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Abstract

The intersection pattern of the translates of the limit set of a quasi-
convex subgroup of a hyperbolic group can be coded in a natural inci-
dence graph, which suggests connections with the splittings of the am-
bient group. A similar incidence graph exists for any subgroup of a
group. We show that the disconnectedness of this graph for codimen-
sion one subgroups leads to splittings. We also reprove some results of
Peter Kropholler on splittings of groups over malnormal subgroups and
variants of them.
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1 Introduction

Let M be a closed 3–manifold and f : S → M an immersed least area surface
such that not all complementary regions in M are handlebodies. Thickening
f(S) in M and filling in all compressing disks and balls, we obtain a codimension
zero submanifold with incompressible boundary F . Then π1(M) splits over
π1(F ). An interesting special case occurs when M admits two immersed least
area surfaces which are disjoint, as the condition on complementary components
of each of the surfaces is then automatically satisfied. The aim of this paper is
to obtain group-theoretic analogues of these and related facts using the theory
of algebraic regular neighborhoods developed by Scott and Swarup [11].

1.1 Statement of Results

Let G be a group and H a subgroup. A simplicial complex (termed C–complex)
can be constructed from the incidence relations determined by the cosets of H as
follows (see [6]). The vertices of C(G, H) are the cosets gH and the (n−1)–cells
are n–tuples {g1H, · · · , gnH} of distinct cosets such that ∩n

1 giHg−1
i is infinite.

When G is hyperbolic and H quasiconvex, this is equivalent to the incidence
complex where vertices are limit sets and (n− 1)–cells are n–tuples of limit sets
with non-empty intersection. (See [9] and [2] for related material.)

Let e(G) denote the number of ends of a group G, and let e(G, H) denote
the number of ends of a group pair (G, H). Our main Theorem states:

Theorem 2.2 Suppose that G is a finitely generated group and H a finitely
generated subgroup. Further, suppose that e(G) = e(H) = 1 and e(G, H) ≥ 2.
If C(G, H) is disconnected, then G splits over a subgroup (that may not be
finitely generated).

Since we are only interested in the connectivity of C(G, H), it is enough
to consider the connectivity of its 1–skeleton C1(G, H) which has the following
simple description: the vertices of C1(G, H) are the essentially distinct cosets
Hg of H in G and two vertices Hg and Hk are joined by an edge if and only if
gHg−1 and kHk−1 intersect in an infinite set.

The principal technique used to prove Theorem 2.2 is the theory of alge-
braic regular neighborhoods developed by Scott and Swarup [11] and a lemma
on crossings (in the sense of Scott [10]) which may be of independent inter-
est. Our results have some thematic overlap with results of Kropholler [4] and
Niblo [7], and this is discussed at the end of the paper. We also prove a slight
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generalization of a theorem of Kropholler [4] and the following variant of that
theorem:
Theorem 3.7 Let G be a finitely generated, one-ended group and let K be
a subgroup which may not be finitely generated. Suppose that e(G, K) ≥ 2,
and that K is contained in a proper subgroup H of G such that H is almost
malnormal in G and e(H) = 1. Then G splits over a subgroup of K.

1.2 Crossing

We recall certain basic notions from [10] and [11]. We say that a subset A of G

is H–finite if A is contained in a finite number of right cosets Hg of H in G.
Two subsets X and Y of G are said to be H–almost equal if their symmetric
difference (X−Y )∪(Y −X) is H–finite. A subset X of G is said to be H–almost
invariant if HX = X , and X and Xg are H–almost equal, for all g in G. We
may also say that X is almost invariant over H . Such a set X is said to be
nontrivial if both X and its complement X∗ are not H–finite. The number of
ends, e(G, H), of the pair (G, H) is ≥ 2 if and only if G has nontrivial H–almost
invariant subsets.

The following simple result will be needed later. It is Lemma 2.13 of [11].

Lemma 1.1 Let G be a group with subgroups H and K. Suppose that Xg is
K–almost equal to X for all g in G, and that X is H–finite. Then either X is
K–finite or H has finite index in G.

We shall use the notion of crossing of almost invariant sets in the sense of
Scott [10]. Let G be a finitely generated group and ΓG the Cayley graph of G

with respect to a finite generating set. Thus the vertex set of ΓG equals G. Let
H and K be subgroups of G, and let X and Y be almost invariant subsets of G

over H and K respectively. Let X∗ and Y ∗ denote their complements.
Given two subsets X and Y of a group G, it will be convenient to use the

terminology corner for any one of the four sets X ∩ Y , X∗ ∩ Y , X ∩ Y ∗ and
X∗ ∩ Y ∗. Thus any pair (X, Y ) has four corners.

Definition 1.2 Let X be a H–almost invariant subset of G and let Y be a K–
almost invariant subset of G. We will say that Y crosses X if each of the four
corners of the pair (X, Y ) is H–infinite. Thus each of the corners of the pair
projects to an infinite subset of H\G.

It is shown in [10] that if X and Y are nontrivial, then X ∩ Y is H–finite if
and only if it is K–finite. It follows that crossing of nontrivial almost invariant
subsets of G is symmetric, i.e. that X crosses Y if and only if Y crosses X .

Next we recall some material from [11]. Let G be a group with subgroups
H and K, and let X and Y be nontrivial almost invariant subsets of G over H

and K respectively. We will denote the unordered pair {X, X∗} by X, and will
say that X crosses Y if X crosses Y .

Now let Hi be a subgroup of G and let Xi be a nontrivial Hi–almost invariant
subset of G. Let E = {gXi, gX∗

i : g ∈ G, 1 ≤ i ≤ n}, and let E = {gXi : g ∈
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G, 1 ≤ i ≤ n}. Thus G acts on the left on E and on E. Define an equivalence
relation on E to be generated by the relation that two elements A and B of E

are related if they cross. We call an equivalence class of this relation a cross-
connected component (CCC) of E, and denote the equivalence class of A by [A].
We will denote the collection of all CCC’s of E by P . Note that the action of
G on E induces an action of G on P .

We will first introduce a partial order on E. If U and V are two elements of
E such that U ⊂ V , then our partial order will have U ≤ V . But we also want
to define U ≤ V when U is “nearly” contained in V . If U is L–finite and V is
M–finite, we will say that a corner of the pair (U, V ) is small if it is L–finite
(and hence M–finite). We want to define U ≤ V if U ∩ V ∗ is small. Clearly
there will be a problem with such a definition if the pair (U, V ) has two small
corners, but this can be handled if we know that whenever two corners of the
pair (U, V ) are small, then one of them is empty. Thus we consider the following
condition on E:

Condition (*): If U and V are in E, and two corners of the pair (U, V ) are
small, then one of them is empty.

If E satisfies Condition (*), we will say that the family X1, . . . , Xn is in good
position.

Assuming that this condition holds, we can define a relation ≤ on E by
saying that U ≤ V if and only if U ∩V ∗ is empty or is the only small set among
the four corners of the pair (U, V ). Then ≤ turns out to be a partial order on
E. If U ≤ V and V ≤ U , it is easy to see that we must have U = V , using
the fact that E satisfies Condition (*). It is proved in [11] that ≤ is transitive.
We note here that the argument that ≤ is transitive does not require that the
Hi’s be finitely generated. Now there is a natural idea of betweenness on the
set P of all CCC’s of E. Given three distinct elements A, B and C of P , we
say that B lies between A and C if there are elements U , V and W of E such
that U ∈ A, V ∈ B, W ∈ C and U ≤ V ≤ W . Note that the action of G on P

preserves betweenness.
For the remainder of this discussion we will assume that G and the Hi’s are

all finitely generated.
An important point is that if one is given a family X1, . . . , Xn of almost

invariant subsets of G, the family need not be in good position, but it was
shown in [8], using the finite generation of G and the Hi’s, that there is a family
Y1, . . . , Yn of almost invariant subsets of G, such that Xi and Yi are equivalent,
and the Yi’s are in good position.

A pretree consists of a set P together with a ternary relation on P denoted
xyz which one should think of as meaning that y is strictly between x and z.
The relation should satisfy the following four axioms:

• (T0) If xyz, then x 6= z.

• (T1) xyz implies zyx.

• (T2) xyz implies not xzy.
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• (T3) If xyz and w 6= y, then xyw or wyz.

A pretree is said to be discrete, if, for any pair x and z of elements of P , the
set {y ∈ P : xyz} is finite. In [11], Scott and Swarup showed that if G and the
Hi’s are all finitely generated, then the set P of all CCC’s of E with the above
idea of betweenness is a discrete pretree. We define a star in P to be a maximal
subset of P which consists of mutually adjacent elements.

It is a standard result that a discrete pretree P can be embedded in a natural
way into the vertex set of a tree T , and that an action of G on P which preserves
betweenness will automatically extend to an action without inversions on T .
Also T is a bipartite tree with vertex set V (T ) = V0(T ) ∪ V1(T ), where V0(T )
equals P , and V1(T ) equals the collection of all stars in P . It follows that the
quotient G\T is naturally a bipartite graph of groups Θ with V0–vertex groups
conjugate to the stabilisers of elements of P and V1–vertex groups conjugate to
the stabilisers of stars in P .

The CCC’s of E form the V0–vertices of the bipartite G–tree T (Theorem
3.8 of [11]) with V1–vertices corresponding to stars of V0–vertices. The graph
is minimal (Theorem 5.2 of [11])and does not reduce to a point if there is more
than one V0–vertex, i.e. more than one CCC.

1.3 C–complexes

The notion of height of a subgroup was introduced by Gitik, Mitra, Rips and
Sageev in [2] and further developed in [5].

Definition 1.3 Let H be a subgroup of a group G. We say that the elements
g1, . . . , gn of G are essentially distinct if Hgi 6= Hgj for i 6= j. Conjugates of
H by essentially distinct elements are called essentially distinct conjugates.

Note that we are abusing terminology slightly here, as a conjugate of H by
an element belonging to the normalizer of H but not belonging to H is still
essentially distinct from H . Thus in this context a conjugate of H records
(implicitly) the conjugating element.

We now proceed to define the simplicial complex C(G, H) for a group G and
H a subgroup.

Definition 1.4 Let G be a group with subgroup H. Then the simplicial com-
plex C(G, H) has vertices (0–cells) which are the cosets gH of H (or equivalently
conjugates of H by essentially distinct elements), and (n− 1)–cells are n–tuples
{g1H, · · · , gnH} of distinct cosets such that ∩n

1 giHg−1
i is infinite (in fact by

[12] an infinite quasiconvex subgroup of G).

We shall refer to the complex C(G, H) as the C–complex for the pair
(G, H). (C stands for “coarse” or “Čeach” or “cover”, since C(G, H) is like a
coarse nerve of a cover, reminiscent of constructions in Čeach cochains.)
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If G is a word hyperbolic group and H is a quasiconvex subgroup, we give
below two descriptions of C(G, H) which are equivalent to the above definition.
In this case, let ∂G denote the boundary of G, let Λ denote the limit set of H ,
and let J denote the convex hull in hyperbolic space of Λ.
1) Vertices (0–cells) of C(G, H) are translates of Λ by essentially distinct ele-
ments, and (n− 1)–cells are n–tuples {g1Λ, · · · , gnΛ} of distinct translates such
that ∩n

1 giΛ 6= ∅.
2) Vertices (0–cells) are translates of J by essentially distinct elements, and
(n− 1)–cells are n–tuples {g1J, · · · , gnJ} of distinct translates such that ∩n

1 giJ

is infinite.

2 Non-crossing and splittings

For the proof of Lemma 2.1 below, instead of using the notion of coboundary as
in [11] we use terminology introduced by Guirardel in a different context. Let
A be a subset of G (the vertex set of ΓG). Define

∂A = {a ∈ A| there exists a′ ∈ A∗, d(a, a′) = 1}.

Then
∂(A ∩ B) = (∂A ∩ B) ∪ (A ∩ ∂B).

By a connected component of A we mean a maximal subset of A whose elements
(vertices of ΓG) can be joined by edge paths of ΓG, none of whose vertices lie
in A∗. If B is finite, G \ B has finitely many components. Arguments similar
to those in the following lemma occur in Kropholler’s paper [4]. We give a
topological argument which is also used later.

2.1 A non-crossing Lemma

Lemma 2.1 Let G be a finitely generated group with finitely generated sub-
groups H and K. Let X and Y be nontrivial almost invariant subsets of G over
H and K respectively. Suppose that e(G) = e(H) = e(K) = 1, and that H ∩ K

is finite. Then X and Y do not cross.

Proof: Let ΓG be the Cayley graph of G with respect to some finite generating
set. Thus the vertex set of ΓG equals G. Our first step is to thicken X , X∗,
Y and Y ∗ in ΓG to make them connected. For any subset A of ΓG, we let
NR(A) denote the R–neighborhood of A in ΓG. Now let S be a finite system of
generators of H and let F be a finite subset of X such that ∂X ⊂ H.F . If R is the
diameter of the set S.F , then NR(∂X) is connected. Since NR(∂X) ⊂ NR(X)
and since any point of X can be connected to a point of ∂X by an edge path
all of whose vertices lie in X , it follows that NR(∂X) ∪ X = NR(X) and is
connected. Since any point of ∂X∗ is within distance 1 of ∂X , it follows that
NR+1(∂X∗), and hence NR+1(X

∗), is also connected. Hence for any T ≥ R+1,
NT (X), NT (X∗), NT (∂X) and NT (∂X∗) are all connected. Similar arguments
apply to Y and Y ∗.
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In what follows we will consider only sets NR(A), where A is one of the
above subsets of G, and R is fixed so that each NR(A) is connected. Thus for
notational simplicity we will denote NR(A) by N(A).

Now N(∂X)∩N(∂Y ) is the intersection of an H–finite set with a K–finite set,
and is therefore (H∩K)–finite. As H∩K is finite, it follows that N(∂X)∩N(∂Y )
is finite. Let U denote this intersection. Then N(∂X) can be expressed as the
union of U , (N(∂X) ∩ N(Y )) \ U and (N(∂X) ∩ N(Y ∗)) \U . Since U is finite,
(N(∂X) ∩ N(Y ))\U and (N(∂X) ∩ N(Y ∗))\U have finitely many components.
As e(H) = 1, it follows that N(∂X) also has one end, so that only one of these
components can be infinite. Thus one of N(∂X) ∩ N(Y ) and N(∂X) ∩ N(Y ∗)
must be finite. Without loss of generality, we can suppose that N(∂X)∩N(Y )
is finite. Similarly, by reversing the roles of X and Y , one of N(X) ∩ N(∂Y )
and N(X∗) ∩ N(∂Y ) must be finite.

If N(X) ∩ N(∂Y ) is finite, then ∂(X ∩ Y ) = (∂X ∩ Y ) ∪ (X ∩ ∂Y ) ⊂
(N(∂X) ∩ N(Y )) ∪ (N(X) ∩ N(∂Y )), which is finite. Thus ∂(X ∩ Y ) is finite.
Since (X∩Y )∗ = X∗∪Y ∗ is infinite and e(G) = 1, we see that X∩Y must itself
be finite which shows that X and Y do not cross. Similarly if N(X∗) ∩ N(∂Y )
is finite, then X∗ ∩ Y must be finite which again shows that X and Y do not
cross. We conclude that in all cases X and Y cannot cross, as required. �

2.2 Splitting Theorem

We will now apply the preceding non-crossing result and the material from [11]
discussed in subsection 1.2 to prove the following splitting results.

Theorem 2.2 Suppose that G is a finitely generated group and H a finitely
generated subgroup. Further, suppose that e(G) = e(H) = 1 and that e(G, H) ≥
2. If C(G, H) is disconnected, then G splits over some subgroup (that may not
be finitely generated).

Proof: Let X be a nontrivial H–almost invariant subset of G. By Lemma 2.1
applied to X and gX , we see that if H ∩ gHg−1 is finite, then X and gX do
not cross.

Hence if X and gX cross, then H ∩ gHg−1 is infinite, and H and gH must
lie in the same component of the C–complex C(G, H). As C(G, H) is not
connected, we must have more than one CCC. Thus the tree T of CCC’s does not
reduce to a point, is a minimal G–tree and each edge of T induces a non-trivial
splitting of G. This completes the proof of the theorem. (Note, however, that
though V0–vertices have finitely generated stabilizers, the edges and V1–vertices
need not. Thus the splitting may be over an infinitely generated subgroup.) �

Essentially the same techniques show

Corollary 2.3 Suppose that H and K are finitely generated subgroups of a
finitely generated group G, and suppose that e(G) = e(H) = e(K) = 1; e(G, H) ≥
2; e(G, K) ≥ 2. If all the conjugates of K intersect H in finite groups, then G

admits a splitting.
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The graph considered here is reminiscent of the transversality graph consid-
ered by Niblo [7], and Corollary 2.3 is similar to his Theorem D. The transver-
sality graph considered by Niblo is dependent on the H–almost invariant set
chosen, but if one chooses a set in very good position as in [8], one obtains the
regular neighborhood graph considered above. Similarly, once we have the non-
crossing lemma, by choosing almost invariant sets in very good position one can
deduce Corollary 2.3 here from Theorem D of Niblo [7]. See also the discussion
on page 95 of [11].

3 Some other applications

We recall that a subgroup H of a group G is said to be almost malnormal if
whenever Hg ∩ H is infinite it follows that g lies in H . In Theorem 2.2, if
we assume in addition that H is almost malnormal, then the graph C(G, S) is
totally disconnected and the proof shows that G splits over a subgroup of H .
However in this case we can do slightly better by more elementary arguments.
First we recall the following criterion of Dunwoody:

Theorem 3.1 Let E be a partially ordered set with an involution e → e where
e 6= e such that:

(D1) If e, f ∈ E and e ≤ f , then f ≤ e,
(D2) If e, f ∈ E, there are only finitely many g ∈ E such that e ≤ g ≤ f ,
(D3) If e, f ∈ E, then at least one of the four relations e ≤ f, e ≤ f, e ≤

f, e ≤ f holds, and
(D4) If e, f ∈ E, one cannot have both e ≤ f and e ≤ f .
Then there is an abstract tree T with edge set equal to E such that e ≤ f if

and only if there is an oriented path in T that starts with e and ends with f .

Next we recall the following result of Kropholler, which is Theorem 4.9 of
[4]. We will discuss the definition of the invariant ẽ(G, H) below.

Theorem 3.2 Suppose that G is a finitely generated group with a finitely gen-
erated subgroup H, such that e(G) = 1 = e(H).

1. If H is malnormal in G, and e(G, H) ≥ 2, then G splits over H.

2. If H is malnormal in G, and ẽ(G, H) ≥ 2, then G splits over a subgroup
of H.

Our methods allow us to extend this result. First we give the following slight
generalization of the first part of Kropholler’s theorem. The only difference is
that we have replaced malnormality by the weaker condition of almost malnor-
mality. Later we will slightly generalize the second part in the same way, and
will also prove a variant of Kropholler’s result.

Theorem 3.3 Suppose that G is a finitely generated group with a finitely gen-
erated subgroup H, such that e(G) = 1 = e(H). If H is almost malnormal in
G, and e(G, H) ≥ 2, then G splits over H.

8



Proof. To prove this result, we will apply Dunwoody’s criterion to the set
E = {gX, gX∗, g ∈ G}, with the partial order ≤ discussed in subsection 1.2.
Recall that this partial order can only be defined if X is in good position. We
will show that this is automatic in the present setting. If two corners of the pair
(X, gX) are finite, it follows that gX is equivalent to X or to X∗. In particular
this implies that Hg and H are commensurable subgroups of G. As H is infinite
and almost malnormal in G, this can only occur if g lies in H , so that gX equals
X , and the two small corners are both empty. Thus X is in good position, as
required.

Next we observe that with this partial order on E, conditions (D1) and (D4)
of Dunwoody’s criterion are trivial. Condition (D3) holds, because our non-
crossing lemma implies that for any e, f ∈ E one of the corners of the pair (e, f)
is finite. Finally, as in the proof of Lemma B.1.15 of [11], condition (D2) holds
because the set of g ∈ G for which X and gX are not nested is contained in
a finite number of double cosets HgH . This crucially uses the fact that H is
finitely generated and will be discussed in more detail in the proofs of the next
theorems. Now Dunwoody’s criterion gives us a tree T on which G acts and
which is minimal. Since the stabilizer of X is H , we see that G splits over H .
This completes the proof of Theorem 3.3.

Even though, the condition e(G) = 1 in the above result is generic, the
hypotheses of almost malnormality and having one end are not generic for the
subgroup H and we would like to slightly weaken this condition.

The statement of the second part of Kropholler’s theorem involves the no-
tion of the number of relative ends ẽ(G, H) of a pair of groups (G, H), due to
Kropholler and Roller [3]. As discussed on pages 31-33 of [11], this is the same
as the number of coends of the pair, as defined by Bowditch [1]. The following
lemma (Lemma 2.40 of [11]) contains the only facts we will need about relative
ends.

Lemma 3.4 Let G be a finitely generated group and let H be a finitely gen-
erated subgroup of infinite index in G. Then ẽ(G, H) ≥ 2 if and only if there
is a subgroup K of H with e(G, K) ≥ 2. The subgroup K need not be finitely
generated.

Let Γ be the Cayley graph of G with respect to a finite system of generators.
The number of coends of the pair (G, H) can be defined in terms of the number
of H-infinite components of Γ − A for a connected H–finite subset A of Γ. So
we have

Lemma 3.5 Let G be a finitely generated group and H a finitely generated
subgroup of G. Then ẽ(G, H) ≥ 2 if and only if there is a connected H-finite
subcomplex A of Γsuch that Γ−A has at least two infinite components. Moreover,
we may assume that A is H-invariant.

We now proceed to the statement and proof of a slight generalization of the
second part of Kropholler’s theorem (3.2), in which malnormal is again replaced
by almost malnormal.

9



Theorem 3.6 Suppose that G is a finitely generated group with a finitely gen-
erated subgroup H, such that e(G) = 1 = e(H), and suppose that ẽ(G, H) ≥ 2.
If H is almost malnormal in G, then G splits over a subgroup of H.

Proof. As ẽ(G, H) ≥ 2, there is a H–invariant, connected subcomplex A of
Γ which is also H–finite, and such that Γ − A has at least two H–infinite
components. Denote one of these components by X and let K be the stabilizer
of X . Thus K is a subgroup of H . We will show that E = {gX, gX∗ : g ∈ G}
equipped with the partial order ≤ described earlier satisfies the four conditions
of Dunwoody’s Criterion and thus G splits over K.

Firstly, we observe that X∗ must be connected, since A is connected. As H

preserves A it must also preserve the components of Γ−A, so that, for all h in
H , we have hX = X or hX ∩X = ∅. Thus the pair (hX, X) is nested, for each
h in H . Now suppose that g is an element of G such that the pair (gX, X) is
not nested, so that g must lie in G − H . Thus each of the four corners of the
pair (gX, X) is non-empty. We note that ∂X must intersect both gX and gX∗,
and that ∂gX must intersect both X and X∗. As ∂X and ∂gX are contained
in A and gA respectively, we see that A and gA must also intersect. As A is
H–finite, gA must be Hg–finite, and A ∩ gA must be H ∩ Hg–finite. As H is
almost malnormal in G, and g ∈ G − H , it follows that A ∩ gA is finite. Now
recall that e(H) = 1. As A is H–finite, it follows that A, and hence also gA, is
one-ended. Thus one of A ∩ gX and A ∩ gX∗ is finite, and one of X ∩ gA and
X∗ ∩ gA is finite.

If the first of each pair is finite, we have ∂(X ∩ gX) = (∂X ∩ gX) ∪ (X ∩
∂gX) ⊆ (A ∩ gX) ∪ (X ∩ gA) is finite. As e(G) = 1, and the complement of
X ∩ gX in G is clearly infinite, it follows that X ∩ gX is finite. Thus one of the
corners of the pair (gX, X) is finite, and two of them cannot be finite since H

is almost malnormal in G. Similarly if one of the three other possibilities holds,
then a different corner of the pair (gX, X) will be finite. Hence X is in good
position, and we have the partial order ≤ on the set E = {gX, gX∗; g ∈ G}.
All the conditions in Dunwoody’s Criterion are immediate except the finiteness
condition (D2).

Let L denote {g ∈ G : the pair (gX, X) is not nested}. We saw above that
if g ∈ L, then gA and A have nonempty intersection. As A is H–finite, it
follows that L is contained in a finite number of double cosets HgH . We want
to show that L is actually contained in a finite number of double cosets KgK.
To see this, consider l ∈ L. Thus lA and A have nonempty finite intersection.
Since A ∩ lA is finite, lA − A is contained in a finite number of components
of Γ − A. Thus lA meets only finitely many translates hX of X with h ∈ H .
It follows that lX and hX can be not nested, for only finitely many translates
hX of X with h ∈ H , and hence that hlX and X are not nested, for only
finitely many translates hlX of X with h ∈ H . As l−1 also lies in L, the
same argument shows that hl−1X and X are not nested, for only finitely many
translates hl−1X of X with h ∈ H , and hence that X and lhX are not nested,
for only finitely many translates lhX of X with h ∈ H . As the stabilizer of X

is K, it follows that the intersection L ∩ HlH consists of finitely many double
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cosets KgK. Hence L itself is contained in finitely many double cosets KgK.
Choose g1, ..., gn such that L is contained in ∪KgiK. Consider Y in E with
Y ≤ X , so that Y ∩ X∗ is finite. If Y ∩ X∗ is not empty, so that X and Y are
not nested, then Y must be of the form gX or gX∗ with g being one of the gi’s.
Now kgik

′X(∗) ∩ X∗ = kgiX
(∗) ∩ X∗ = k(giX

(∗) ∩ X∗). Choose D such that
the finite number of finite sets (giX

(∗) ∩X∗) all lie in a D–neighborhood of X .
Then Y also must lie in a D–neighborhood of X . Thus every element Y of E

such that Y ≤ X lies in a D–neighborhood of X . Similarly every element Y of
E such that Y ≤ X∗ lies in a bounded neighborhood of X∗. By increasing D if
necessary, we can assume that this neighborhood is also of radius D.

Now we can verify condition (D2) of Dunwoody’s criterion. Suppose that U

and V are elements of E. We claim that there are only finitely many W ∈ E

with U ≤ W ≤ V . The first inequality implies that W ∗ ≤ U∗, so that W ∗

lies in a D-neighborhood of U∗. Hence we can choose x ∈ U which does not
belong to any such W ∗. Similarly the inequality W ≤ V implies that W lies in
a D–neighborhood of V , so that we can choose y ∈ V ∗ which does not belong
to any such W . If ω is a path from x to y, then ω should intersect ∂W . Since
G is finitely generated, there can be only finitely many such W . This completes
the verification of Dunwoody’s Criterion and thus completes the proof of the
theorem.

Finally we give our variant of Kropholler’s theorem (3.2).

Theorem 3.7 Let G be a finitely generated, one-ended group and let K be
a subgroup which may not be finitely generated. Suppose that e(G, K) ≥ 2,
and that K is contained in a proper subgroup H of G such that H is almost
malnormal in G and e(H) = 1. Then G splits over a subgroup of K.

Remark 3.8 Lemma 3.4 shows that the hypotheses imply that ẽ(G, H) ≥ 2.
This is why we regard this result as a refinement of the second part of Kropholler’s
theorem (3.2).

Proof. We start by observing that the assumptions that H is proper and almost
malnormal in G imply that H has infinite index in G.

As e(G, K) ≥ 2, there is a nontrivial K–almost invariant subset X of G.
As usual, we let Γ denote a Cayley graph for G with respect to some finite
generating set. As the coboundary δX of X is K–finite, the image of δX in
H\Γ must be finite. As H is finitely generated, we can find a finite connected
subgraph W of H\Γ such that W contains the image of δX and the natural map
from π1(W ) to H is surjective. Thus the pre-image A of W in Γ is connected,
H-invariant and H–finite, and contains δX . As W is finite, the complement of
W in H\Γ has only a finite number of components. In particular it has only
a finite number of infinite components. We consider the components of their
inverse images in Γ. Each such component must be contained in X or X∗, since
δX is contained in A. As X is K–infinite and K–almost invariant, and H has
infinite index in G, Lemma 1.1 implies that X must also be H–infinite. Hence
at least one component of Γ−A, say Y , is H–infinite and contained in X . The
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stabilizer of Y is a subgroup of K since X −A is preserved by K. Now we have
the set up in the above proof of Theorem 3.6 but with Y instead of X . Applying
the same arguments as in that proof completes the proof of this theorem.

In many of the above proofs, the hypotheses are used in two steps. The
hypotheses on the subgroup H ensures that one of the corner sets of (X, gX)
has very small boundary and then the hypotheses on the big group ensure that
the corner set is small. Another hypothesis which ensures one of the corner
sets has a relatively small boundary is formulated in a conjecture of Kropholler
and Roller (discussed on pages 224-225 of [11]). We give our formulation of the
conjecture:

Conjecture 3.9 Let X be a H–almost invariant subset of G with both G, H

finitely generated. Suppose that gδX is contained in a bounded neighbourhood of
X or X∗ for every g ∈ G. Then G splits over a subgroup commensurable with
a subgroup of H.

This time the hypotheses ensure that if g does not commensurize H , then,
one of the corner sets of (X, gX) is an almost invariant set over a subgroup
of infinite index in H . Dunwoody and Roller showed that one can get almost
nesting with respect to the elements that commensurize H by changing the
almost invariant set, and changing the subgroup up to commensurability. (See
Theorem B.3.10 of [11]. Note that almost nesting can be improved to nesting
by using almost invariant sets in very good position.) This proof is one of the
key steps in the proof of the algebraic torus theorem. Thus the obstructions to
splitting G over H lie in almost invariant sets over subgroups of infinite index in
H . One can wish away such sets by hypothesis or try to repeat the process and
look for conditions under which it stops. A useful fact is that the corner sets
obtained are right invariant under the action of H . This was originally used by
Kropholler in the proofs of Theorems proved above to obtain nesting. Nesting
ensures the finiteness property required in the use of Dunwoody’s Criterion. In
our proofs, we obtained almost nesting first and had to use the finiteness of
double cosets to prove the finiteness property required in Dunwoody’s criterion.
It is possible that a combination of these different techniques will give a bit
more information about splittings.
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