of the
curve complex of the once-punctured surface. Further, we show that the
boundary of this curve complex is locally path-connected.
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4 Local path connectivity 38

1 Introduction

1.1 Statement of Results

Fix a hyperbolic metric on a closed surface S of genus at least 2 identifying
the universal cover with the hyperbolic plane p : H → S. Fix a basepoint
z ∈ S and a point z̃ ⊂ p−1(z) defining an isomorphism between the group
π1(S, z) of homotopy classes of loops based at z and π1(S) the group of covering
transformations of p : H→ S.

We will also regard the basepoint z ∈ S as a marked point on S. As such,
we write (S, z) for the surface S with the marked point z (we could also work
with the punctured surface S − {z}, though a marked point is more convenient
for us).

Let C(S) and C(S, z) denote the curve complexes of S and (S, z) respectively,
and let Π : C(S, z) → C(S) denote the forgetful projection. From [KLS06], the
fiber over v ∈ C0(S) is π1(S)–equivariantly isomorphic to the Bass-Serre tree Tv

corresponding to v. We define a map

Φ : C(S)×H→ C(S, z)

sending {v} × H to Tv
∼= Π−1(v) ⊂ C(S, z) in a π1(S)–equivariant way then

extending over simplices using barycentric coordinates (see Section 2.2).
Given v ∈ C0(S), let Φv denote the restriction to H ∼= {v} ×H

Φv : H→ C(S, z).

As we will see in Section 3, there are certain rays in H whose image has
finite diameter in C(S, z) (namely those that eventually project to lie in a proper
essential subsurface of S). The remaining rays define a subset A∞ ⊂ ∂∞H (of
full Lebesgue measure). Our first main theorem is the following.

Theorem 1.1 (Universal Cannon–Thurston map). For any v ∈ C0(S), the map
Φv : H→ C(S, z) has a continuous π1(S)–equivariant extension

Φ
v

: H ∪ A∞ → C(S, z).

Moreover, ∂Φv = Φ
v|A∞ is a quotient map onto ∂∞C(S, z) obtained by identi-

fying the endpoints of each leaf and vertices of each complementary polygon of
the lifts of every ending lamination on S.

We recall that a Cannon–Thurston map was constructed in the case that the
Kleinian group is the fiber subgroup of a closed hyperbolic 3–manifold fibering
over the circle by Cannon–Thurston [CT07], then extended to simply degener-
ate, bounded geometry Kleinian closed surface groups by Minsky [Min92], and
proven in the general simply degenerate case by the second author [Mj05],[Mj06].
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In all these cases, one produces a quotient map from the circle ∂∞H onto the
limit set of the Kleinian group Γ. The quotient is formed by identifying the
endpoints of each leaf and the vertices of each polygon of the lift of the ending
laminations for Γ (this is either one or two ending laminations depending on
whether the group is singly or doubly degenerate).

The map ∂Φv is universal in that it simultaneously identifies the endpoints
of each leaf and the vertices of each complementary polygon of the lifts of every
ending lamination on S. We remark that the restriction to A∞ is necessary to
get a reasonable quotient: the quotient space of the entire circle ∂∞H identifying
this same set of points is a non-Hausdorff space.

Theorem 1.1 and the techniques of its proof are ingredients in our second
main theorem.

Theorem 1.2. The Gromov boundary ∂∞C(S, z) is path connected and locally
path connected.

We remark that A∞ is noncompact and totally disconnected, so unlike the
proof of local connectivity in the Kleinian group setting, Theorem 1.2 does not
follow immediately from Theorem 1.1.

This strengthens the work of the first and third author in [LS08] in a special
case: in [LS08] it was shown that the boundary of the curve complex is connected
for surfaces of genus at least 2 with any nonzero number of punctures and closed
surfaces of genus at least 4. The boundary of the complex of curves describes the
space of simply degenerate Kleinian groups as explained in [LS08]. These results
seem to be the first ones providing some information about the topology of the
boundary of the curve complex, a general problem posed by Minsky in his 2006
I.C.M. address. Gabai has now given a proof of Theorem 1.2 for all hyperbolic
surfaces Σ, except the 1-punctured torus and the 3− and 4-punctured sphere,
where it is known not to be true.

Acknowledgements. The authors wish to thank the Mathematical Sci-
ences Research Institute for its hospitality during the Fall of 2007 where this
work was begun. We would also like to thank the other participants of the
two programs, Kleinian Groups and Teichmüller Theory and Geometric Group
Theory, for providing a mathematically stimulating and lively atmosphere.

1.2 Notation and conventions

1.2.1 Laminations

For a discussion of laminations, we refer the reader to [PH92], [CEG87], [Bon88],
[Thu80], [CB87].

A measured lamination on S is a lamination with a transverse measure of full
support. The measured laminations on S will be denoted λ with the support—
the underlying lamination—written |λ|. We require that all our laminations
be essential, which can be taken to mean that the leaves lift to uniform quasi-
geodesics in the universal cover.
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If a is an arc or curve in S and λ a measured lamination, we write λ(a) =∫
a
dλ for the total variation of λ along a. We say that a is transverse to λ if a is

transverse to every leaf of |λ|. If v is the isotopy class of a simple closed curve,
then we write

i(v, λ) = inf
α∈v

λ(α)

for the intersection number of v with λ, where α varies over representatives of
the isotopy class v.

Two measured laminations λ0 and λ1 are measure equivalent if for every
isotopy class of simple closed curve v, i(v, λ0) = i(v, λ1). Every measured lami-
nation is equivalent to a unique measured geodesic lamination (with respect to
the fixed hyperbolic structure on S), that is a measured lamination λ for which
|λ| is a geodesic lamination. Given a measured lamination λ, we let λ̂ denote
the measure equivalent measured geodesic lamination. We will describe a pre-
ferred choice of representative of the measure class of a measured lamination in
Section 2 below.

We similarly define measured laminations on (S, z) as compactly supported
measured laminations on S − {z}. These are generally not realized as geodesic
laminations for a hyperbolic metric on S − {z}, though any one is measure
equivalent to a measured geodesic lamination for a complete hyperbolic metric
on S − {z}.

The spaces of (measure classes of) measured laminations will be denoted by
ML(S) and ML(S, z). The topology on ML is the weakest topology for which
λ 7→ i(v, λ) is continuous for every simple closed curve v. Scaling the measures
we obtain an action of R+ on ML(S)−{0} and ML(S, z)−{0}, and we denote
the quotient spaces PML(S) and PML(S, z), respectively.

A particularly important subspace for us is the space of filling laminations
which we denote FL. These are the measure classes of measured laminations λ
for which all complementary regions of |λ| are simply connected (in S−{z}, there
is also one region with cyclic fundamental group generated by the peripheral
loop). The quotient of FL by forgetting the measures will be denoted EL and
is the space of ending laminations.

Train tracks provide another useful tool for describing measured laminations.
See [Thu80] and [PH92] for a detailed discussion of train tracks and their relation
to laminations. We recall some of the most relevant information.

A lamination L is carried by a train track τ if there is a map f : S → S
homotopic to the identity with f(L) ⊂ τ so that for every leaf ` of L the
restriction of f to ` is an immersion. If λ is a measured lamination carried by
a train track τ , then the transverse measure defines weights on the branches
of τ satisfying the switch condition—the sum of the weights on the incoming
branches equals the sum on the outgoing branches. Moreover, any assignment
of nonnegative weights to the branches of a train track satisfying the switch
condition uniquely determines an element ofML. Given a train track τ carrying
λ, we write τ(λ) to denote the train track τ together with the weights defined
by λ.
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The following gives a useful tool for working with the topology on ML (see
Theorem 2.7.4 of [PH92]). If {λn}∪{λ} ⊂ ML is any sequence and τ is a train
track for which |λ| and each |λn| is carried by τ , then λn → λ if and only if the
weights on each branch of τ defined by λn converge to those defined by λ.

A well known construction of train tracks carrying a given lamination which
will be useful for us is the following (see [PH92], Theorem 1.6.5, for example).
Let L be a geodesic lamination on S, and ε > 0 very small so that the ε–
neighborhood Nε(L) admits a foliation transverse to L. The leaves of this
foliation are called ties. Taking the quotient by collapsing each tie to a point
produces a train track τ on S; see Figure 1.

Figure 1: A train track τ constructed from some Nε(L).

We can view Nε(L) as being built from finitely many foliated rectangles glued
together along arcs of ties in the boundary of the rectangle. In the collapse, each
rectangle R projects to a branch βR of τ . When τ is trivalent, we may assume
that τ ⊂ S is contained in Nε(L) with each branch βR contained in R.

Suppose now that λ is any measured lamination with |λ| ⊂ Nε(L), and |λ|
transverse to the ties. If R is a rectangle and a a tie in R, then the weight on
the branch βR associated to R which λ defines is given by λ(a) =

∫
a
dλ; see

Figure 2.

Figure 2: |λ| in R and the weight on βR determined by λ.

a

|λ|

R
βR

λ(a)
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1.2.2 Mapping Class Groups

Recall that we have fixed a hyperbolic structure on S as well as a locally iso-
metric universal covering p : H → S and basepoint z̃ ∈ p−1(z) determining
an isomorphism from the covering group π1(S) of p : H → S to π1(S, z), the
group of homotopy classes of based loops. All of this is considered fixed for the
remainder of the paper.

The mapping class group of S is the group Mod(S) = π0(Diff+(S)), where
Diff+(S) is the group of orientation preserving diffeomorphisms of S. We define
Mod(S, z) to be π0(Diff+(S, z)), where Diff+(S, z) is the group of orientation
preserving diffeomorphisms of S that fix z.

The evaluation map
ev : Diff+(S) → S

given by ev(f) = f(z) defines a locally trivial principal fiber bundle

Diff+(S, z) → Diff+(S) → S.

A theorem of Earle and Eells [EE69] says that the component containing the
identity Diff0(S) is contractible, and so the long exact sequence of a fibration
gives rise to J. Birman’s exact sequence [Bir69, Bir74]

1 → π1(S) → Mod(S, z) → Mod(S) → 1.

We elaborate briefly on the injection π1(S) → Mod(S, z) in Birman’s exact
sequence. Let

DiffB(S, z) = Diff0(S) ∩Diff+(S, z).

The long exact sequence of homotopy group identifies π1(S) ∼= π0(DiffB(S, z)).
This isomorphism is induced by a homomorphism

ev∗ : DiffB(S, z) → π1(S)

given by ev∗(h) = [ev(ht)] where ht, t ∈ [0, 1], is a path in Diff0(S) from h to
IdS , and [ev(ht)] is the based homotopy class of ev(ht) = ht(z), t ∈ [0, 1]. To
see that this is a homomorphism, suppose h, h′ ∈ DiffB(S, z) and ht and h′t are
paths from h and h′ respectively to IdS . Write γ(t) = ht(z) and γ′(t) = h′t(z).
There is a path Ht from h ◦ h′ to IdS given as

Ht =
{

h2t ◦ h′ for t ∈ [0, 1/2]
h′2t−1 for t ∈ [1/2, 1]

Then Ht(z) is the path obtained by first traversing γ then γ′, while H0 = h◦h′.
So, ev∗(h ◦ h′) = γγ′, and ev∗ is the required homomorphism.

Given h ∈ DiffB(S, z), we will write σh for a loop (or the homotopy class)
representing ev∗(h). Similarly, we will let hσ denote the mapping class (or a
representative homeomorphism) determined by σ ∈ π1(S). When convenient,
we will simply identify π1(S) with a subgroup of Mod(S, z).
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1.2.3 Curve Complexes

A closed curve in S is essential if it is homotopically nontrivial in S. We will
refer to a closed curve in S−{z} simply as a closed curve in (S, z), and will say
it is essential if it is homotopically nontrivial and nonperipheral in S − {z}.
Essential simple closed curves in (S, z) are isotopic if and only if they are isotopic
in S − {z}.

Let C(S) and C(S, z) denote the curve complexes of S and (S, z), respec-
tively; see [Har81] and [MM99]. These are geodesic metric spaces obtained by
isometrically gluing regular Euclidean simplices with all edge lengths equal to
one. The following is proven in [MM99].

Theorem 1.3 (Masur-Minsky). The spaces C(S) and C(S, z) are δ-hyperbolic
for some δ > 0.

We will refer to a simplex v ⊂ C(S) or u ⊂ C(S, z) and confuse this with the
isotopy class of multicurve it determines. Any simple closed curve u in (S, z) can
be viewed as a curve in S which we denote Π(u). This well-defines a “forgetful”
map

Π: C(S, z) → C(S)

which is simplicial.
Given a multicurve v ⊂ C(S), unless otherwise stated, we assume that v is

realized by its geodesic representative in S. Associated to v there is an action
of π1(S) on a tree Tv, namely, the Bass–Serre tree for the splitting of π1(S)
determined by v. We will make use of the following theorem of [KLS06].

Theorem 1.4 (Kent-Leininger-Schleimer). The fiber of Π over v ∈ C(S) is
π1(S)–equivariantly homeomorphic to the tree Tv determined by v.

1.2.4 Measured laminations and the curve complex.

The curve complex C naturally injects into PML sending a simplex v to the
simplex of measures supported on v. We denote the image subspace PMLC .
We note that this bijection PMLC → C is not continuous in either direction.
We will use the same notation for a point of PMLC and its image in C.

In [Kla99] Klarreich proved that ∂∞C ∼= EL. Therefore, if we define

PMLC = PMLC ∪ PFL
then there is a natural surjective map

PMLC → C
extending PMLC → C. The following is an immediate consequence of Klarre-
ich’s work [Kla99], stated using our terminology.

Proposition 1.5 (Klarreich). The natural map PMLC → C is continuous at
every point of PFL. Moreover, a sequence {vn} in C converges to |λ| if and
only if every accumulation point of {vn} in PML has |λ| as its support.
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Proof. Theorem 1.4 of [Kla99] implies that if {vn} converges in C to |λ|, then
every accumulation point of {vn} in PML has |λ| as its support. We need only
verify that if λ ∈ PFL and every accumulation point λ′ in PML of {vn} has
|λ| = |λ′| then {vn} converges to |λ| in C.

To see this, let {Xn} ⊂ T be any sequence in the Teichmüller space T
for which vn is the shortest curve in Xn, so in particular `Xn(vn) is uniformly
bounded. Since every accumulation point of {vn} is in PFL, it follows that
Xn exits every compact set and so accumulates only on PML in the Thurston
compactification of T . Moreover, if λ′ is any accumulation point of Xn in PML,
then i(λ′, λ) = 0, and so |λ′| = |λ| since λ is filling.

Now according to Theorem 1.1 of [Kla99], the map

sys : T → C

sending X ∈ T to any shortest curve in X extends to

sys : T ∪ PFL → C

continuously at every point of PFL. It follows that

lim
n→∞

vn = lim
n→∞

sys(Xn) = |λ|.

1.2.5 Cannon-Thurston Maps

Definition 1.6. Let X and Y be hyperbolic metric spaces and i : Y → X
be a continuous map, and Z ⊂ ∂∞Y a subset of the Gromov boundary. A
Z–Cannon-Thurston map (or just a Cannon-Thurston map, by abuse of
notation) is a continuous extension i : Y ∪ Z → X = X ∪ ∂∞X of i. That is,
i|Y = i.

This definition is more general than that in [Mit98] in the sense that here we
require i only to be continuous, whereas in [Mit98] it was demanded that i be
an embedding, and we are not requiring i to be defined on all of Y = Y ∪ ∂∞Y .

To prove the existence of such a Cannon-Thurston map, we shall use the
following obvious criterion:

Lemma 1.7. Let X and Y be hyperbolic metric spaces and i : Y → X be a
continuous map and Z ⊂ ∂∞Y . Then a Z-Cannon-Thurston map i exists if
for every y ∈ Z, there exists a neighborhood basis {Bi(y)}∞i=1 of y ∈ Y ∪ Z and
uniformly quasiconvex sets Qi(y) ⊂ X with i(Bi(y) ∩ Y ) ⊂ Qi(y) for all i and
d(x,Qi) → ∞ as i → ∞ form some basepoint x ∈ X. Moreover, i(y) is the
unique point of intersection of the sets

⋂

i

Qi(y) =
⋂

i

∂∞Qi(y) = {i(y)}.
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2 Point position

We now describe in more detail the map

Φ : C(S)×H→ C(S, z)

as promised in the introduction, and explain how this can be extended contin-
uously to C(S)×H.

2.1 A bundle over H.

The bundle determining the Birman exact sequence has a subbundle obtained
by restricting ev to Diff0(S):

DiffB(S, z) // Diff0(S) ev // S.

As noted before, Earle and Eells proved that Diff0(S) is contractible, and hence
there is a unique lift

ẽv : Diff0(S) → H

with the property that ẽv(IdS) = z̃.
The map ẽv can also be described as follows. Any diffeomorphism S → S

has a lift H → H, and the contractibility of Diff0(S) allows us to coherently
lift diffeomorphisms to obtain an injective homomorphism Diff0(S) → Diff(H).
Then ẽv is the composition of this homomorphism with the evaluation map
Diff(H) → H determined by z̃.

Since p is a covering map, ẽv is also a fibration. Appealing to the long exact
sequence of homotopy groups again, we see that the fiber over z̃ is precisely
Diff0(S, z). We record this in the following diagram

H
p

²²
DiffB(S, z) // Diff0(S) ev //

eev
;;wwwwwwwww
S

Diff0(S, z)

OO 88qqqqqqqqqq

The group DiffB(S, z) acts on Diff0(S) on the left by

h · f = f ◦ h−1

for h ∈ DiffB(S, z) and f ∈ Diff0(S). Also recall from Section 1.2.2 that π1(S) ∼=
π0(DiffB(S, z)) with this isomorphism induced by a homomorphism

ev∗ : DiffB(S, z) → π1(S).
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Lemma 2.1.
ẽv : Diff0(S) → H

is equivariant with respect to ev∗.

Proof. We need to prove

ev∗(h)(ẽv(f)) = ẽv(f ◦ h−1)

for all f ∈ Diff0(S) and h ∈ DiffB(S, z). Observe that since h(z) = z for every
h ∈ DiffB(S, z), ev(f) = ev(f ◦ h−1) for every f ∈ Diff0(S). Therefore, since ẽv
is a lift of ev we have

p(ẽv(f)) = ev(f) = ev(f ◦ h−1) = p(ẽv(f ◦ h−1))

and hence ẽv(f) differs from ẽv(f ◦ h−1) by a covering transformation:

ẽv(f ◦ h−1) = σ(ẽv(f))

for some σ ∈ π1(S).
The covering transformation σ depends on f and h, however if ht, t ∈ [0, 1],

is a path in DiffB(S, z) then ẽv(f ◦ h−1
t ) is constant in t as can be seen from

the above description of ẽv as the evaluation map on the lifted diffeomorphism
group. It follows that σ depends only on f and the component of DiffB(S, z)
containing h. In fact, continuity of ẽv and connectivity of Diff0(S, z) implies
that σ actually only depends on the component of DiffB(S, z) containing h, and
not on f at all.

We have
σ(z̃) = σ(ẽv(IdS)) = ẽv(IdS ◦ h−1) = ẽv(h−1).

So if ht, t ∈ [0, 1], is a path in Diff0(S) from h to IdS , then since ev∗(h) = σh

where σh is represented by the loop ht(z), t ∈ [0, 1], it follows that σ−1
h is

represented by the loop h−1
t (z), t ∈ [0, 1].

Now observe that ẽv(h−1
t ), t ∈ [0, 1], is a lift of the loop h−1

t (z), t ∈ [0, 1], to
a path from σ(z̃) to z̃. Therefore, σ−1

h is σ−1, and hence σ = σh = ev∗(h).

2.2 An explicit construction of Φ.

We will define first a map

Φ̃ : C(S)×Diff0(S) → C(S, z)

and show that this descends to a map Φ : C(S) × H → C(S, z) by composing
with ẽv in the second factor.

Recall that for every v ∈ C0(S), we have realized v by its geodesic represen-
tative. We would like to simply define

Φ̃(v, f) = f−1(v).
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However, this is not a curve in (S, z) when f(z) lies on the geodesic v. The map
we define in the end will agree with this when f(z) is not too close to v, and it
is helpful to keep this mind when trying to make sense of the actual definition
of Φ̃.

To carry out the construction of Φ̃, we first let {ε(v)}v∈C0(S) ⊂ R+ be such
that

Nε(v)(v) ∩Nε(v′)(v′) = ∅ ⇔ i(v, v′) = 0 and v 6= v′

and Nε(v)
∼= S1 × [0, 1] for all v. We will impose further restrictions on {ε(v)}

later. We will write N◦
ε(v)(v) for the interior of Nε(v)(v) and v±ε(v) for the two

components of ∂Nε(v)(v).
Given a simplex v = {v0, ..., vk} ⊂ C(S), we consider the barycentric coordi-

nates for points in v:




k∑

j=0

sjvj |
k∑

j=0

sj = 1 and sj ≥ 0, ∀j = 0, ..., k



 .

To define our map

Φ̃ : C(S)×Diff0(S) → C(S, z)

we first explain how to define it for (v, f) with v a vertex of C(S). If f(z) 6∈
N◦

ε(v)(v), then we set

Φ̃(v, f) = f−1(v)

as suggested above.
If f(z) ∈ N◦

ε(v)(v), then f−1(v+
ε(v)) and f−1(v−ε(v)) are nonisotopic curves in

(S, z). We will define Φ̃(v, f) to be a point on the edge between these two vertices
of C(S, z), depending on the distance from f(z) to these boundary components.
Specifically, we set

Φ̃(v, f) =
1

2ε(v)

(
d(f(z), v+

ε(v)) f−1(v+
ε(v)) + d(f(z), v−ε(v)) f−1(v−ε(v))

)

in barycentric coordinates on the edge
[
f−1(v+

ε(v)), f
−1(v−ε(v))

]
.

In general, for a point (x, f) ∈ C(S) × Diff0(S) with x =
∑

j sjvj ⊂ v =
{v0, ..., vk} we define Φ̃(x, f) as follows. First, we shrink all neighborhoods
Nε(vj)(vj) according to the associated barycentric coordinate sj to Nsjε(vj)(vj).
We let v±j,sjε(vj)

denote the two boundary components of Nsjε(vj)(vj).

As before, if f(z) 6∈
k⋃

j=0

N◦
sjε(vj)

(vj), then define

Φ̃(x, f) =
∑

j

sjf
−1(vj).
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Otherwise, f(z) ∈ N◦
siε(vi)

(vi) for exactly one i ∈ {0, ..., k}, and we define Φ̃(x, f)
to be

∑

j 6=i

sjf
−1(vj) +

si

2ε(vi)




d(f(z), v+
i,siε(vi)

) f−1(v+
i,siε(vi)

)

+d(f(z), v−i,siε(vi)
) f−1(v−i,siε(vi)

)


 .

The group DiffB(S, z) acts on C(S) × Diff0(S), trivially in the first fac-
tor and as described in Section 2.1 in the second factor. Of course, since
DiffB(S, z) < Diff+(S, z) projects into Mod(S, z) it also acts on C(S, z). The
map Φ̃ is equivariant: given h ∈ DiffB(S, z), f ∈ Diff0(S) and v a vertex in
C(S), provided f(z) 6∈ N◦

ε(v)(v) we have

Φ̃(h · (v, f)) = Φ̃(v, f ◦ h−1) = (f ◦ h−1)−1(v) = h ◦ f−1(v) = h · (f−1(v)).

The general situation is similar, but notationally more complicated.

Proposition 2.2. The map Φ̃ descends to a map Φ making the following dia-
gram commute

C(S)×Diff0(S) eΦ
--ZZZZZZZZZZZ

IdC(S)× eev ²²
C(S, z)

C(S)×H Φ

11dddddddddddddd

Moreover, Φ is equivariant with respect to the action of π1(S).

Here the action on π1(S) on C(S) × H is trivial on the first factor and the
covering group action on the second.

Proof. We suppose that ẽv(f0) = ẽv(f1) and must show Φ̃(x, f0) = Φ̃(x, f1).
From the discussion in Section 2.1 it follows that f0 = f1 ◦ h for some

h ∈ Diff0(S, z). We suppose that α is a simple closed curve on S and f0(z) 6∈ α.
Then f1(z) = f1(h(z)) = f0(z) 6∈ α and

d(f0(z), α) = d(f1(h(z)), α) = d(f1(z), α).

Moreover, f−1
0 (α) = h−1(f−1

1 (α)) and since h−1 is isotopic to the identity in
(S, z), it follows that f−1

0 (α) and f−1
1 (α) are isotopic in (S, z).

Now because Φ̃(x, f) is defined in terms of the isotopy classes of curves of
the form f−1(α) and numbers of the form d(f(z), α) it follows that

Φ̃(x, f0) = Φ̃(x, f1)

and so Φ̃ descends to C(S)×H as required.
Lemma 2.1 implies that IdC(S)× ẽv is equivariant with respect to ev∗. Thus,

since Φ̃ is equivariant, so is Φ.

12



Suppose that x ∈ C(S) and {v0, ..., vk} = v ⊂ C(S) is the simplex containing
x in its interior and write

x =
k∑

i=1

sivi

in terms of barycentric coordinates.
We note that the neighborhoods N◦

siε(vi)
(vi) determine a map to the Bass–

Serre tree Tv associated to v as follows. We collapse each component U of the
preimage p−1(N◦

siε(vi)
(vi)) onto an interval, say (0, 1), by the projection defined

as the distance to the component of p−1(v−i,siε(vi)
) meeting U , multiplied by

1/(2siε(vi)). If we further collapse each component of the complement of

p−1(Ns0ε(v0)(v0) ∪ · · · ∪Nskε(vk)(vk))

to a point, the quotient space is precisely Tv.
The map Φ restricted to {x} ×H ∼= H, which we denote Φx, is constant on

the fibers of the projection to Tv. That is, Φx : {x} × H → Π−1(x) ⊂ C(S, z)
factors through the projection to Tv

{x} ×H Φx
//

**UUUUUU Π−1(x)

Tv

44iiiiii
.

Moreover, the equivariance of Φ implies that

Tv → Π−1(x)

is equivariant. According to [KLS06], the edge and vertex stabilizers in the do-
main and range agree. This map is thus the homeomorphism given by Theorem
1.4, and Φx agrees with the definition given in the introduction.

2.3 A further description of C(S, z)

We pause here to give a combinatorial description of C(S, z) which will be useful
later, but is also of interest in its own right. Given any simplex v ⊂ C(S), the
preimage of the interior of v admits a π1(S)–equivariant homeomorphism

Π−1(int(v)) ∼= int(v)× Tv

as can be seen from Theorem 1.4. As is well known, the edges of Tv can be
labeled by the vertices of v. Now, if φ : v′ → v is the inclusion of a face,
then there is a π1(S)–equivariant quotient map φ∗ : Tv → Tv′ obtained by
collapsing all the edges of Tv labeled by vertices not in φ(v′) (compare [GL07],
for example). This provides a description of Π−1(v), the preimage of the closed
simplex as a quotient 

 ⊔

φ:v′→v

v′ × Tv′


 / ∼

13



where the disjoint union is taken over all faces φ : v′ → v and the equivalence
relation ∼ is defined by

(ϕ(x), t) ∼ (x, ϕ∗(t))

for every inclusion of faces ϕ : v′′ → v′ and every x ∈ v, t ∈ Tv′ . Said differently,
we take the product v × Tv and for every face φ : v′ → v, we glue v × Tv to
v′ × Tv′ along φ(v′)× Tv by φ−1 × φ∗.

We can do this for all simplices, then glue them all together, providing the
following useful description of C(S, z).

Theorem 2.3. The curve complex C(S, z) is π1(S)–equivariantly homeomorphic
to 

 ⊔

v⊂C(S)

v × Tv


 / ∼

where the disjoint union is taken over all simplices v ⊂ C(S), and the equivalence
relation is generated by

(φ(x), t) ∼ (x, φ∗(t))

for all inclusions of faces φ : v′ → v all x ∈ v′ and all t ∈ Tv.

2.4 Extending to measured laminations

The purpose of this section is to modify the above construction of Φ to build a
map

Ψ: ML(S)×H→ML(S, z),

and to prove that this is continuous at every point of FL(S)×H; see Corollary
2.8. We do this by defining a map on ML(S) × Diff0(S), and checking that it
descends to ML(S)×H.

Before we can begin, we must specify a particular realization for each element
of ML(S) as a measured lamination. We begin by realizing all elements as
measured geodesic laminations (recall we denote these with a hat, λ̂), then
replace all simple closed geodesic components of the support with appropriately
chosen annuli. We now explain this more precisely and set some notation.

Given a measured geodesic lamination λ̂, |λ̂| can be decomposed into a finite
union of pairwise disjoint minimal sublaminations; see [CB87]. Write

λ̂ = Cur(λ̂) + Min(λ̂),

where |Cur(λ̂)| and |Min(λ̂)| are disjoint with |Cur(λ̂)| consisting precisely of
the union of simple closed geodesics in |λ̂|. We construct a measured lamination
λ measure equivalent to λ̂ as

λ = Ann(λ) + Min(λ),

where Min(λ) = Min(λ̂) and Ann(λ) is defined as follows.

14



The sublamination Cur(λ̂) can be further decomposed as Cur(λ̂) =
∑

j tjvj ,
where tjvj means tj times the transverse counting measure on the simple closed
geodesic component vj of |Cur(λ̂)|. For each component vj of |Cur(λ̂)| with
tj ≤ 1, there is a component of |Ann(λ)| which is the annulus Ntjε(vj)(vj) given
the foliation by equidistant curves to vj . This is assigned the transverse mea-
sure which is 1/2ε(vj) times the distance between leaves. For each component
vj with tj > 1, there is a corresponding component of |Ann(λ)| which is the
annulus Nε(vj)(vj) foliated again by equidistant curves to v. This is assigned
the transverse measure tj/2ε(vj) times the distance between leaves; see Figure
3 for a cartoon depiction of λ̂ and λ. For future use, we define T (λ̂) and T (λ)
by

T (λ̂) = T (λ) = max
j

tj .

Figure 3: Removing simple closed geodesics and inserting foliated annuli.

|λ̂|

|λ|

Whenever we refer to an element λ ofML(S) in what follows, we will assume
it is realized by such a measured lamination. Of course |λ̂| ⊂ |λ|, meaning that
as subsets of S, |λ̂| is a subset of |λ|, and that each leaf of |λ̂| is a leaf of |λ|. The
difference between the total variations assigned an arc by λ and λ̂ is estimated
by the following.

Lemma 2.4. If a is any arc transverse to |λ|, then it is also transverse to |λ̂|
and we have

|λ(a)− λ̂(a)| ≤ T (λ̂)

Proof. The transversality statement is an immediate consequence of |λ̂| ⊂ |λ|.
Since Min(λ) = Min(λ̂), we see that

|λ(a)− λ̂(a)| = |Ann(λ)(a)− Cur(λ̂)(a)|

15



The intersection of |Ann(λ)| ∩ a is a union of subarcs of a, each containing
an intersection point of |Cur(λ̂)| ∩ a, with the possible exception of those arcs
which meet the endpoints of a. If a0 ⊂ a is one of the subarcs which meets the
boundary, then we have |Ann(λ)(a0) − Cur(λ̂)(a0)| ≤ T (λ̂)/2. Since there are
at most 2 such arcs, the desired inequality follows.

The following is also useful.

Lemma 2.5. Suppose λn → λ in ML(S) and Ann(λ) = ∅. Further suppose
that |λn| converges in the Hausdorff topology on closed subsets of S to a set L.
Then L is a geodesic lamination containing |λ|.
Proof. If |λn| = |λ̂n| is a geodesic lamination for all n, then the fact that L is a
geodesic lamination is well known; see [CB87].

Since λn → λ and Ann(λ) = ∅, it follows that T (λn) → 0 as n →∞. To see
this, suppose this were not the case. Then, up to subsequence, some component
vn ⊂ Cur(λ̂n) would have weight tn > t > 0 for some t > 0. Convergence in
ML implies that the length of vn must therefore be bounded above for all n,
and so after passing to a further subsequence, we would have all vn equal to
some fixed simple closed geodesic v. But because tn > t > 0, the limit λ would
have v ⊂ Cur(λ̂), which is a contradiction.

Suppose now that x = limn→∞ xn with xn ∈ |λn|. Then there exists
x̂n ∈ |λ̂n| with limn→∞ d(xn, x̂n) = 0, so x = limn→∞ x̂n. It follows that
the Hausdorff limit of {|λn|} is the same as that of {|λ̂n|} and hence L is a
geodesic lamination.

Now, given any (λ, f) ∈ML(S)×Diff0(S), we would like to simply define

Ψ̃(λ, f) = f−1(λ).

As before, this does not make sense when f(z) lies on the supporting lamination
|λ|. This is remedied by first splitting open the lamination along the leaf which
f(z) meets to produce a new measured lamination λ′ representing the measure
class λ (there is no ambiguity about how the measure is split since λ has no
atoms). The new lamination |λ′| has either a bigon or annular region containing
f(z) and f−1(λ) is defined to be f−1(λ′). The support |f−1(λ′)| is contained
in f−1(|λ′|), and this containment can be proper since f−1(|λ|) may have an
isolated leaf. Note that this happens precisely when f(z) lies on a boundary
leaf of |λ|.

Train tracks provide a more concrete description of Ψ̃(f, λ) which will be
useful in proving continuity results. Let L be any geodesic lamination on S
and ε > 0 sufficiently small so that the quotient of Nε(L) by collapsing the
ties defines a train track τ as in Section 1.2.1. Suppose that λ is a measured
lamination on S for which |λ| is contained in Nε(L) and is transverse to the
ties. If f(z) 6∈ Nε(L), then Ψ̃(f, λ) is the lamination on (S, z) determined by
the weighted train track f−1(τ(λ)) as described in Section 1.2.1.

16



If f(z) ∈ Nε(L), by small perturbation of ε, we may assume that f(z) does
not lie on a boundary-tie of any rectangle and that each switch of τ is trivalent.
Then either f(z) is outside Nε(L) and we are in the situation above, or else f(z)
is in the interior of some rectangle R. Furthermore, τ can be realized in Nε(L)
with the branch βR associated to R contained in R.

We modify the train track τ at the branch βR as follows. Remove an arc
in the interior of βR leaving two subarcs β`

R and βr
R of βR and insert a two

branches βu
R and βd

R creating a bigon containing f(z); see Figure 4. The result,
denoted τ ′ is not a train track on S, but is a train track on (S, f(z)).

If ft ∈ Diff0(S) is an isotopy with f = f0 and ft(z) ⊂ R for every t ∈ [0, 1],
and τ ′t is constructed for ft as τ is constructed for f (so τ ′ = τ ′0), then f−1

t (τ ′t)
is (isotopic to) f−1(τ ′) for all t.

Figure 4: Modifying τ to τ ′.

f(z)
βR

R

β`
R βr

R

βu
R

βd
R

The measured lamination λ makes τ ′ into a weighted train track τ ′(λ) on
(S, f(z)) as follows. For the branches of τ ′ that are the same as those of τ ,
the weights are defined as before. To define the weights on the new branches,
we first consider the tie a ⊂ R that contains f(z), and write it as the union
of subarcs a = au ∪ ad with au ∩ ad = {f(z)}. We define the weights on the
branches βu

R and βd
R of the bigon to be λ(au) and λ(ad), respectively, while the

weights on the branches β`
R and βr

R are both λ(a) = λ(au) + λ(ad); see Figure
5. The lamination f−1(λ) is the lamination determined by the weighted train
track f−1(τ ′(λ)).

Figure 5: Weights on τ ′ determined by λ and f(z).

f(z)

R

au

ad

λ(a) λ(a)
λ(au)

λ(ad)

The proof of the following is essentially the same as that of Proposition 2.2
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and we omit it.

Proposition 2.6. Ψ̃ descends to a map Ψ:

ML(S)×Diff0(S) eΨ
--[[[[[[[[[[[

IdML(S)× eev ²²
ML(S, z)

ML(S)×H Ψ

11cccccccccccccc

Because of the particular way we have realized our laminations, neither
the map Ψ̃ nor the map Ψ need be continuous at measured laminations with
nontrivial annular component. However, this is the only place where continuity
breaks down.

Proposition 2.7. The map Ψ̃ is continuous at every (λ, f) with Ann(λ) = ∅.
Proof. It suffices to show that for any sequence {(λn, fn)} in ML(S)×Diff0(S)
converging to (λ, f), there exists a subsequence (which we also denote by {(λn, fn)}
for convenience) with {Ψ̃(λn, fn)} converging to Ψ̃(λ, f).

We begin by passing to a subsequence for which the supports {|λn|} converge
in the Hausdorff topology to a closed set L. It follows from Lemma 2.5, that L
is a geodesic lamination containing |λ|.

Case 1. Suppose f(z) 6∈ L.

In this case, there is an ε > 0 so that the ε–neighborhoods of f(z) and
L are disjoint. Since fn → f as n → ∞, there exists N > 0 so that for all
n ≥ N , fn(z) ∈ Nε(f(z)), and moreover, fn is isotopic to f through an isotopy
ft such that ft(z) ∈ Nε(f(z)) for all t. Taking N even larger if necessary, we
may assume that for n ≥ N , λn ⊂ Nε(L). Therefore, for all n ≥ N , λ and λn

determine weighted train tracks τ(λ) and τ(λn), respectively. Since λn → λ, it
follows that τ(λn) → τ(λ) as n →∞.

Since fn is isotopic to the f keeping the image of z in Nε(f(z)), it follows
that f−1(τ) = f−1

n (τ), up to isotopy. Therefore, f−1(τ(λn)) and f−1
n (τ(λn))

are isotopic and so we have convergence of weights f−1(τ(λn)) → f−1(τ(λ))
which implies the associated measured laminations converge

Ψ̃(λn, fn) → Ψ̃(λ, f)

as required. This completes the proof for Case 1.

Case 2. Suppose that f(z) ∈ L.

We let ε > 0 be chosen sufficiently small so that the quotient of Nε(L) by
collapsing ties is a train track τ , and so that f(z) lies in the interior of some
rectangle R of Nε(L) and so that τ is trivalent.
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Let N > 0 so that for all n ≥ N , fn(z) also lies in the interior of R and f
is isotopic to fn by an isotopy ft with ft(z) contained in R for all t. For each
n ≥ N , the train track τ associated to Nε(L) and the points fn(z) and f(z)
define tracks τ ′n and τ ′, respectively, with bigons as described above. Moreover,
f−1

n (τ ′n) and f−1(τ ′) are isotopic, and we simply identify the two as the same
train track on (S, z).

Since λn is converging to λ as n → ∞, it follows that the weighted train
tracks converge τ(λn) → τ(λ). Therefore, to prove that the weighted train
tracks f−1(τ ′n(λn)) = f−1

n (τ ′n(λn)) converges to f−1(τ ′(λ)), it suffices to prove
that the weights assigned to f−1(βu

R) and f−1(βd
R) by λn converge to the weights

assigned to these branches by λ. This is because the weights on the remain-
ing branches agree with weights on the corresponding branches of τ , where we
already know convergence. From this it will follow that Ψ̃(λn, fn) → Ψ̃(λ, f).

Note that the weights on βR determined by λn converge to the weight defined
by λ. So, since the sum of the weights on f−1(βu

R) and f−1(βd
R) is precisely the

weight on βR, it suffices to prove convergence for the weights on one of these,
say, f−1(βu

R).
To define the required weights, recall that we first choose a tie an ⊂ R with

fn(z) ∈ an, and write an as a union of subarcs an = au
n ∪ ad

n with au
n ∩ ad

n =
{fn(z)} (and similarly we have a tie a ⊂ R with a = au ∪ ad and au ∩ ad =
{f(z)}). Then the weights on f−1(βu

R) determined by λn and λ are given by

wu
n = λn(au

n) and wu = λ(au),

respectively.
Therefore, we must verify that λn(au

n) → λ(au). However, since T (λn) → 0
as k →∞, Lemma 2.4 implies that it suffices to prove λ̂n(au

n) → λ(au).
Fix any δ > 0. Since Cur(λ̂) = ∅, λ̂|a has no atoms, and so we can find

subarcs au
− and au

+ of a with

au
− ( au ( au

+ ⊂ a

so that
λ̂(au

−) ≤ λ̂(au) ≤ λ̂(au
+)

with λ̂(au
+)− λ̂(au

−) < δ.
Since λ̂n → λ̂, it follows that we also have

lim
n→∞

λ̂n(au
+) = λ̂(au

+)

and
lim

n→∞
λ̂n(au

−) = λ̂(au
−).

Furthermore, since an → a and au
n → au in the C1–topology, combining this

with the previous two equations, we see that

lim sup
n→∞

λ̂n(au
n) ≤ lim

n→∞
λ̂n(au

+) = λ̂(au
+)
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and
lim inf
n→∞

λ̂n(au
n) ≥ lim

n→∞
λ̂n(au

−) = λ̂(au
−).

Since lim inf λ̂n(au
n) ≤ lim sup λ̂n(au

n), combining all of the above, we see that

| lim sup
n→∞

λ̂n(au
n)− λ̂(au)|+ | lim inf

n→∞
λ̂n(au

n)− λ̂(au)| < δ.

As δ was arbitrary, it follows that

lim
n→∞

λ̂n(au
n) = lim sup

n→∞
λ̂n(au

n) = lim inf
n→∞

λ̂n(au
n) = λ̂(au)

and this completes the proof of Case 2. Since Cases 1 and 2 exhaust all possi-
bilities, this also completes the proof of the proposition.

Corollary 2.8. The maps Ψ is continuous at every (λ, x) with Ann(λ) = ∅. In
particular, Ψ is continuous on FL(S)×H.

Proof. The map ẽv is a quotient map.

2.5 Φ and Ψ

We let ΨC denote the restriction of Ψ to PMLC(S)×H which maps to PMLC(S, z).

Lemma 2.9. The following diagram commutes

PMLC(S)×H ΨC //

²²

PMLC(S, z)

²²
C(S)×H Φ // C(S, z)

The vertical arrows here are the natural maps.

Proof. On PMLC(S), Ψ was defined in the same way as Φ.

If we let ΨC be the restriction of the map Ψ to PMLC ×H, then we have

Proposition 2.10. There is a continuous extension Φ̂ : C(S) × H → C(S, z)
which fits into a commutative diagram

PMLC(S)×H ΨC //

²²

PMLC(S, z)

²²
C(S)×H Φ̂ // C(S, z)

Proof. From the construction of Ψ and the definition of FL, we see that Ψ(FL(S)) ⊂
FL(S, z), and that |Ψ(λ, x)| = |Ψ(λ′, x)| for all λ, λ′ ∈ PML(S), whenever
|λ| = |λ′|. Since ∂∞C(S) = EL(S) from Klarreich’s work as discussed in Sec-
tion 1.2.4, we obtain the desired extension Φ̂ making the diagram commute.
Continuity follows from Proposition 1.5 and Corollary 2.8.
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We will also need the following

Proposition 2.11. Suppose {vn} ⊂ C(S), {xn} ⊂ H, and xn → x ∈ H. If
{vn} does not accumulate on ∂∞C(S), then {Φ(vn, xn)} does not accumulate on
∂∞C(S, z).

Proof. Suppose {Φ(vn, xn)} accumulates on some lamination |µ| ∈ ∂∞C(S, z).
Pass to a subsequence which converges to |µ| in C(S, z). If any curve in the
sequence {vn} occurs infinitely often, then passing to a further subsequence,
we can assume vn is constant equal to v and Φ(vn, xn) = Φ(v, xn) lies in a
compact subset of the tree Tv

∼= Π−1(v), so does not accumulate on ∂∞C(S, z),
as required.

We therefore assume that the vn are all distinct. As such, it follows that
if we let λn be the laminations corresponding to vn under the natural map
PMLC(S) → C(S), then T (λn) → 0, so as in the proof of Lemma 2.5, we may
pass to a subsequence so that |λn| converges to a geodesic lamination L. Passing
to a further subsequence, we also assume λn → λ in PML(S).

It follows from Proposition 1.5, no sublamination of L lies in EL(S). In
particular, removing the infinite isolated leaves of L, we obtain a lamination
which is disjoint from a simple closed curve v′ and contains the support of
λ̂. Choosing ε > 0 sufficiently small, we can assume that the train track τ
obtained from Nε(L) contains a subtrack τ0 so that (1) τ0 is disjoint from some
representative α of v′ and (2) τ(λ) has nonzero weights only on the branches of
τ0.

Now let f ∈ Diff0(S) be such that ẽv(f) = x. After modifying τ and τ0 to τ ′

and τ ′0 as in the previous section if necessary (that is, possibly inserting a bigon
around f(z)), it follows that for sufficiently large n, f−1(τ ′(λn)) determines the
lamination Ψ(λn, xn). After passing to yet a further subsequence if necessary,
we can assume that f−1(τ ′(λn)) converges (projectively) to some f−1(τ ′)(µ0),
also having nonzero weights only on f−1(τ ′0). It follows that µ0, the (projective)
limit of Ψ(λn, xn), is not in FL(S, z) since its support is disjoint from f−1(α).
By Proposition 1.5, |µ′| = |µ|, which is a contradiction.

Just as we restricted Φ to v × H to map onto the Bass–Serre tree, we can
restrict Φ̂ to {|λ|} × H for any |λ| ∈ EL(S). Of course, Φ̂(|λ|, x) = Φ̂(|λ|, x′) if
x, x′ lie on the same leaf, or in the closure of the same component of H−p−1(|λ|).
We also have the following, which states that the converse is also true.

Lemma 2.12. For (|λ|, x), (|λ′|, x′) ∈ EL(S)×H, Φ̂(|λ|, x) = Φ̂(|λ′|, x′) if and
only if |λ| = |λ′| and x and x′ are in the same leaf or the closure of the same
complementary region of H− p−1(|λ|).
Proof. Only one direction requires explanation. Assuming Φ̂(|λ|, x) = Φ̂(|λ′|, x′),
we must show that |λ| = |λ′| and x and x′ are in the same leaf or closure of the
same complementary region of H− p−1(|λ|).

Assume we have applied an isotopy so that the laminations Φ̂(|λ|, x) and
Φ̂(|λ′|, x′) are equal (not just isotopic). Forgetting z, the laminations remain
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the same (though they may have a bigon complementary region, and so are not
necessarily geodesic laminations), and hence |λ| = |λ′|.

Proving the statement about x and x′ is slightly more subtle. For simplicity,
we assume that x and x′ lie in components of H − p−1(|λ|) for simplicity (the
general case is similar, but the notation is more complicated). Let f, f ′ ∈
Diff0(S) be such that ẽv(f) = x and ẽv(f ′) = x′. Let f̃ and f̃ ′ be lifts of f and
f ′ with f̃(z̃) = x and f̃ ′(z̃) = x′. Modifying f by an element of Diff0(S, z) if
necessary, we may assume that f−1(|λ|) = Φ̂(|λ|, x) and f ′−1(|λ|) = Φ̂(|λ|, x′)
are equal (again, not just isotopic).

Since f−1(|λ|) = f ′−1(|λ|), it follows that f ′ ◦ f−1(|λ|) = |λ|. Back in H this
means f̃ ′ ◦ f̃−1(p−1(|λ|)) = p−1(|λ|). Since f̃ ′ ◦ f̃−1(x) = x′, and f̃ ′ ◦ f̃−1 is
the identity on ∂∞H, it must be that x and x′ lie in the same complementary
region of H− p−1(|λ|), as required.

3 Universal Cannon-Thurston Maps

3.1 Quasiconvex Sets

Consider a biinfinite geodesic γ ⊂ H for which p(γ) is a filling closed geodesic
in S, by which we mean that p(γ) is a closed geodesic and the complement of
p(γ) is a union of disks in S. We will consider this as fixed for the remainder
of the paper. Let δ ∈ π1(S) generate the (infinite cyclic) stabilizer of γ. We will
make several statements about γ, though they will also obviously apply to any
π1(S)–translate of γ.

Define
X(γ) = Φ(C(S)× γ).

Let H+(γ) and H−(γ) denote the two half spaces bounded by γ and define

H±(γ) = Φ(C(S)×H±(γ)).

We assume that we have chosen {ε(v)}v∈C0(S) so that each arc of γ∩p−1(Nε(v)(v))
traverses the neighborhood from one boundary component to the other (rather
than being allowed to enter and exit the neighborhood through the same bound-
ary component). Since p(γ) is a closed geodesic in S, this can be easily arranged
by shrinking each of the originally chosen numbers ε(v) as needed.

A subset X of a geodesic metric space is called weakly convex if for any
two points of the set there exists a geodesic connecting the points contained
in the set (in a Gromov hyperbolic space, weakly convex sets are in particular
uniformly quasi-convex).

Proposition 3.1. X(γ),H±(γ) are simplicial subcomplexes of C(S, z) spanned
by their vertex sets and are weakly convex.

To say that a subcomplex Ω ⊂ C(S, z) is spanned by its vertex set, we mean
that Ω is the largest subcomplex having Ω(0) as its vertex set.
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Proof. We describe the case of X(γ), with H±(γ) handled by similar arguments.
We will construct a simplicial (and hence 1–Lipschitz) projection onto X(γ).
This easily implies the proposition. This is most succinctly done in terms of the
description of C(S, z) given in Theorem 2.3, and so we identify C(S, z) with the
quotient space as described in that theorem.

For any x ∈ int(v), X(γ)∩Π−1(x) = Φ({x}×γ), which is a biinfinite geodesic
in the tree Π−1(x) ∼= Tv. One can also see this as the axis of δ in Tv (since p(γ)
is filling, δ can never be elliptic in Tv) and we denote this as γv ⊂ Tv. Recall
that an inclusion of faces φ : v′ → v induces a quotient of associated trees
φ∗ : Tv → Tv′ . Since the axis of δ in Tv is sent to the axis of δ in Tv′ by φ∗,
we have φ∗(γv) = γv′ . Therefore, with respect to our homeomorphism with the
quotient of Theorem 2.3, we have

X(γ) ∼=

 ⊔

v⊂C(S)

v × γv


 / ∼ (1)

where, as in Theorem 2.3, the disjoint union is over all simplices v ⊂ C(S), and
the equivalence relation is generated by

(φ(x), t) ∼ (x, φ∗(t))

for all faces φ : v′ → v, all x ∈ v′ and all t ∈ γv. We also use the homeomorphism
in (1) to identify the two spaces.

The simplices of C(S, z) via the homeomorphism of Theorem 2.3 are precisely
the images of cells v×σ in the quotient, where v ⊂ C(S) is a simplex and σ ⊂ Tv

an edge or vertex. Thus, if the image of v × σ is a simplex, and we let v0, ..., vk

be the vertices of v and t0, t1 the vertices of σ (assuming, for example, that σ
is an edge) then the vertices of the simplex determined by v × σ are image of
(vi, tj) for i = 0, ..., k and j = 0, 1. If these vertices lie in X(γ), then t0, t1 ∈ γv,
hence σ ⊂ γv and the image of v × σ lies in X(γ). It follows that X(γ) is a
simplicial subcomplex of C(S, z) spanned by its vertex set.

Next, we will define a projection

ρ : C(S, z) → X(γ)

by first defining it on each of the pieces ρv : v×Tv → v×γv as the identity on the
first factor and the nearest-point projection ηv : Tv → γv on the second factor.
Observe that if φ : v′ → v is a face, then nearest-point projections commute

ηv′ ◦ φ∗ = φ∗ ◦ ηv

since a geodesic segment in Tv from a point t to γv is taken to a geodesic
segment from φ∗(t) to γv′ . From this it follows that the maps ρv glue together
to well-define the map ρ.

All that remains is to verify that ρ is simplicial. Given a simplex which is
the image of v× σ in the quotient, for some v ⊂ C(S) and σ ⊂ Tv, we have ρ of
this simplex is the image of ρv(v × σ) = v × ηv(σ) in the quotient. Since ηv(σ)
is either an edge or vertex, v × ηv(σ) projects to a simplex in the quotient, as
required.
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Proposition 3.2. We have

H+(γ) ∪H−(γ) = C(S, z)

and
H+(γ) ∩H−(γ) = X(γ).

Proof. The first statement follows from the fact that H+(γ) ∪H−(γ) = H and
that Φ is surjective.

The second can be see by looking in each tree Π−1(v) ∼= Tv (we use this
homeomorphism to identify the two spaces). For any vertex v ∈ C(S), let
H±(γv) = H±(γ) ∩ Π−1(v) = Φ({v} ×H+(γ)). Since H±(γ) is connected and
H±(γv) is a subgraph (by Proposition 3.1), so H±(γv) is a subtree. Therefore,
H+(γv)∩H−(γv) is a subtree containing γv. Let u ∈ H+(γv)∩H−(γv) be any
vertex, and we must show that u ∈ γv.

We can write u = Φ({v}×U) where U is a component of H−p−1(Nε(v)(v)).
Therefore, U ∩ H+(γ) 6= ∅ and U ∩ H−(γ) 6= ∅. Since U is connected and γ
separates H+(γ) and H−(γ) we have U ∩γ 6= ∅, and hence Φ({v}×U) = u ∈ γv

as required.
Now suppose u ∈ H+(γ) ∩H−(γ) is any vertex. Setting v = Π(u), we have

u ∈ (Π−1(v) ∩H+(γ) ∩H−(γ)) = γv = X(γ) ∩Π−1(v) ⊂ X(γ).

Since X(γ) is a subcomplex spanned by its vertex set, this completes the proof.

It will be convenient to keep the terminology in the proofs of these proposi-
tions and think of γv as “bounding half-trees” H±(γv) ⊂ Tv

∼= Π−1(v).

3.2 Rays and existence of Cannon-Thurston Maps

A ray r ⊂ H is said to have the all tails filling property (briefly, r is an ATF
ray) if for any simple closed geodesic v on S and any proper tail r′ ⊂ r

p(r′) ∩ v 6= ∅.

This clearly depends only on the asymptote class of r, and we say that a point
x ∈ ∂∞H is an ATF point, if any ray ending at x is an ATF ray. Let A∞ ⊂ ∂∞H
denote the set of all ATF points.

Lemma 3.3. If r is not an ATF ray, then Φ({v} × r) has bounded diameter
for all v ∈ C0(S).

Proof. Since r is not an ATF ray, there is some v′ ∈ C0(S), and a tail r′ ⊂ r for
which p(r′) is disjoint from v′. Therefore, Φ({v′}×r′) is vertex in Π−1(v′) ∼= Tv,
and hence Φ({v′}× r) has finite diameter. Since Φ({v}× r) is a finite Hausdorff
distance from Φ({v′} × r), the latter also has finite diameter.
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Recall that we have fixed once and for all a geodesic γ ⊂ H which projects
to a nonsimple closed geodesic in S. Consider a set {γn} of pairwise distinct
π1(S)–translates of γ, with the property that the half spaces are nested:

H+(γ1) ⊃ H+(γ2) ⊃ ...

Since the γn are all distinct, proper discontinuity of the action of π1(S) on H
implies that

∞⋂
n=1

H+(γn) = {x}

for some x ∈ ∂∞H. Here the bar denotes closure in H = H∪ ∂∞H. We say that
{γn} nests down on x. Note that {H+(γn)} determines a neighborhood basis
for x.

Given any x ∈ ∂∞H, if r ⊂ H is a geodesic ray ending at x, then since p(γ)
is filling, p(r) intersects p(γ) infinitely often. It follows that there is a sequence
{γn} which nest down on x.

Proposition 3.4. If {γn} is a sequence nesting down on an ATF point x ∈ A∞,
then for any choice of basepoint u0 ∈ C(S, z),

d(u0,H+(γn)) →∞

as n →∞.

Proof. In what follows, all distances are computed in the 1–skeleton (which
differs from the distance in the curve complex by a uniformly bounded mul-
tiplicative constant). We write u0 = Φ(v0, y) for some vertex v0 ∈ C(S) and
y ∈ H. By discarding a finite number of initial elements of the sequence {γn}
we may assume that y ∈ H−(γn) for all n, and so u0 ∈ H−(γn) for all n.

Now, fix any R > 0. Since

H+(γ1) ⊃ H+(γ2) ⊃ H+(γ3) ⊃ . . .

we must show that there exists N > 0 so that for all u ∈ H+(γN ), d(u0, u) ≥ R.

Claim 1. It suffices to prove that there exists N > 0, so that for all u ∈
(H+(γN ) ∩ Π−1(B(v0, R))), the distance inside Π−1(B(v0, R)) from u0 to u is
at least R.

Proof. Observe that any edge path from a point u ∈ C(S, z) to u0 which meets
C(S, z) − Π−1(B(v0, R)) projects to a path which meets both C(S) − B(v0, R)
and v0, and therefore has length at length at least R. Since Π is 1–Lipschitz,
the length of the path in C(S, z) is also at least R.

The intersection of H+(γn) with each fiber Π−1(v) ∼= Tv is a half tree de-
noted H+(γn,v) bounded by γn,v = X(γn)∩Π−1(v) (see the proof of Proposition
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3.2 and comments following it).

Claim 2. For any k > 0, there exists positive integers N1 < N2 < N3 < ... < Nk

so that
γNj ,v ∩ γNj+1,v = ∅ (2)

for all j = 1, ..., k − 1 and all v ∈ B(v0, R).

Proof. The proof is by induction on k. For k = 1, the condition is vacuously
satisfied by setting N1 = 1. So, we assume it is true for k ≥ 1, and prove it true
for k + 1. Thus, by hypothesis, we have found N1 < N2 < ... < Nk so that (2)
is true, and we need to find Nk+1 so that

γNk,v ∩ γNk+1,v = ∅ (3)

for all v ∈ B(v0, R).
We suppose that no such Nk+1 exists and arrive at a contradiction. Observe

that the nesting
H+(γ1,v) ⊃ H+(γ2,v) ⊃ ...

means that if γn,v ∩ γm,v = ∅ for some m > n, then γn,v ∩ γm+j,v = ∅ for all
j ≥ 0.

Thus, the if there is no Nk+1, it must be that for every j > 0, there exists a
curve vj ∈ B(v0, R) so that γNk,v ∩ γNk+j,v 6= ∅. Let uj ∈ γNk,v ∩ γNk+j,v be a
vertex in common. This vertex is the image of a component Uj ⊂ H− p−1(vj)
which meets both γNk

and γNk+j ; see Figure 6.

Figure 6: The region Uj and the geodesics γNk
and γNk+j from the sequence

nesting down on x.

γNk

γNk+j

Uj

x

Let gj ⊂ Uj ⊂ H be a geodesic segment connecting a point y−j ∈ γNk
to

y+
j ∈ γNk+j . Note that as j → ∞, y+

j converges to x. Furthermore, observe
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that all y−j must lie on a some compact arc K ⊂ γNk
. For, if not then there

must exist gj intersecting γNk
at arbitrarily small angles. In particular, there

must be gj which run very nearly parallel to γNk
for any arbitrarily long time.

However, because p(γNk
) is a filling curve and gj is contained in Uj which is

disjoint from p−1(vj), this is impossible.
So, after passing to a subsequence if necessary, we may assume that y−j con-

verge to some point y ∈ γNk
, and hence the sequence of geodesics gj converges

to a geodesic ray r∞ from y to x. By passing to a further subsequence, we can
assume that vj limits in the Hausdorff topology to a geodesic lamination L, and
that p(r∞) does not transversely intersect L. Because vj are all contained in
B(v0, R), L cannot contain an ending lamination as a sublamination. It fol-
lows from [CB87] that L is obtained from a lamination supported on a proper
subsurface Σ by adding a finite number of isolated leaves. Any geodesic ray
in S which does not transversely intersect L can only transversely intersect ∂Σ
twice (when it possibly exits/enters a crown; see [CB87]), and hence some tail
of p(r∞) is disjoint from ∂Σ. Therefore, r∞ cannot be an ATF ray, which is a
contradiction since it ends at x.

Now, pick an integer k > R + 1 and let N1 < N2 < ... < Nk be as in Claim
2. There can be no vertices u ∈ X(γNj ) ∩ X(γNj+1) ∩ B(v0, R), and since these
are subcomplexes, it must be that

X(γNj ) ∩ X(γNj+1) ∩Π−1(B(v0, R)) = ∅.
Moreover, since

H+(γN1) ⊃ H+(γN2) ⊃ ... ⊃ H+(γNk
)

it follows from Proposition 3.2 that

X(γNj ) ∩ X(γNi) ∩Π−1(B(v0, R)) = ∅ (4)

for all i 6= j between 1 and k.
Let u ∈ H+(γNk

) ∩ Π−1(B(v0, R)) be any point and {u0, u1, ..., um = u}
be the vertices of an edge path from u0 to u within Π−1(B(v0, R)). We have
u0 ∈ H−(γNj ) for all j and u ∈ H+(γNk

) ⊂ H+(γNj ) for all j. By Proposition
3.2, the edge path must meet X(γNj ) for each j. That is, for each j, there
is some i(j) so that ui(j) ∈ X(γNj ). By (4), there must therefore be at least
k > R + 1 vertices in the path, and hence the length of the path is at least R.

Therefore, setting N = Nk, we have for all u ∈ (H+(γN ) ∩ Π−1(B(v0, R))),
the distance inside Π−1(B(v0, R)) from u0 to u is at least R. By Claim 1, this
completes the proof of the proposition.

We can now prove the first half of Theorem 1.1.

Theorem 3.5. For any v ∈ C0(S), the map

Φv : H→ C(S, z)

has a continuous π1(S)–equivariant extension to

Φ
v

: H ∪ A∞ → C(S, z).
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Proof. Observe that Φv is already defined and continuous. All that remains is
to extend it to Φ

v
on A∞ and show that it is continuous there.

Fix a basepoint u0 ∈ C(S, z). Given any x ∈ A∞, let {γn} be any sequence
nesting down on x. According to Proposition 3.4, we have

d(u0,H+(γn)) →∞.

Moreover, by Proposition 3.1, H+(γn) is weakly convex and hence uniformly
quasi-convex. Finally, observe that Φv(H+(γn)) = Φ({v}×H+(γn)) ⊂ H+(γn).
Since x ∈ A∞ was an arbitrary point, Lemma 1.7 implies the existence of an
A∞–Cannon-Thurston map Φ

v
.

We note that given x ∈ A∞, Φ
v
(x) depends only on x, and not on v, and is

given simply as the unique point of intersection of the sets
⋂
n

H+(γn).

We can therefore unambiguously define Φ(x) = Φ
v
(x), independent of the choice

of v ∈ C0(S).

3.3 Separation

Proposition 3.6. Given x, y ∈ A∞, let ε be the geodesic connecting them.
Then there are π1(S)–translates γx and γy of γ defining half-space neighborhoods
H+(γx) and H+(γy) of x and y, respectively, with

∂∞H+(γx) ∩ ∂∞H+(γy) = ∅

if and only if p(ε) is nonsimple (i.e. p(ε) has at least one transverse self inter-
sections).

Before we can give the proof of Proposition 3.6, we will need the analogue
of Proposition 3.2 for the boundaries at infinity. Recall that γ was chosen to be
a biinfinite geodesic with stabilizer 〈δ〉 and p(γ) a filling closed geodesic.

Proposition 3.7. We have

∂∞H+(γ) ∩ ∂∞H−(γ) = ∂∞X(γ).

Proof. This follows from general principles. If |µ| ∈ ∂∞H+(γ) ∩ ∂∞H−(γ),
then let {u+

n } ⊂ H+(γ) and {u−n } ∈ H−(γ) be sequences converging to |µ| in
C(S, z). Let gn be geodesic segments from u+

n to u−n . By Proposition 3.2, there
is a vertex un ∈ gn ∩ X(γ). It follows that un also converges to |µ|, and so
|µ| ∈ ∂∞X(γ).

If H+(γx) and H+(γy) are disjoint, then to prove that the intersection of
Proposition 3.6 is empty, it suffices to show ∂∞X(γx) and ∂∞X(γy) are disjoint.
For this we need a description of ∂∞X(γ).
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Recall that γ was chosen to have p(γ) a filling closed geodesic on S and we
let δ generate the infinite cyclic stabilizer of γ. Work of Kra [Kra81] implies
that δ is pseudo-Anosov. We let |µ+| and |µ−| be the attracting and repelling
fixed points of δ, respectively, in ∂∞C(S, z).

Lemma 3.8.
∂∞X(γ) = Φ̂(∂∞C(S)× γ) ∪ {|µ±|}

Proof. Continuity of Φ̂ implies Φ̂(∂∞C(S)× γ) ⊂ ∂∞X(γ). Invariance of γ by δ
implies {|µ±|} ⊂ ∂∞X(γ), and so

∂∞X(γ) ⊃ Φ̂(∂∞C(S)× γ) ∪ {|µ±|}.

Suppose {un} is any sequence in X(γ) with un → |µ| ∈ ∂∞X(γ). We wish
to show that |µ| ∈ Φ̂(∂∞C(S) × γ) ∪ {|µ±|}, proving the reverse inclusion. By
definition of X(γ) there exists {(vn, xn)} ⊂ C(S)× γ with Φ(vn, xn) = un for all
n. There are two cases to consider.

Case 1. {xn} ⊂ K, for some compact arc K ⊂ γ.

After passing to a subsequence if necessary xn → x ∈ K. By Proposition
2.11, we can assume that vn accumulates on ∂∞C(S). So, after passing to yet
a further subsequence, we can assume that vn → |λ| ∈ ∂∞C(S). Then by
continuity of Φ̂ (Proposition 2.10) we have

|µ| = lim
n→∞

Φ(vn, xn) = Φ̂(|λ|, x) ∈ Φ̂(∂∞C(S)× γ).

Case 2. After passing to a subsequence xn → x, where x is one of the endpoints
of γ in ∂∞H.

Note that x ∈ A∞ since p(γ) is filling. Indeed, x is either the attracting
or repelling fixed point of δ. Without loss of generality, we assume it is the
attracting fixed point. Now suppose γ1 is any π1(S) translate which nontrivially
intersects γ so that {δn(γ1)} nests down on x, and hence

∞⋂
n=1

H+(δn(γ1)) =
∞⋂

n=1

δn(H+(γ1))

consists of the single point |µ+|, the stable fixed point of the pseudo-Anosov
δ. After passing to a further subsequence if necessary, we can assume xn ∈
H+(δn(γ1)). Therefore, Φ(vn, xn) ∈ H+(δn(γ1)), and hence

|µ| = lim
n→∞

Φ(vn, xn) = |µ+|.

Proof of Proposition 3.6. First, suppose p(ε) is simple. The closure of p(ε) is a
lamination L [CB87]. Since x and y are A∞ points, L must contain |λ| ∈ EL(S)
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as the sublamination obtained by discarding isolated leaves, and ε is either a
leaf of p−1(|λ|) or a diagonal for some complementary polygon of p−1(|λ|). Now,
suppose γx and γy are π1(S)–translates of γ for which H+(γx) and H+(γy) are
half-space neighborhoods of x and y, respectively.

It follows from Lemma 2.12 that if x′ ∈ γx∩ε and y′ ∈ γy∩ε, then Φ̂(|λ|, x′) =
Φ̂(|λ|, y′). Appealing to Lemma 3.8 we have

∅ 6= Φ̂({|λ|} × γx) ∩ Φ̂({|λ|} × γy)
⊂ ∂∞X(γx) ∩ ∂∞X(γy)
⊂ ∂∞H+(γx) ∩ ∂∞H+(γy)

as required. In fact, it is worth noting that by Lemma 2.12, Φ̂({|λ|} × ε) is a
single point which lies in all ∂∞H+(γx) ∩ ∂∞H+(γy), and is therefore equal to
Φ

v
(x) = Φ

v
(y).

Before we prove the converse, suppose γ1 and γ2 are two translates of γ for
which H+(γ1) ⊂ H−(γ2) and H+(γ2) ⊂ H−(γ1). Then we have

∂∞H+(γ1) ⊂ ∂∞H−(γ2) and ∂∞H+(γ2) ⊂ ∂∞H−(γ1).

Therefore, by Proposition 3.7, it follows that

∂∞H+(γ1) ∩ ∂∞H+(γ2) ⊂ ∂∞X(γ1) ∩ ∂∞X(γ2).

Further suppose that γ1 6= γ2, so that fixed points of the elements δ1 and δ2

generating the stabilizers of γ1 and γ2, respectively, are disjoint in ∂∞C(S, z).
If

∂∞H+(γ1) ∩ ∂∞H+(γ2) 6= ∅
then by Proposition 3.8 there exists x1 ∈ γ1 and x2 ∈ γ2 and |λ1|, |λ2| ∈
∂∞C(S) for which Φ̂(|λ1|, x1) = Φ̂(|λ2|, x2). According to Lemma 2.12, we
have |λ1| = |λ2|, and x1 and x2 lie on the same leaf, or in the closure of the
same complementary region of |λ1|. In particular, there is a biinfinite geodesic
contained in a complementary region or leaf of p−1(|λ1|) which meets both γ1

and γ2.
We now proceed to the proof of the converse. Let {γn,x} and {γn,y} be

sequences of π1(S)–translates of γ which nest down on x and y, respectively. If
∂∞X(γn,x)∩ ∂∞X(γn,y) = ∅ for some n, then we are done. If not, then we must
show that the geodesic ε with endpoints x and y has p(ε) simple on S.

Assuming ∂∞X(γn,x)∩∂∞X(γn,y) 6= ∅, there exists a sequence of laminations
{|λn|} ⊂ ∂∞C(S) so that γx,n and γy,n both meet a leaf or complementary
polygon of p−1(|λn|). It follows that there is a sequence of geodesics {εn} in H
for which p(εn) is simple on S, and εn∩γx,n 6= ∅ 6= εn∩γy,n. The limit ε of {εn}
has endpoints x and y and must also have p(ε) simple, as required (the limit of
simple geodesics is simple—see [CB87]).

The following is now immediate from Proposition 3.6 and its proof.

Corollary 3.9. Given x, y ∈ A∞, Φ
v
(x) = Φ

v
(y) if and only if x and y are

endpoints of a leaf or vertices of a complementary polygon of p−1(|λ|) for some
|λ| ∈ ∂∞C(S).
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3.4 Surjectivity

In this section, we prove that our map ∂Φv is surjective. This will require a few
lemmas.

According to Birman–Series [BS85], the set

⋃

v∈C0(S)

v

is nowhere dense. We fix an ε > 0, and assume that {ε(v)}v∈C0(S) is chosen
sufficiently small so that

S −
⋃

v∈C0(S)

Nε(v)(v)

is ε–dense. We further assume that ε(v) < ε for all v ∈ C0(S).

Lemma 3.10. Suppose (v1, x1), (v2, x2) ∈ C0(S)×H with Φ(vi, xi) = ui a vertex
in C(S, z) for i = 1, 2. Then there is a path

ν̃ = (ν̃1, ν̃2) : [a, b] → C(S)×H

such that Φ ◦ ν̃ is a geodesic from u1 to u2 and ν̃2([a, b]) connects x1 to x2 and
is contained in the 2ε–neighborhood of a geodesic containing x1, x2.

Proof. For each i = 1, 2, we can find x′i in the same component of S − Nε(vi)

as xi within ε of xi such that x′1 and x′2 are contained in some geodesic γ′

which projects to a filling closed geodesic in S (the pairs of endpoints of such
geodesics in ∂∞H is dense). Then Φ(vi, xi) = Φ(vi, x

′
i) for i = 1, 2. Moreover,

the geodesic from x′1 to x′2 is within ε of the geodesic from x1 to x2. If we
can find ν̃′ = (ν̃′1, ν̃

′
2) so that Φ ◦ ν̃′ is a geodesic from u1 to u2 and ν̃′2([a, b])

connects x′1 to x′2 and is within ε of the geodesic from x′1 to x′2, then we can
take ν̃ = (ν̃1, ν̃2) to be given by ν̃1 = ν̃′1 and ν̃2 to first run from x1 to x′1, then
traverse ν̃′2, and finally run from x′2 to x2 (all appropriately reparametrized).
This will then provide the desired path proving the lemma.

To construct ν̃′, we suppose for the moment that {ε(v)}v∈C0(S) have been
chosen so that any arc of γ′ ∩ p−1(Nε(v)(v)) enters and exists the component
it meets through distinct boundary components. With this assumption, we
can apply the proof of Proposition 3.1 to show that X(γ′) is weakly convex.
Now connect u1 and u2 by a geodesic edge path within X(γ′) with vertex set
{u1 = w1, w2, w3, ..., wk = u2}.

Let vi = Π(wi). We observe that for every i = 1, ..., k,

Φ−1(wi) ∩ (C(S)× γ′) = {vi} × αi

where αi is an arc of γ′∩(H−p−1(Nε(vi)(vi))) which is in particular connected. It
follows from the construction of Φ that the geodesics [wi, wi+1], for i = 1, ..., k−1
are images of paths in C(S) × γ′ which we denote ai = (bi, ci). Explicitly, if
vi = vi+1, then bi is constant and equal to vi = vi+1, and ci traverses an arc
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of Nε(vi)(vi) ∩ γ′. If vi 6= vi+1, then bi traverses from vi to vi+1 and ci can be
taken to be constant.

We can now define ν̃′ = (ν̃′1, ν̃
′
2) as follows.

1. Begin by holding ν̃′1 constant and let ν̃′2 traverse from x′1 to the initial
point of c1 inside α1 ⊂ γ′.

2. Next, traverse a1.

3. After that, hold ν̃′1 constant again and let ν̃′2 traverse from the terminal
point of c1 to the initial point of c2 inside α2 ⊂ γ′.

4. We can continue in this way, for i = 2, ..., k−2 traversing ai, then holding
ν̃′1 constant and letting ν̃′2 go from the terminal point of ci to the initial
point of ci+1 inside αi ⊂ γ′.

5. We complete the path by traversing ak−1, then holding ν̃′1 constant and
letting ν̃′2 traverse the path from the terminal point of ck−1 to x′2 inside
αk ⊂ γ′.

By construction, the projection of this path Φ◦ ν̃′ onto the first coordinate is the
geodesic from u1 to u2 that we started with (although it stops and is constant
at each of the vertices for some interval in the domain of the parametrization).
Moreover, ν̃′2 is contained in γ′ and connects x′1 to x′2, so therefore stays within
a distance 0 of the geodesic from x′1 to x′2 as required.

The proof so far was carried out under the assumption that for every v ∈
C0(S), every arc of γ′∩Nε(v)(v) enters and exits the component of Nε(v)(v) which
it meets in different boundary components. If this is not true, then first shrink
all ε(v) to numbers ε′(v) < ε(v) so that it is true, construct the path as above,
and call it ν̃′′ = (ν̃′′1 , ν̃′′2 ). Note that the numbers {ε′(v)}v∈C0(S) determine a
new map Φ′ : C(S)×H→ C(S, z), and Φ′ ◦ ν̃′′ is a geodesic. With respect to the
original map Φ, ν̃′′ is almost good enough for our purposes. The only problem
is that Φ ◦ ν̃′′ may now no longer be a geodesic: If there is some interval in the
domain in which ν̃′′1 is constant equal to v and ν̃′′2 enters and exits a component
p−1(Nε(v)(v)) from the same side, then Φ ◦ ν̃′′ will divert from being a geodesic
by running (less than half way) into an edge of Π−1(v) and running back out.
We modify ν̃′′ to the desired path ν̃′, by pushing ν̃′′2 outside of p−1(Nε(v)(v))
whenever this happens, thus changing it by at most ε(v) < ε. The resulting
path ν̃′ has ν̃′1 = ν̃′′1 and ν̃′2 still connects x′1 to x′2 and stays within ε of γ′, as
required.

Surjectivity of ∂Φv says that every point of ∂∞C(S, z) is the limit of Φv(r) for
some ray r ⊂ H ending at a point of A∞. The following much weaker conclusion
is easier to arrive at, and will be used in the proof of surjectivity.

Lemma 3.11. For any v ∈ C0(S), Φv(H) ∩ ∂∞C(S, z) = ∂∞C(S, z).

Proof. First, note that since π1(S) < Mod(S, z) is a normal, infinite subgroup
the limit set in PML(S, z) (in the sense of [MP89]) is all of PML(S, z). In
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particular, the closure of any π1(S)–equivariant embedding H ⊂ T (S, z) in
the Thurston compactification of Teichmüller space meets PML(S, z) in all of
PML(S, z). In particular, for any µ ∈ PFL, there is a sequence of points xn ∈ H
limiting µ ∈ PFL.

The systol map sys : T (S, z) → C(S, z) restricts to a π1(S)–equivariant
map from H to C(S, z), which is therefore a bounded distance from Φv. Again
appealing to Klarreich’s work [Kla99], it follows that sys extends continuously
to PFL(S, z), and hence sys(xn) → |µ| ∈ EL(S, z) ∼= ∂∞C(S, z). Therefore
Φv(xn) → |µ|. Since µ was arbitrary, every point of ∂∞C(S, z) is a limit of a
sequence in Φv(H), and we are done.

Given an arbitrary sequence {xn} in H, we need to prove the following.

Proposition 3.12. If lim
n→∞

xn = x ∈ ∂∞H− A∞, then Φv(xn) does not con-

verge to a point of ∂∞C(S, z).

One case of this proposition requires a different proof, and we deal with this
now.

Lemma 3.13. If {xn} and x are as in the proposition and x is the endpoint
of a lift of a closed geodesic on S, then Φv(xn) does not converge to a point of
∂∞C(S, z)

Proof. Under the hypothesis of the lemma, there is an element η ∈ π1(S) with x
as the stable fixed point. Moreover, because x 6∈ A∞, the geodesic representative
of this element of π1(S) is not filling. Therefore, the associated mapping class
is reducible (see [Kra81]).

Let γ0 be a π1(S)–translate of γ for which the half space H+(γ0) is a neigh-
borhood of x. Then {ηn(γ0)} nest down on x. It follows that after passing to a
subsequence (which we continue to denote {xn}) that

xn ∈ H+(ηn(γ0)) = ηn(H+(γ0)).

Appealing to the π1(S)–equivariance of Φ we have

Φv(xn) = Φ(v, xn) ∈ ∂∞H+(ηn(γ0)) = ηn(∂∞H+(γ0)).

Suppose now that Φv(xn) converges to some element |µ| ∈ ∂∞C(S, z). It
follows that

|µ| ∈
∞⋂

n=1

ηn∂∞H+(γ0).

However, any such |µ| is invariant under η, and since η is a reducible mapping
class, it fixes no point of ∂∞C(S, z). This contradiction implies Φv(xn) does not
converge to any |µ| ∈ ∂∞C(S, z), as required.

Proof of Proposition 3.12. We switch to the notation Φ(v, xn) = Φv(xn) as this
will be more descriptive in what follows. Suppose to the contrary that

lim
n→∞

Φ(v, xn) = |µ| ∈ EL(S, z) ∼= ∂∞C(S, z).

33



We begin by finding another sequence which also converges to |µ| to which we
can apply the techniques developed so far. By Lemma 3.13, we may assume
that x is not the endpoint of a lift of a closed geodesic on S.

Since x 6∈ A∞, it follows that there is a geodesic multicurve v0 ⊂ C(S) and
a ray r in H ending at x with the property that r ∩ p−1(v0) = ∅. We choose v0

so that p(r) satisfies the all tails filling condition in the component Y ⊂ S − v0

containing p(r). By this we mean that for any simple closed geodesic v′ which
nontrivially intersects the interior of Y , all tails of p(r) nontrivially intersect v′.
We note that it is always possible to find such a v0 unless r is asymptotic to a
component of p−1(v1) for some geodesic v1 ∈ C0(S). This would imply that x is
the endpoint on ∂∞H of a lift of a closed geodesic which we have assumed not
to be the case. Let Ỹ be the component of p−1(Y ) containing r.

We now pass to a subsequence (which we continue to denote {xn}) with the
property that for every k > 0, the geodesic segment βk connecting x2k to x2k+1

passes within some fixed distance, say distance 1, of r and so that furthermore

βk ∩ Ỹ 6= ∅.
Now fix any k > 0 and let νk : [ak, bk] → C(S, z) be a geodesic from Φ(v, x2k)

to Φ(v, x2k+1) of the form
νk = Φ ◦ ν̃k

where ν̃k = (ν̃k
1 , ν̃k

2 ) is given by Lemma 3.10. The path ν̃k
2 lies within 2ε of a

geodesic passing through x2k and x2k+1 and so must also pass within a uniformly
bounded distance of r (in fact, it passes within 1 + 2ε).

Choosing the subsequence {xn} sufficiently spread apart, we may assume
that βk spends a very long time in Ỹ . Doing this we may also arrange to have
ν̃k
2 intersecting Ỹ . Let tk ∈ [ak, bk] be such that

yk = ν̃k
2 (tk) ∈ Ỹ

and let vk = ν̃k
1 (tk) ∈ C0(S) (recall that ν̃k

2 is constant when ν̃k
1 is not, so we

can assume that tk is chosen so that ν̃k is indeed a vertex).
Now observe that since νk([ak, bk]) is a geodesic from Φ(v, x2k) to Φ(v, x2k+1),

the sequence {νk(tk)} = {Φ(vk, yk)} also converges to |µ|. Let us write uk =
Φ(vk, yk).

Next, for each k > 0 let fk ∈ Diff0(S) be such that ẽv(fk) = yk ∈ Ỹ . Since
Ỹ is a single component of p−1(Y ), we may assume that any two fj and fk differ
by an isotopy fixing the complement of the interior of Y . Said differently, they
all differ by such an isotopy of f1, and so can write ft ∈ Diff0(S) for t ∈ [1,∞)
with ft constant outside of the interior of Y and yk = ẽv(fk) for all integers
k ≥ 1.

We consider the subsurface (X, z) = (f−1
1 (Y ), z) ⊂ (S, z) and look at the

subsurface projections
π(X,z)(uk) ∈ C′(X, z)

into the arc complex C′(X, z) of (X, z). We consider the incomplete metric
on (X, z) (which we view now as the punctured surface X − {z}) for which
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f1 : (X, z) → (Y, f1(z)) is an isometry where Y − {f1(z)} is given the induced
path metric inside of S.

Claim. The length of some arc of π(X,z)(uk) tends to infinity.

We complete the proof modulo the Claim. If this happens, then there are
infinitely many projections in the set {π(X,z)(uk)} which is impossible if uk →
|µ|. Here, length means infimum of lengths over the isotopy class of an arc.
Proof of Claim: So, to prove that the length of some arc tends to infinity, first
suppose that {πY (vk)} contains an infinite set. Then there are arcs αk ⊂ πY (vk)
with `Y (αk) →∞. Now f−1

k (αk) is an arc of π(X,z)(uk) and `(X,z)(f−1
k (αk)) =

`(Y,f1(z))(f1f
−1
k (αk)). However, f1f

−1
k is the identity outside the interior of Y ,

in particular it is the identity on the boundary of Y and isotopic (forgetting z)
to the identity in Y . So, we have

`(Y,f1(z))(f1f
−1
k (αk)) ≥ `Y (αk) →∞

and hence there is an arc of π(X,z)(uk) with length tending to infinity as required.
We may now suppose that there are only finitely many arcs in the set

{πY (vk)}. By passing to a further subsequence if necessary, we may assume
that πY (vk) is constant equal to the union of arcs α1, ..., αm ∈ C′(Y ). We fix at-
tention on one arc α = α1. Again, we see that f−1

k (α) is an arc of π(X,z)(uk) and
`(X,z)(f−1

k (α)) = `(Y,f1(z))(f1f
−1
k (α)) with f1f

−1
t equal to the identity outside

the interior of Y for all t.
Writing ht = ftf

−1
1 , we are required to prove that `(Y,f1(z))(h−1

k (α)) tends
to infinity as k →∞. Observe that h1 is the identity on S and ht is the identity
outside the interior of Y for all t ∈ [1,∞). We can lift ht to h̃t so that h̃1 is the
identity in H. It follows from the definition of ẽv that h̃k(ẽv(f1)) = yk. Thus,
h̃t is essentially pushing the point y = ẽv(f1) ∈ Ỹ along the ray r (at least,
h̃k(y) = yk comes back to within a uniformly bounded distance to r for every
positive integer k, though it is not hard to see that we can choose ft so that h̃t

always stays a bounded distance from r).
Now h−1

t (α) can be described as applying the isotopy ht backward to α.
Therefore, if we let α̃k be the last arc of p−1(α) intersected by the path h̃t(y)
for t ∈ [1, k], then we can push α̃k backward along the isotopy h̃t as t runs from
k back to 1, and the result h̃−1

k (α̃k) projects down by p to h−1
k (α); see Figure

7. Moreover, observe that `(Y,f1(z))(h−1
k (α)) is at least the sum of the distances

from y to the two boundary components of Ỹ containing the end points of α̃k.
Finally, since r has all tails filling in Y , the distance from y to the boundary

components of Ỹ containing the endpoints of α̃k must be tending to infinity as
k → ∞ (otherwise, we would find that r is asymptotic to one of the bound-
ary components of Ỹ which contradicts all tails filling in Y ). This implies
`(Y,f1(z))(h−1

k (α)) tends to infinity as k →∞.
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This is the desired contradiction, and so we cannot have limk→∞ uk = |µ|.
Therefore, the original sequence {xn} cannot converge to |µ| and the proof is
complete.

Figure 7: On the left: r inside Ỹ (the complement of the shaded region), the
path h̃t(y) as it goes through yk = h̃k(y) and the arc α̃k. On the right: pushing
α̃k back by h̃−1

k .

Ỹ

α̃k

y

yk

h̃t(y)

h̃−1
k (α̃k)

x

r

We are now in a position to complete the proof of:

Theorem 1.1 (Universal Cannon–Thurston map). For any v ∈ C0(S), the map
Φv : H→ C(S, z) has a continuous π1(S)–equivariant extension

Φ
v

: H ∪ A∞ → C(S, z).

Moreover, ∂Φv = Φ
v|A∞ is a quotient map onto ∂∞C(S, z) obtained by identi-

fying the endpoints of each leaf and vertices of each complementary polygon of
the lifts of every ending lamination on S.

Proof. The extension and its continuity are given by Theorem 3.5. Next, we
need to prove that ∂Φv is surjective. To this end, let |µ| ∈ ∂∞C(S, z) be an
arbitrary point. According to Lemma 3.11 there exists a sequence {xn} ⊂ H
with

lim
n→∞

Φv(xn) = |µ|.

By passing to a subsequence, we may assume that {xn} converges to a point
x ∈ ∂∞H. It follows from Proposition 3.12 that x ∈ A∞. Then, by Theorem 3.5

|µ| = lim
n→∞

Φv(xn) = Φ
v
(x) = ∂Φv(x).
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Since |µ| was arbitrary, ∂Φv is surjective.
To prove that ∂Φv has the required description as a quotient map, we first

observe that Corollary 3.9 shows that two points x, y ∈ A∞ are identified if and
only if they are endpoints of a leaf or vertices of a complementary polygon of
p−1(|λ|) for some |λ| ∈ ∂∞C(S). Therefore, the fibers of ∂Φv are as required for
the given description as a quotient map.

The next two lemmas provides a basis for the topology of ∂∞C(S, z) and
proves that ∂Φv is indeed a quotient map.

To find neighborhood bases for points of EL(S, z), we must distinguish be-
tween two types of points of A∞.

We say a point x ∈ A∞ is simple if there exists a ray r in H ending at x
for which p(r) is simple. Otherwise, we say that x is not simple. Equivalently,
a point x ∈ A∞ is simple if and only if there is a lamination |λ| ∈ EL(S) such
that x is the endpoint of a leaf of p−1(|λ|).
Lemma 3.14. If x ∈ A∞ is not simple and {γn} are π1(S)–translates of γ
which nest down on x, {∂∞H+(γn)} is a neighborhood bases for Φ

v
(x).

Proof. We need only show that infinitely many of the ∂∞X(γn) are pairwise
disjoint. If not, then we follow a similar proof to that of Proposition 3.6.

This lemma gives neighborhood bases forΦ
v
(x) where x ∈ A∞ not a simple

point. The next lemma describes a neighborhood basis Φ
v
(x), where x is a

simple point.
Suppose x1, x2 are endpoints of a nonboundary leaf of p−1(|λ|) or x1, ..., xk

are points of a complementary polygon of some p−1(|λ|) for some |λ| ∈ EL(S).
We treat both cases simultaneously referring to these points as x1, ..., xk. Note
that Φ

v
(x1) = ... = Φ

v
(xk), and the Φ

v
–image of any simple point has this

form.

Lemma 3.15. If x1, ..., xk are as above, and {γ1,n},...,{γk,n} are sequences of
π1(S)–translates of γ with {γj,n} nesting down on xj for each j = 1, ..., k, then

{∂∞H+(γ1,n) ∪ · · · ∪ ∂∞H+(γk,n)}

is a neighborhood basis for ∂Φv(x1) = ... = ∂Φv(xk).

Proof. Let |µ| = ∂Φv(x1) = ... = ∂Φv(xk). We suppose we have a sequence
{|µn|} ⊂ EL(S, z) converging to |µ|, and we must prove that for every M , there
exists N > 0 so that for all n ≥ N ,

|µn| ∈ ∂∞H+(γ1,M ) ∪ · · · ∪ ∂∞H+(γk,M ). (5)

That is, for every one of these neighborhoods, some tail of a sequence converging
to |µ| lies in this neighborhood. Since {γ1,n}, ..., {γk,n} nests down on x1, ..., xk,
respectively, the intersection of the neighborhoods they define is |µ|, so this will
imply that they form a neighborhood basis.
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We can find a sequence {yn} ⊂ A∞ so that ∂Φv(yn) = |µn|. We wish to
show that any accumulation point of {yn} is one of the points x1, ..., xk. For
then, given any M , we can find an N > 0 so that for all n ≥ N

yn ∈ H+(γ1,M ) ∪ ... ∪H+(γk,M )

and hence (5) holds.
To this end, we pass to a subsequence so that yn → x ∈ ∂∞H. Choosing

sequences converging to yn for all n and applying a diagonal argument, we see
that there is a sequence {qn} ⊂ H with limn→∞ qn = x and limn→∞ Φv(qn) =
|µ|. By Proposition 3.12, x ∈ A∞.

Now, either x is one of the points x1, ..., xk or else the geodesic εi from
x to xj has p(εj) nonsimple for all j. In the latter situation, Proposition
3.6 guarantees π1(S)–translates γx, γ1,M , ..., γk,M of γ defining neighborhoods
H+(γx), H+(γ1,M ), ..., H+(γk,M ) of x, x1, ..., xk, respectively for which

∂∞H+(γx) ∩ ∂∞H+(γj,M ) = ∅
for all j = 1, ..., k. Since ∂Φv is continuous, we have Φv(yn) = |µn| → |µ| =
Φv(x) ∈ ∂∞H+(γx), which is impossible since |µ| ∈ ∂∞H+(γj,M ) for all j =
1, ..., k. Therefore, x = xj for some j, and we are done.

As noted, these lemmas imply that Φ
v

is a quotient map. To see this, we need
only show that E ⊂ ∂∞C(S, z) is closed if and only if F = (Φ

v
)−1(E) is closed.

Since Φ
v

is continuous, it follows that E closed implies F closed. Suppose that
F is closed. To show that E is closed, we let |µn| → |µ| and must check that
|µ| ∈ E. By Lemmas 3.14 and 3.15, there is a sequence {γn} nesting down on
some point x ∈ (Φ

v
)−1(|µ|) with |µn| ∈ ∂∞H+(γn). Let xn ∈ (Φ

v
)−1(|µn|) ⊂ F

be such that xn ∈ H+(γn). It follows that xn → x, so since F is closed, x ∈ F .
Therefore, Φ

v
(x) = |µ| ∈ E, as required.

4 Local path connectivity

The following, together with Lemma 3.15 will easily prove Theorem 1.2.

Lemma 4.1. ∂∞H+(γ) is path connected.

Proof. Fix any |λ| ∈ EL(S). According to Proposition 2.10, Φ̂ is continuous, so
we have a path connected subset

Φ̂({|λ|} ×H+(γ)) ⊂ ∂∞H+(γ).

Now let |µ| ∈ ∂∞H+(γ) be any point. We will construct a path in ∂∞H+(γ)
connecting some point of Φ̂({|λ|}×H+(γ)) to |µ|. This will suffice to prove the
lemma.

According to Theorem 1.1 there exists x ∈ A∞ so that for any v ∈ C(S),
Φ

v
(x) = |µ|. Let r : [0, 1) → H+(γ) be a ray with

lim
t→1

r(t) = x.
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Let {γn} be a sequence of π1(S)–translates of γ which nest down on x. We
assume, as we may, that γ1 = γ. Therefore, there is a sequence t1 < t2 < ...
with limn→∞ tn = 1 and

r([tn, 1)) ⊂ H+(γn)

and hence again by Proposition 2.10

Φ̂({|λ|} × r([tn, 1)) ⊂ Φ̂({|λ} ×H+(γn)) ⊂ ∂∞H+(γn)

Recall that by definition, Φ
v
(x) is the unique point of intersection

∞⋂
n=1

∂∞H+(γn),

and hence
lim
t→1

Φ̂(|λ|, r(t)) = |µ|.

Therefore, we can extend R|λ|(t) = Φ̂(|λ|, r(t)) to a continuous map

R|λ| : [0, 1] → ∂∞H+(γ)

with R|λ|(0) ∈ Φ̂({|λ|} ×H+(γ)) and R|λ|(1) = |µ|. This is the required path
completing the proof.

We now prove
Theorem 1.2. The Gromov boundary ∂∞C(S, z) is path connected and locally
path connected.

Proof. From Lemma 4.1, we see that every set of the form ∂∞H+(γ0) is path
connected for any π1(S)–translate γ0 of γ. Since there is a bases for the topology
consisting of these sets, and finite unions of these sets which all share a point by
Lemma 3.15, this proves local path connectivity. Path connectivity follows from
Lemma 4.1, the fact that ∂∞C(S, z) = ∂∞H+(γ) ∪ ∂∞H−(γ), and Proposition
3.7.
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