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Depth-3 Arithmetic Circuits for S2
n(X) and

Extensions of the Graham-Pollack Theorem

Jaikumar Radhakrishnan∗ Pranab Sen† Sundar Vishwanathan‡

Abstract

We consider the problem of computing the second elementary symmetric poly-

nomial S2
n(X)

∆
=
∑

1≤i<j≤n XiXj using depth-three arithmetic circuits of the form
∑r

i=1

∏si

j=1 Lij(X), where each Lij is a linear form in X1, . . . ,Xn. We consider this
problem over several fields and determine exactly the number of multiplication gates
required. The lower bounds are proved for inhomogeneous circuits where the Lij’s are
allowed to have constants; the upper bounds are proved in the homogeneous model.
For reals and rationals, the number of multiplication gates required is exactly n− 1;
in most other cases, it is

⌈

n
2

⌉

.
This problem is related to the Graham-Pollack theorem in algebraic graph theory.

In particular, our results answer the following question of Babai and Frankl: what
is the minimum number of complete bipartite graphs required to cover each edge of
a complete graph an odd number of times? We show that for infinitely many n, the
answer is

⌈

n
2

⌉

.

1 Introduction

1.1 The Graham-Pollack theorem

Let Kn denote the complete graph on n vertices. By a decomposition of Kn, we mean a
set {G1, G2, . . . , Gr} of subgraphs of Kn such that

1. Each Gi is a complete bipartite graph (on some subset of the vertex set of Kn); and

2. Each edge of Kn appears in precisely one of the Gi’s.
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It is easy to see that there is such a decomposition of the complete graph with n − 1
complete bipartite graphs. Graham and Pollack [GP72] showed that this is tight.

Theorem If {G1, G2, . . . , Gr} is a decomposition of Kn, then r ≥ n − 1.

The original proof of this theorem, and other proofs discovered since then [dCH89, Pec84,
Tve82], used algebraic reasoning in one form or another; no combinatorial proof of this
fact is known.

One of the goals of this paper is to obtain extensions of this theorem. To better
motivate the problems we study, we first present a proof of this theorem. This will also help
us explain how algebraic reasoning enters the picture. Consider polynomials in variables
X = X1, X2, . . . , Xn with rational coefficients. Let

S2
n(X)

∆
=

∑

1≤i<j≤n

XiXj;

T 2
n(X)

∆
=

n
∑

i=1

X2
i .

Then, we can reformulate the question as follows. What is the smallest r for which there
exist sets Li, Ri ⊆ [n], Li ∩ Ri = ∅, for i = 1, 2, . . . , r, such that

S2
n(X) =

r
∑

i=1

(
∑

j∈Li

Xj) × (
∑

j∈Ri

Xj) (1)

Notice that the two sums in the product on the right are homogeneous linear forms i.e.
linear forms in X1, . . . , Xn with constant term 0. One may generalise this question, and
ask: What is the smallest r for which there exist homogeneous linear forms Li(X), Ri(X)
for i = 1, 2 . . . , r, such that

S2
n(X) =

r
∑

i=1

Li(X)Ri(X) (2)

Tverberg [Tve82] gave the following elegant argument to show that r must be at least
n − 1. Observe that T 2

n(X) = (
∑n

i=1 Xi)
2 − 2S2

n(X). Thus, (2) implies

T 2
n(X) = (

n
∑

i=1

Xi)
2 − 2

r
∑

i=1

Li(X) Ri(X) (3)

Now if r is less than n − 1, then there exists a non-zero α = (α1, α2, . . . , αn) ∈ Qn such
that Li(α) = 0 for i = 1, 2 . . . , r and

∑n

i=1 αi = 0 (because at most n − 1 homogeneous
equations in n variables always have a non-zero solution). Under this assignment to the
variables, the right hand side of (3) is zero but the left hand side is not.

With this introduction to the Graham-Pollack theorem and its proof, we are now ready
to state the questions we consider in this paper. Observe that the lower bound for r in (2)
depended crucially on the field being Q, and there are two main difficulties in generalising
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it to other fields. First, over fields of characteristic two, the relationship between S2
n(X)

and T 2
n(X) does not hold, for we cannot divide by 2. Second, even if we are not working

over fields of characteristic two, T 2
n(X) can vanish at some non-zero points. Equations

similar to (2) have been studied in the past in at least two different contexts viz. covering
a complete graph by complete bipartite graphs such that each edge is covered an odd
number of times (the odd cover problem), and depth–3 arithmetic circuits for S2

n(X).

1.2 The odd cover problem

Suppose in the Graham-Pollack problem, we drop the condition that the bipartite graphs
be edge-disjoint, but instead ask for each edge of the complete graph to be covered an odd
number of times. We call this problem the odd cover problem. How many bipartite graphs
are required in such a cover? This question was posed by Babai and Frankl [BF92], who
also observed a lower bound of

⌊

n
2

⌋

. However, the upper bound was the trivial n−1. Note
that this problem is equivalent to considering (1) over the field GF(2).

1.3 ΣΠΣ arithmetic circuits

By a ΣΠΣ arithmetic circuit over a field F, we mean an expression of the form

r
∑

i=1

si
∏

j=1

Lij(X) (4)

where each Lij(X) is a (possibly inhomogeneous) linear form in variables X1, . . . , Xn. The
above expression is to be treated as over the field F. Such ‘depth-three’ circuits play
an important role in the study of arithmetic complexity [NW96, GR00, SW99]. If each
linear form Lij(X) is homogeneous (i.e. has constant term zero), the circuit is said to
be homogeneous, or else, it is said to be inhomogeneous. Although depth-three circuits
appear to be rather restrictive, these are the strongest model of circuits for which super
polynomial lower bounds for computing explicit polynomials are known; no such lower
bounds are known at present for depth-four circuits.

The k-th elementary symmetric polynomial on n variables is defined as follows.

Sk
n(X)

∆
=
∑

T∈([n]
k )

∏

i∈T

Xi

Elementary symmetric polynomials are the most commonly studied candidates for
showing lower bounds in arithmetic circuits. Nisan and Wigderson [NW96] showed that
any homogeneous ΣΠΣ circuit for computing S2k

n (X) has size Ω((n/4k)k). In their paper,
they explicitly stated the method of partial derivatives (but see also Alon [Alo86]). Al-
though a super polynomial lower-bound was obtained in [NW96], the lower bound applied
only to homogeneous circuits. Indeed, Ben-Or (see e.g. [NW96]) showed that any elemen-
tary symmetric polynomial can be computed by an inhomogeneous ΣΠΣ formula of size
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O(n2). Thus, inhomogeneous circuits are significantly more powerful than homogeneous
circuits. Shpilka and Wigderson [SW99] (and later, Shpilka [Shp01]) addressed this short-
coming of the Nisan-Wigderson result and showed an Ω(n2) lower bound on the size of
inhomogeneous ΣΠΣ formulae computing certain elementary symmetric polynomials, thus
showing that Ben-Or’s construction is optimal. To obtain their results, they augmented
the method of partial derivatives by an analysis of (affine) subspaces where elementary
symmetric polynomials vanish. Many of the lower bounds in this paper are inspired by the
insights from [SW99] and [Shp01]. All the results cited above work over fields of charac-
teristic zero. At present, no super-quadratic lower bounds are known for computing some
explicitly defined polynomial in the inhomogeneous ΣΠΣ model over infinite fields. Over
finite fields the situation is better. Karpinski and Grigoriev [GK98] showed an exponen-
tial lower bound for computing the determinant polynomial using (inhomogeneous) ΣΠΣ
circuits over any finite field. Grigoriev and Razborov [GR00] showed an exponential lower
bound for any (inhomogeneous) ΣΠΣ circuit computing a generalised majority function
over any finite field.

Though the elementary symmetric polynomials have been studied with reasonable suc-
cess in the past in the ΣΠΣ model of computation, the upper and lower bounds obtained
till now agree at best to within constant multiplicative factors. In this paper, we study
the simplest non-trivial elementary symmetric polynomial, viz. S2

n(X), in various flavours
of the ΣΠΣ model. This does not make the problem trivial; in fact, some of these flavours
have implications to interesting combinatorial problems like, for example, the odd cover
problem mentioned above. Instead of upper and lower bounds to within constant multi-
plicative factors, we shall be interested in the exact answer, in the spirit of Graham and
Pollack. In all the cases we study, we obtain exact answers for infinitely many n, and in
some cases, for all n. One of the implications of this work is an exact bound of

⌈

n
2

⌉

for
infinitely many even and odd n for the odd cover problem.

Organisation of this paper

In the next section, we give a summary of our results. In Section 3, we present formal
proofs of our upper bound results. Section 4 contains formal proofs of our lower bound
results. The appendix contains statements of our results and their proofs, for computing
S2

n(X) using ΣΠΣ arithmetic circuits over the fields GF(pr), p an odd prime.

2 Our results

We study the computation of the elementary symmetric polynomial S2
n(X) using ΣΠΣ

arithmetic circuits over several fields, with the aim of obtaining exact bounds on the
number of multiplication gates required. Many of the techniques developed earlier (in
particular, the method of partial derivatives), in fact, give lower bounds on the number of
multiplication gates. Also, counting the number of multiplication gates only, allows us to
give bounds for the odd cover problem and the 1 mod p cover problem, p an odd prime
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(generalisation of the Graham-Pollack problem where we now require that each edge be
covered 1 mod p times).

As described in the introduction, computations of elementary symmetric polynomials
have been considered for several flavours of ΣΠΣ circuits. For the polynomial S2

n(X), we
study three different flavours of the ΣΠΣ model.

1. The graph model: This is the weakest model. Here, the linear forms Li(X) and Ri(X)
(see equation (2) above) must correspond to bipartite graphs; that is, all coefficients
must be 1 (or 0), no variable can appear in both Li and Ri (with coefficient 1), and
no constant term is allowed in these linear forms. This is the setting for the Graham-
Pollack theorem and its generalisations viz. the odd cover problem and the 1 mod p
cover problem (p an odd prime).

2. The homogeneous model: Here the linear forms are required to be homogeneous, that
is, no constant term is allowed in them. However, any element from the field is
allowed as a coefficient in the linear forms. This model was studied by Nisan and
Wigderson [NW96], using the method of partial derivatives.

3. The inhomogeneous model: This is the most general model; there is no restriction on
the coefficients or the constant term.

We show our upper bounds in the graph and the homogeneous model; our lower bounds
hold even in the stronger inhomogeneous model. We juxtapose our results against the
previously known results and also briefly mention the proof technique used, highlighting
our contribution. Note that the previous lower bounds were for the homogeneous circuit
model only, and were proved using the method of partial derivatives [NW96] (but see also
the rank arguments of Babai and Frankl [BF92] for the graph model). Below, the notation
∃∞n means ‘for infinitely many n’ and the notation ∀n means ‘for all n’.

2.1 The odd cover problem and computing S2
n(X) over GF(2)

Bounds:

Our Bounds Previous Bounds
Upper Bounds Lower Bounds Upper Bounds Lower Bounds

Graph Hom. Inhom. Graph Hom.

n ≡ 0 mod 4 n
2
∃∞n n

2
∃∞n n

2
∀n n − 1∀n n

2
∀n

n ≡ 2 mod 4 n
2
∃∞n n

2
∃∞n n

2
∀n n − 1∀n n

2
∀n

n ≡ 3 mod 4
⌈

n
2

⌉

∃∞n
⌈

n
2

⌉

∃∞n
⌈

n
2

⌉

∀n n − 1∀n
⌊

n
2

⌋

∀n

n ≡ 1 mod 4
⌈

n
2

⌉

∃∞n
⌊

n
2

⌋

∃∞n
⌊

n
2

⌋

∀n n − 1∀n
⌊

n
2

⌋

∀n
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Proof Methods. For the upper bound in the graph model, we restrict our attention to a
class of schemes, which we call pairs constructions, for constructing odd covers of Kn . We
relate the pairs construction to the existence of certain kinds of good matrices. We then give
two different constructions of good matrices. The first construction is based on conference
matrices, which are related to Hadamard matrices. The second construction is based on
symmetric designs, and uses some elementary properties about quadratic residues. The
first construction gives optimal odd covers for infinitely many n of the form 0 mod 4; the
second gives optimal odd covers for infinitely many n of the form 2 mod 4. We get

⌈

n
2

⌉

sized odd covers for infinitely many n of the forms n = 1, 3 mod 4 from odd covers of Kn+1

of optimal size.
The

⌊

n
2

⌋

upper bound in the homogeneous model for n ≡ 1 mod 4 is got by locally
transforming a homogeneous circuit computing S2

n−1(X) using n−1
2

multiplication gates to
a homogeneous circuit computing S2

n(X) using the same number of multiplication gates.
For the lower bound, we use the method of substitution used by Shpilka and Wigder-

son [SW99], and subsequently refined by Shpilka [Shp01]. However, the proof is not a
straightforward application of earlier methods. Technical difficulties arise because we are
working over GF(2) and not over fields of characteristic zero. Almost all the earlier lower
bound proofs used partial derivatives in some way or the other. Over GF(2), most of these
approaches fail to work. Thus, we have to exploit the method of substitution in ways which
do not use partial derivatives.

In fact, we place the method of substitution in a general framework and recast it to
obtain a family of equations. We then exploit the family of equations depending upon the
field in question, to obtain different lower bounds for different fields.

2.2 1 mod p cover problem, p an odd prime

Bounds:

Our Bounds Previous Bounds
Upper Bounds Upper Bounds Lower Bounds

Graph Graph Hom.

n even n
2
∃∞n n − 1∀n n

2
∀n

n odd
⌈

n
2

⌉

∃∞n n − 1∀n
⌊

n
2

⌋

∀n

Proof Methods. The upper bound follows by a pairs construction argument (refer Sec-
tion 2.1). We reduce the problem of existence of a pairs construction to the existence of
certain kinds of matrices good for p. By a modification of the symmetric designs construc-
tion (refer Section 2.1), we construct an infinite family of matrices good for p. This suffices
to show the upper bounds for the 1 mod p cover problem. We use the same lower bounds
as those known earlier for homogeneous circuits.
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2.3 Computing S2
n(X) over C

Bounds:

Our Bounds Previous Bounds
Upper Bounds Lower Bounds Upper Bounds Lower Bounds

Hom. Inhom. Hom. Hom.

∀n
⌈

n
2

⌉ ⌈

n
2

⌉ ⌈

n+1
2

⌉ ⌈

n
2

⌉

Proof Methods. For the upper bound, we reformulate the algebraic problem and arrive
at a suitable bilinear form. Then, if the notion of “distance” between vectors is defined
using this bilinear form, the problem reduces to finding suitably spaced vectors with com-
plex coordinates. We then show the existence of such a suitably spaced family of vectors.
The proof has a geometric flavour. For the lower bound, we now use the general framework
mentioned in Section 2.1. This time however, the way we exploit the family of equations is
very different; in particular, we view the constraints geometrically and arrive at a (differ-
ent) bilinear form. Then, if the notion of “distance” between vectors is defined using this
bilinear form, the problem reduces to placing a certain number of points on a sphere of a
certain radius such that all the points are equidistant with a certain common distance. We
then show that such a placement of points is impossible.

2.4 Computing S2
n(X) over R and Q

Bounds:

Our Bounds Previous Bounds
Upper Bounds Lower Bounds Upper Bounds Lower Bounds

Graph Inhom. Graph Hom.

∀n n − 1 n − 1 n − 1 n − 1

Proof Methods. In this case, we show that the trivial upper bound of n − 1 is tight
even for inhomogeneous circuits. The proof of the Graham-Pollack theorem works only for
homogeneous circuits. To extend the result to inhomogeneous circuits, we need to use the
method of substitution. The result is relatively straightforward once the problem is placed
in this framework. We state the result for completeness.

3 Upper bounds
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3.1 The odd cover problem and computing S2
n(X) over GF(2)

In this section, we will show that there is an odd cover of K2n by n complete bipartite
graphs whenever there exists a n × n matrix satisfying certain properties. We describe a
particular scheme for producing an odd cover of K2n, which we call a pairs construction.
We express the requirements for a pairs construction in the language of matrices, and then
give sufficient conditions for a matrix to encode a pairs construction. We call a matrix
satisfying these sufficient conditions a good matrix.

We want to cover the edges of K2n with n complete bipartite graphs such that each
edge is covered an odd number of times. A complete bipartite graph is fully described
by specifying its two colour classes A and B. Partition the vertex set [2n] (of K2n) into
ordered pairs (1, 2), (3, 4), . . . , (2n − 1, 2n). In a pairs construction of an odd cover of
K2n, if one element of a pair does not participate in a complete bipartite graph G in the
odd cover decomposition, then the other element of the pair does not participate in G
either, and also, both the elements of a pair do not appear in the same colour class in G.
Hence, to describe a complete bipartite graph G in a pairs construction of an odd cover
decomposition, it suffices to specify for each pair (2i− 1, 2i), whether the pair participates
in the bipartite graph, and when it does, whether 2i appears in colour class A or B. We
specify the n complete bipartite graphs in the odd cover decomposition by a n× n matrix
M with entries in {−1, 0, 1}. The rows of the matrix are indexed by pairs; the ith row is
for the pair (2i − 1, 2i). The columns are indexed by the complete bipartite graphs of the
odd cover decomposition. If Mij = 0, the pair (2i − 1, 2i) does not participate in the jth
bipartite graph Gj; if Mij = 1, 2i appears in colour class B of Gj; if Mij = −1, 2i appears
in colour class A of Gj.

M =
(1, 2)
(3, 4)
(5, 6)
(7, 8)

G1 G2 G3 G4








0 1 1 −1
−1 0 1 1
−1 −1 0 −1

1 −1 1 0









4 3 1 2 1 2 2 1
6 5 6 5 3 4 3 4
7 8 8 7 7 8 6 5

G1 G2 G3 G4

The matrix M describes a pairs construction of an odd cover of K8 by complete bipartite
graphs G1, G2, G3, G4.

Figure 1: An example of a pairs construction.

We now identify properties of the matrix M which ensure that the complete bipartite
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graphs arising from it form an odd cover of K2n.

Definition 1 A n×n matrix with entries from {−1, 0, 1} is good if it satisfies the following
conditions:

1. In every row, the number of non-zero entries is odd.

2. For every pair of distinct rows, the number of columns where they both have non-zero
entries is congruent to 2 mod 4.

3. Any two distinct rows are orthogonal over the integers.

Lemma 1 If an n×n matrix is good, then the n complete bipartite graphs that arise from
it form an odd cover of K2n.

Proof: Since the number of non-zero entries in a row is odd, the number of times the
corresponding edge {2i−1, 2i} is covered is odd. Next, consider edges whose vertices come
from different pairs: say, the edge {1, 3}. We need to show that the number of bipartite
graphs where 1 and 3 are placed on opposite sides is odd. Consider the rows of the matrix
corresponding to pairs (1, 2) and (3, 4). Since these rows are orthogonal over the integers,
the number of times 1 appears on the opposite side of 3 must be equal to the number
of times 1 appears on the opposite side of 4. Since the number of columns where both
rows have non-zero entries is congruent to 2 mod 4, the number of times 1 appears on the
opposite side of 3 (as well as the number of times 1 appears on the opposite side of 4) must
be odd. Thus, given a good matrix, we can construct n complete bipartite graphs covering
each edge of K2n an odd number of times.

Thus, to obtain odd covers, it is enough to construct good matrices. We now give two
methods for constructing such matrices.

Construction 1: Skew symmetric conference matrices

A Hadamard matrix Hn is an n × n matrix with entries in {−1, 1} such that HnH
T
n =

nIn, where In is the n×n identity matrix. A conference matrix Cn is an n×n matrix, with
0’s on the diagonal and −1, +1 elsewhere, such that CnC

T
n = (n−1)In. The following fact

can be verified easily.

Lemma 2 n × n conference matrices, where n ≡ 0 mod 4, are good matrices.

Skew symmetric conference matrices can be obtained from skew Hadamard matrices. A
skew Hadamard matrix is defined as a Hadamard matrix that one gets by adding the
identity matrix to a skew symmetric conference matrix. Several constructions of skew
Hadamard matrices can be found in [Hal86, p. 247]. In particular, the following theorem
is proved there.

Theorem 1 There is a skew Hadamard matrix of order n if n = 2tk1 · · · ks, where n ≡
0 mod 4, each ki ≡ 0 mod 4 and each ki is of the form pr + 1, p an odd prime.

9



Corollary 1 There is a good matrix of order n if n satisfies the conditions in the above
theorem. Note that the conditions hold for infinitely many n.

As an illustrative example, we show the existence of skew Hadamard matrices Fn when n
is a power of 2. To do this, we modify the well-known recursive construction for Hadamard
matrices. For n = 2, set (F2)21 = −1 and the rest of the entries 1. Suppose now that we
have constructed Fn. To construct F2n, place a copy of Fn in the top left corner, a copy of
−Fn in the bottom left corner, and copies of FT

n in the top right and bottom right corners.
It is easy to check that F2n so constructed is skew Hadamard. In fact, the matrix M in
Figure 1 is nothing but F4 − I4.

Construction 2: Symmetric designs

The matrices M that we now construct are based on a well-known construction for
symmetric designs. These matrices are not conference matrices; in fact, they have more
than one zero in every row.

Let q be a prime power congruent to 3 mod 4. Let F = GF(q) be the finite field of q
elements. Index the rows of M with lines and the columns with points of the projective
2-space over F. That is, the projective points and lines are the one dimensional and two
dimensional subspaces respectively, of F3. A projective point is represented by a vector in
F3 (out of q − 1 possible representatives) in the one dimensional subspace corresponding
to it. A projective line is also represented by a vector in F3 (out of q − 1 possible repre-
sentatives). The representative for a projective line can be thought of as a ‘normal vector’
to the two dimensional subspace corresponding to it. We associate with each projective
line L a linear form on the vector space F3, given by L(w) = vT w, where w ∈ F3 and v
is the chosen representative for L. For a projective line L and a projective point Q, let

L(Q)
∆
= L(w), where w is the chosen representative for Q. Now the matrix M is defined

as follows. If L(Q) = 0 (i.e. projective point Q lies on projective line L), we set ML,Q = 0;
if L(Q) is a (non-zero) square in F, set ML,Q = 1; otherwise, set ML,Q = −1.

We now check that M is a good matrix. M is a n×n matrix, where n = q2 + q +1, q a
prime power congruent to 3 mod 4. The number of non-zero entries per row is q2 + q +1−
(q + 1) = q2, which is odd. The number of columns where two distinct rows have non-zero
entries is q2 + q + 1 − 2(q + 1) + 1 = q2 − q. This number is 2 mod 4 since q ≡ 3 mod 4.
Recall that in the projective 2-space over GF(q), each line contains q + 1 points, and two
distinct lines intersect in a single point. Now we only need to check that any two distinct
rows (corresponding to distinct projective lines L, L′) are orthogonal over the integers. We
first observe that the following equality holds over the integers.

∑

P

η(L(P ))η(L′(P )) =
1

q − 1

∑

v 6=(0,0,0)

η(L(v))η(L′(v)) (5)

where,

η(x) =







0 if x = 0
1 if x is a (non-zero) square

−1 if x is not a square
.

10



[The first sum is over all points P of the projective 2-space. The second is over all non-zero
triples v in F3.] The equality holds because if we take two non-zero triples u and w = αu
(α 6= 0) corresponding to the same projective point, then

η(L(w))η(L′(w)) = η(L(αu))η(L′(αu))

= η(αL(u))η(αL′(u))

= η(α)η(L(u))η(α)η(L′(u))

= η(L(u))η(L′(u))

Now consider the sum on the right hand side of (5). We have

∑

v 6=(0,0,0)

η(L(v))η(L′(v)) =
∑

a,b∈F;a,b6=0

∑

v:L(v)=a,L′(v)=b

v 6=(0,0,0)

η(a)η(b)

The linear forms corresponding to two distinct projective lines are linearly independent;
i.e., L and L′ are linearly independent. Hence, for every pair (a, b) in the sum above, there
are exactly q triples v such that L(v) = a and L′(v) = b. Thus,

∑

v 6=(0,0,0)

η(L(v))η(L′(v)) = q ·
∑

a,b∈F; a,b6=0

η(a)η(b)

= q ·
∑

a,b∈F; a,b6=0

η(ab)

= q(q − 1) ·
∑

c∈F; c 6=0

η(c)

= 0

The last equality holds because there are exactly (q − 1)/2 squares and the same number
of non–squares in F−{0}. We conclude that the left hand side of (5) is 0; hence, the rows
corresponding to distinct projective lines are orthogonal over the integers.

We have thus proved the following lemma.

Lemma 3 If q ≡ 3 mod 4 is a prime power then there is a good matrix of order q2 + q +1.
Note that infinitely many such q exist.

We can now easily prove the following theorem and its corollary.

Theorem 2 For infinitely many n ≡ 0, 2 mod 4 we have an odd cover of Kn using n
2

complete bipartite graphs.

Proof: We use n
2
× n

2
good matrices to construct an odd cover of Kn using n

2
complete

bipartite graphs(see Lemma 1). For infinitely many n ≡ 0 mod 4, we can use the good
matrices of Corollary 1. For infinitely many n ≡ 2 mod 4, we can use the good matrices of
Lemma 3.
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Corollary 2 For infinitely many n ≡ 1, 3 mod 4 we have an odd cover of Kn using
⌈

n
2

⌉

complete bipartite graphs.

Proof: For odd n, any odd cover of Kn+1 using n+1
2

complete bipartite graphs gives us an
odd cover for Kn too. The corollary now follows from the above theorem.

We also prove the following lemma, which allows us to construct homogeneous ΣΠΣ
circuits for S2

n(X) with
⌊

n
2

⌋

multiplication gates, for infinitely many n ≡ 1 mod 4.

Lemma 4 If S2
n(X), n ≡ 0 mod 4, can be computed over GF(2) by a homogeneous ΣΠΣ

circuit using n
2

multiplication gates, then S2
n+1(X) can be computed over GF(2) by a ho-

mogeneous ΣΠΣ circuit using n
2

multiplication gates.

Proof: Consider a homogeneous circuit over GF(2)

r
∑

i=1

Li(X1, . . . , Xn)Ri(X1, . . . , Xn) (6)

for S2
n(X1, . . . , Xn), n ≡ 0 mod 4, where r = n

2
. Define for 1 ≤ i ≤ r, homogeneous linear

forms L′
i(X1, . . . , Xn+1), R′

i(X1, . . . , Xn+1) over GF(2) as follows.

L′
i(X1, . . . , Xn+1)

∆
= Li(X1, . . . , Xn) + Xn+1 if Li has an odd number of terms
∆
= Li(X1, . . . , Xn) otherwise

R′
i(X1, . . . , Xn+1)

∆
= Ri(X1, . . . , Xn) + Xn+1 if Ri has an odd number of terms
∆
= Ri(X1, . . . , Xn) otherwise

We have the following equality over GF(2).

Claim

S2
n+1(X1, . . . , Xn+1) =

r
∑

i=1

L′
i(X1, . . . , Xn+1)R

′
i(X1, . . . , Xn+1)

Proof: Define homogeneous linear forms over Z, L′′
i (X1, . . . , Xn+1), R′′

i (X1, . . . , Xn+1), for
1 ≤ i ≤ r, as follows.

L′′
i (X1, . . . , Xn+1)

∆
= Li(X1, . . . , Xn) + aiXn+1

R′′
i (X1, . . . , Xn+1)

∆
= Ri(X1, . . . , Xn) + biXn+1

where ai, bi denote the number of (non-zero) terms in Li, Ri respectively. Consider the
following formula over Z.

r
∑

i=1

L′′
i (X1, . . . , Xn+1)R

′′
i (X1, . . . , Xn+1) (7)

Let cjk, 1 ≤ j ≤ k ≤ n denote the coefficient of XjXk in (6), treating (6) as a formula
over Z instead of over GF(2). Since formula (6) computes S2

n(X) over GF(2), cjk, 1 ≤

12



j < k ≤ n are odd, and cjj, 1 ≤ j ≤ n are even. Let c′′jk, 1 ≤ j ≤ k ≤ n + 1 denote the
coefficient of XjXk in (7) (note that c′′jk is an integer). For 1 ≤ j ≤ k ≤ n, c′′jk = cjk. We
will now show that c′′j,n+1, 1 ≤ j ≤ n are odd, and c′′n+1,n+1 is even. This suffices to prove
the claim, since L′′

i ≡ L′
i mod 2 and R′′

i ≡ R′
i mod 2.

For any 1 ≤ j ≤ n, it can be easily checked that

c′′j,n+1 =
∑

k:1≤k≤n

k 6=j

cjk + 2cjj

≡
∑

k:1≤k≤n

k 6=j

1 + 0 (mod 2)

≡ 1 (mod 2)

The last equivalence follows from the fact that, for any fixed j, the number of monomials
XjXk, 1 ≤ k ≤ n, k 6= j is odd, since n is even.

c′′n+1,n+1 =
∑

1≤j≤k≤n

cjk

=
∑

1≤j<k≤n

cjk +
∑

1≤j≤n

cjj

≡
(

∑

1≤j<k≤n

1 +
∑

1≤j≤n

0

)

(mod 2)

≡ 0 (mod 2)

The last equivalence follows from the fact that the number of monomials XjXk, 1 ≤ j <
k ≤ n is even, since n ≡ 0 mod 4.

Hence the claim is proved.
The lemma now follows from the above claim.
We can now prove the following theorem.

Theorem 3 For infinitely many n ≡ 0, 2, 3 mod 4 we have homogeneous ΣΠΣ circuits
computing S2

n(X) over GF(2) using
⌈

n
2

⌉

multiplication gates. For infinitely many n ≡
1 mod 4 we can compute S2

n(X) over GF(2) using homogeneous ΣΠΣ circuits having
⌊

n
2

⌋

multiplication gates.

Proof: The first part of the theorem follows from Theorem 2 and Corollary 2. To prove
the second part, consider a homogeneous circuit for S2

n−1(X1, . . . , Xn−1), n ≡ 1 mod 4,
using r = n−1

2
multiplication gates. Such circuits exist for infinitely many n ≡ 1 mod 4 by

the first part of the theorem. We now invoke Lemma 4 to complete the proof.

3.2 1 mod p cover problem, p an odd prime

In this subsection we will in fact show, for any odd number p (not necessarily prime), that
there is a 1 mod p cover of K2n by n complete bipartite graphs whenever there exists an

13



n × n matrix good for p (defined below). Also, from a 1 mod p cover of K2n+2 by n + 1
bipartite graphs, we get a 1 mod p cover of K2n+1 by n + 1 bipartite graphs. We note
that the skew Hadamard matrix construction of Section 3.1 does not generalise to give us
matrices good for p, when p is odd.

Definition 2 Let p be an odd number. A matrix with entries from {−1, 0, 1} is called a
good matrix for p if it satisfies the following conditions:

1. In every row, the number of non-zero entries is 1 mod p.

2. For every pair of distinct rows, the number of columns where they both have non-zero
entries is congruent to 2 mod 2p.

3. Any two distinct rows are orthogonal over the integers.

Lemma 5 Let p be an odd number. If an n × n matrix is good for p, then the n complete
bipartite graphs that arise from it form a 1 mod p cover of K2n. If n = q2 + q + 1 where q
is a prime power and q ≡ −1 mod 2p, then an n × n good matrix for p exists. Note that
infinitely many such q exist, by a result of Dirichlet.

Proof: The proof of the fact that an n × n good matrix for p gives us a 1 mod p cover of
K2n by n complete bipartite graphs, is similar to the proof of Lemma 1. The construction
of an n × n good matrix for p when n is of the given form is similar to the symmetric
designs construction of Section 3.1.

From the lemma, we can now prove the following theorem.

Theorem 4 Given an odd number p, for infinitely many odd and even n, we have a
1 mod p cover of Kn using

⌈

n
2

⌉

bipartite graphs.

3.3 Fields of characteristic different from 2

Now we give the proofs for the upper bounds in the homogeneous circuit model for com-
puting S2

n(X) over various fields of characteristic different from 2. We start by proving two
lemmas.

Lemma 6 S2
2k+1(X1, . . . , X2k+1) can be computed by a homogeneous ΣΠΣ circuit using

k + 1 multiplication gates over any field of characteristic not equal to 2 which has square
roots of −1.

Proof: This result has been observed implicitly by Shpilka [Shp01]. We give a proof here
for completeness. Let i denote a square root of −1.

S2
2k+1(X1, . . . , X2k+1)

=
1

2
((

2k+1
∑

j=1

Xj)
2 −

2k+1
∑

j=1

X2
j )

14



=
1

2
(((

2k+1
∑

j=1

Xj)
2 − X2

1 ) −
2k+1
∑

j=2

X2
j )

=
1

2
((

2k+1
∑

j=2

Xj)(2X1 +

2k+1
∑

j=2

Xj) −
k
∑

j=1

(X2
2j + X2

2j+1))

=
1

2
((

2k+1
∑

j=2

Xj)(2X1 +

2k+1
∑

j=2

Xj) −
k
∑

j=1

(X2j + iX2j+1)(X2j − iX2j+1))

This shows that S2
2k+1(X1, . . . , X2k+1) can be done with k + 1 multiplication gates.

Lemma 7 S2
2k(X1, . . . , X2k) can be computed by a homogeneous ΣΠΣ circuit using k mul-

tiplication gates over any field F of characteristic not equal to 2 which has square roots of
−1, 2 and 2k − 1.

Proof: Let am(X1, . . . , X2k) and bm(X1, . . . , X2k) denote the two homogeneous linear forms
feeding into the mth multiplication gate, 1 ≤ m ≤ k. Let

am(X1, . . . , X2k)
∆
=

∑2k

n=1 amnXmn

bm(X1, . . . , X2k)
∆
=

∑2k

n=1 bmnXmn

}

1 ≤ m ≤ k

Since the circuit computes S2
2k(X1, . . . , X2k), equating the coefficients of X2

j , 1 ≤ j ≤ 2k
we get

k
∑

m=1

amjbmj = 0 1 ≤ j ≤ 2k

Since the characteristic is not equal to 2, we can get an equivalent equation by multiplying
both sides by 2.

k
∑

m=1

(amjbmj + amjbmj) = 0 1 ≤ j ≤ 2k (8)

Equating the coefficients of XjXl, 1 ≤ j < l ≤ 2k we get

k
∑

m=1

(amjbml + amlbmj) = 1 1 ≤ j < l ≤ 2k (9)

Let us define vectors yj ∈ F2k, 1 ≤ j ≤ 2k as follows

yT
j

∆
= (a1j , b1j , a2j , b2j , . . . , akj, bkj)

We can write (8), (9) in a succinct matrix form as

yT
j Ayj = 0 1 ≤ j ≤ 2k

yT
j Ayl = 1 1 ≤ j < l ≤ 2k

}

(10)

15



where the 2k × 2k matrix A consists of k blocks of the 2 × 2 matrix

M
∆
=

(

0 1
1 0

)

arranged along the diagonal. M has two eigenvalues 1 and −1, with corresponding eigen-
vectors uT

1 = (1, 1) and uT
−1 = (1,−1) (note that 1 6= −1 in F). It will be convenient

to scale these vectors to obtain alternate eigenvectors vT
1 = 1√

2
(1, 1) and vT

−1 = 1√
2
(i,−i),

where i denotes a square root of −1 in F (note that 2 6= 0 in F and 2 and −1 have square
roots in F). Now,

vT
1 Mv1 = vT

−1Mv−1 = 1

vT
1 Mv−1 = 0

The 2 × 2 matrix

N
∆
=

1√
2

(

1 i
1 −i

)

is the change of basis matrix for going from the basis {v1, v−1} of F2 to the standard basis
{(1, 0)T , (0, 1)T} of F2. We define another 2k × 2k matrix B, which consists of k blocks
of the 2 × 2 matrix N arranged along the diagonal. B is a change of basis matrix from a
basis of F2k consisting of eigenvectors of A, to the standard basis of F2k. If zj , 1 ≤ j ≤ 2k
are the representations of the vectors yj, 1 ≤ j ≤ 2k in the eigenbasis of A, then

yj = Bzj 1 ≤ j ≤ 2k

Since
BTAB = I2k

where I2k is the 2k × 2k identity matrix, (10) now becomes

zT
j zj = 0 1 ≤ j ≤ 2k

zT
j zl = 1 1 ≤ j < l ≤ 2k

We can write a set of equations equivalent to the above as follows (since 2 6= 0 in F)

zT
j zj = 0 1 ≤ j ≤ 2k

(zj − zl)
T (zj − zl) = −2 1 ≤ j < l ≤ 2k

}

(11)

The second equation above can be thought as finding vectors zj ∈ F2k, 1 ≤ j ≤ 2k such
that the “distance” between any two of them is

√
−2. The following set of vectors meets

this requirement
z′j = iej 1 ≤ j ≤ 2k

where ej, 1 ≤ j ≤ 2k are the standard basis vectors in F2k. We now have to ensure that the

“length” of each vector is 0. For this shift the origin to a point p
∆
= (w, w, . . . , w), where w
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will be determined later. Note that this operation does not change the “distance” between
any pair of vectors. To determine w we have to solve the following equation

(i − w)2 + (2k − 1)w2 = 0

which can be solved whenever 2k − 1 has a square root in the field. We now define

zj
∆
= z′j − p 1 ≤ j ≤ 2k

The vectors zj , 1 ≤ j ≤ 2k are a solution to (11) which in turn implies a solution to (10)
which proves the existence of a homogeneous circuit for the polynomial S2

2k(X1, . . . , X2k)
using k multiplication gates.

Using Lemmas 6 and 7, we can now prove our upper bound result for complex numbers.
The proofs of our upper bounds for GF(pr), p an odd prime can be found in the appendix.

Theorem 5 S2
n(X1, . . . , Xn) can be computed by a homogeneous ΣΠΣ circuit using ⌈n

2
⌉

multiplication gates over the field of complex numbers.

Proof: Follows directly from Lemmas 6 and 7.

4 Lower bounds

4.1 Preliminaries

In this subsection, we develop a framework for proving lower bounds for computing S2
n(X)

in the inhomogeneous ΣΠΣ model, based on the method of substitution [SW99, Shp01].
Suppose that over a field F

S2
n(X) =

r
∑

i=1

si
∏

j=1

Lij(X) (12)

where each Lij(X) is a linear form over X1, . . . , Xn, not necessarily homogeneous. We wish
to show that r must be large. Following the proof of the Graham-Pollack theorem that
was sketched in the introduction, we could try to force some of the Lij ’s to zero by setting
the variables to appropriate field elements. There are two difficulties with this plan. First,
since the Lij ’s are not necessarily homogeneous, we may not be able to set all of them
to zero; we can do so if the linear forms have linearly independent homogeneous parts.
The second difficulty arises from the nature of the underlying field: as remarked in the
introduction, S2

n(X) might vanish on non-trivial subspaces of Fn.
In this subsection, our goal is to first show that if r is small, then S2

n(X) must be zero
over a linear subspace of Fn of large dimension. Similar observations have been used by
Shpilka and Wigderson [SW99, Lemma 3.3] and Shpilka [Shp01, Claim 4.6]. Our second
goal is to examine linear subspaces of Fn over which S2

n(X) is forced to be zero. We
derive conditions on such subspaces, and relate them to the existence of a certain family
of vectors. Later on, we will exploit these equations based on the field in question, and
derive our lower bounds for r.

Goal 1: Obtaining the subspace.
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Lemma 8 If S2
n(X) can be written in the form of (12) over a field F, then there exist

homogeneous linear forms ℓ1, ℓ2, . . . , ℓr in variables X1, X2, . . . , Xn−r such that

S2
n(X1, X2, . . . , Xn−r, ℓ1, ℓ2, . . . , ℓr) = 0 (13)

Proof: We implement the idea discussed at the beginning of Section 4.1. Given an ex-
pression of the form (12), we collect a maximal consistent set of equations of the form
Lij(X) = 0, with at most one equation for each i. We write these equations in the form

AX = b (14)

where A is an r′×n matrix and b ∈ Fr′ for some r′ ≤ r. Since (14) has a solution, and the
rank of A is at most r, there is an affine subspace of solutions Γ of dimension n− r in Fn.
(If the actual solution set is an affine subspace of dimension greater than n−r, then we let
Γ be an affine subspace of the solution space of dimension exactly n−r.) We can view this
set of solutions as follows (see e.g. [Art91, Chapter 1]): there are n− r ‘free variables,’ and
the values of the remaining r variables are given by (possibly inhomogeneous) linear forms
in these n − r variables. Since S2

n(X) is symmetric, we may assume that the n − r ‘free
variables’ are X1, X2, . . . , Xn−r; for i = 1, 2, . . . , r, let ℓ̃i be the (possibly inhomogeneous)
linear form in X1, X2, . . . , Xn−r that determines the value of Xn−r+i once the values for
X1, X2, . . . , Xn−r are fixed.

Observe that S2
n(X) is constant over Γ. To see this, consider the right hand side of

(12). If for some i an Lij participates in (14), then that product contributes zero to the
sum. Otherwise, since the chosen set of equations is maximal, for this i, the homogeneous
part of each Lij is in the row span of the matrix A. That is, once AX has been fixed to
b, the homogeneous part, and hence the entire linear form, is fixed. We conclude that

S2
n(X1, X2, . . . , Xn−r, ℓ̃1, ℓ̃2, . . . , ℓ̃r) = constant

Now comparing the coefficients of monomials of degree two on both sides of the above
equation, we see that

S2
n(X1, X2, . . . , Xn−r, ℓ1, ℓ2, . . . , ℓr) = 0

where ℓi is the homogeneous part of ℓ̃i.

Goal 2: The nature of the subspace. Our goal now is to understand the alge-
braic structure of the coefficients that appear in the linear forms ℓ1, ℓ2, . . . , ℓr promised
by Lemma 8. Let ℓi =

∑n−r

j=1 ℓijXj, ℓij ∈ F, and let L be the r × (n − r) matrix (ℓij).
Let y1, y2, . . . , yn−r ∈ Fr be the n − r columns of L. We will obtain conditions on the
columns by computing the coefficients of monomials X2

j for 1 ≤ j ≤ n − r, and XiXj for
1 ≤ i < j ≤ n − r, in equation (13). For X2

j (1 ≤ j ≤ n − r), we obtain the following
equation over F.

r
∑

k=1

ℓkj +
∑

1≤k<k′≤r

ℓkjℓk′j = 0 1 ≤ j ≤ r (15)
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For monomials of the form XiXj (1 ≤ i < j ≤ n − r), we obtain the following equation
over F.

1 +
r
∑

k=1

ℓki +
r
∑

k=1

ℓkj +
∑

1≤k<k′≤r

(ℓkiℓk′j + ℓk′iℓkj) = 0 1 ≤ i < j ≤ n − r (16)

For a positive integer m, let 1m be the all 1’s column vector and 0m be the all 0’s
column vector of dimension m. Let Um be the m× m matrix with 1’s above the diagonal
and zero elsewhere. Let Jm be the m × m matrix with all 1’s, and let Im be the m × m
identity matrix. Using this notation, we can rewrite (15) and (16) as follows.

1T
r yj + yT

j Uryj = 0 1 ≤ j ≤ n − r (17)

1 + 1T
r yi + 1T

r yj + yT
i (Jr − Ir)yj = 0 1 ≤ i < j ≤ n − r (18)

If the characteristic of F is not two, we may rewrite (17) as

21T
r yj + yT

j (Jr − Ir)yj = 0 1 ≤ j ≤ n − r (19)

With this, we are now ready to prove lower bounds. We will exploit (17), (18) and (19)
(if the characteristic is not 2) to derive lower bounds for various fields.

4.2 Lower bounds for GF(2)

Let Z stand for the integers. For y ∈ Zr, let |y| denote the number of odd components in

y. For y, y′ ∈ Zr, let y · y′ ∆
=
∑r

m=1 ymy′
m be the dot product of y and y′ over Z.

Lemma 9 Suppose ℓ1, . . . , ℓr are homogeneous linear forms in the variables X1, . . . , Xn−r

such that S2
n(X1, . . . , Xn−r, ℓ1, . . . , ℓr) = 0 over GF(2). Then r ≥

⌊

n
2

⌋

. If n ≡ 3 mod 4,
then r ≥

⌈

n
2

⌉

.

Proof: We use the arguments of Section 4.1. If there exist homogeneous linear forms
ℓ1, . . . , ℓr over variables X1, . . . , Xn−r so that S2

n(X1, . . . , Xn−r, ℓ1, . . . , ℓr) = 0 over GF(2),
we have, from (17) and (18), vectors yj ∈ GF(2)r, 1 ≤ j ≤ n − r such that the following
equations hold over GF (2) (recall that Jr denotes the r × r all 1’s matrix, and Ir denotes
the r × r identity matrix).

1T
r yj + yT

j Uryj = 0 1 ≤ j ≤ n − r (20)

1 + 1T
r yi + 1T

r yj + yT
i (Jr − Ir)yj = 0 1 ≤ i < j ≤ n − r (21)

Instead of thinking of the above equations as holding over GF (2), it will help for this proof
to treat the vectors yj as elements of Zr and the equations (20) and (21) as equivalences
over the integers mod2.

By counting the number of odd components (i.e. 1’s) on the left and right hand side
of (20), we obtain

|yj| +
(|yj|

2

)

≡ 0 (mod 2) 1 ≤ j ≤ n − r
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From this it follows that

|yj| ≡ 0 or 3 (mod 4) 1 ≤ j ≤ n − r (22)

Since yT
i (Jr − Ir)yj = |yi| |yj| − yi · yj over Z, by counting the number of odd components

(i.e. 1’s) on both sides of (21), we get

|yi| + |yj| + |yi| |yj| + yi · yj ≡ 1 (mod 2) 1 ≤ i < j ≤ n − r

In other words,

yi · yj ≡ (1 + |yi|)(1 + |yj|) (mod 2) 1 ≤ i < j ≤ n − r (23)

Let w1, . . . , ws be the vectors among y1, . . . , yn−r with |yj| odd, and let e1, . . . , et be the
remaining t = n − r − s vectors, with |yj| even.

Claim If y1, y2, . . . , yn−r are not linearly independent over GF(2), then the only depen-
dency over GF(2) among them is

∑t

k=1 ek = 0r. Also, in that case, t is odd.
Proof: Let

s
∑

i=1

αiwi +
t
∑

k=1

βkek ≡ 0r (mod 2)

In the above equation, we think of wi, ek as vectors in Zr, αi, βk as integers, and the equality
as an equivalence over the integers mod2. We take dot products of the two sides above
with wi and conclude, using (23), that αi ≡ 0 mod 2, for 1 ≤ i ≤ s. Similarly, taking
dot products with ek, we obtain the system of equations (Jt − It)β ≡ 0t mod 2, where
β ∈ Zt and the kth component of β is βk. If t is even, (Jt − It) is full-rank over GF(2), so
β ≡ 0t mod 2. So the yj’s are linearly independent over GF(2), which is a contradiction.

Now, if the yj’s are not linearly independent, then t must be odd, and the only depen-
dency among them corresponds to β such that (Jt−It)β ≡ 0t mod 2. The only non–trivial
solution mod2 for this equation is β ≡ 1t mod 2.

By the claim above, we see that there are at least n−r−1 linearly independent vectors
over GF(2) among the yj’s. Since the yj’s are r-dimensional vectors, we get r ≥ n − r − 1
i.e. r ≥

⌊

n
2

⌋

. This proves the first part of the lemma.
To obtain a better bound for r when n ≡ 3 mod 4, we make better use of our equations,

especially (22), which we have neglected so far. So suppose n = 2r + 1 and n ≡ 3 mod 4.
We shall derive a contradiction.

If n = 2r + 1, then n − r > r, and since the yj are r-dimensional vectors, yj are not
linearly independent over GF(2). Then by the claim above, t is odd,

∑t

k=1 ek ≡ 0r mod 2,
and w1, . . . , ws, e1, . . . , et−1 are linearly independent over GF(2). Since s+t−1 = n−r−1 =
r, these vectors form a basis (over GF(2)) of the vector space GF(2)r; in particular 1r is
in their span, that is

s
∑

i=1

αiwi +
t−1
∑

k=1

βkek ≡ 1r (mod 2)
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for some αi, βk ∈ Z. Taking dot products with wi and ek, we conclude (using (23)) that
αi ≡ 1 mod 2 for 1 ≤ i ≤ s, and (Jt−1 − It−1)β ≡ 0t−1 mod 2, where β ∈ Zt−1 and
the kth component of β is βk. Since t is odd, Jt−1 − It−1 is full rank over GF(2), and
β ≡ 0t−1 mod 2. Thus

s
∑

i=1

wi ≡ 1r (mod 2) (24)

It is easy to verify that for all integer vectors y

|y| ≡ y · y (mod 4) (25)

Using (24) and (25), (
∑s

i=1 wi) · (
∑s

i=1 wi) ≡ |∑s

i=1 wi| ≡ r mod 4, that is

s
∑

i=1

wi · wi + 2
∑

1≤i<j≤s

wi · wj ≡ r (mod 4)

By (22) and (25), wi · wi ≡ |wi| ≡ 3 mod 4, and by (23), wi · wj ≡ 0 mod 2 for i 6= j.
Thus

s
∑

i=1

3 +
∑

1≤i<j≤s

0 ≡ r (mod 4)

⇒ 3s ≡ r (mod 4) (26)

Similarly, by starting with
∑t

k=1 ek ≡ 0r mod 2 and using (25) we get that, (
∑t

k=1 ek) ·
(
∑t

k=1 ek) ≡ |∑t

k=1 ek| ≡ 0 mod 4, that is

t
∑

i=1

ei · ei + 2
∑

1≤i<j≤t

ei · ej ≡ 0 (mod 4)

By (22) and (25), ei · ei ≡ 0 mod 4, and by (23), ei · ej ≡ 1 mod 2 for i 6= j. Thus

t
∑

i=1

0 +
∑

1≤i<j≤t

2 ≡ 0 (mod 4)

⇒ t(t − 1)

2
2 ≡ 0 mod 4

Since t is odd, we conclude that t ≡ 1 mod 4. But then, using (26),

n ≡ r + s + t ≡ 3s + s + 1 ≡ 1 (mod 4)

which is a contradiction.
Since r ≥

⌊

n
2

⌋

holds for all n, we have shown that if n ≡ 3 mod 4, then r ≥
⌈

n
2

⌉

.
Using Lemmas 8 and 9, we can now prove the following theorem.

Theorem 6 Any (not necessarily homogeneous) ΣΠΣ circuit computing S2
n(X1, . . . , Xn)

over GF(2) requires at least
⌈

n
2

⌉

multiplication gates if n ≡ 0, 2, 3 mod 4, and at least
⌊

n
2

⌋

multiplication gates if n ≡ 1 mod 4.
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4.3 Fields of characteristic different from 2

In this subsection, we give the proofs of our lower bounds for computing S2
n(X) using

(not necessarily homogeneous) ΣΠΣ arithmetic circuits over various fields of characteristic
different from 2. Lemma 10 proves an upper bound on the dimension of a subspace over
which S2

2k(X1, . . . , X2k) vanishes. The proof uses Nisan and Wigderson’s method of partial
derivatives.

Lemma 10 If k 6= 0 in the field F then S2
2k(X1, . . . , Xk+1, ℓ1, . . . , ℓk−1) 6= 0 for any k − 1

homogeneous linear forms ℓ1, . . . , ℓk−1 in the variables X1, . . . , Xk+1 over F.

Proof: This lemma is in fact a special case of a more general result due to Shpilka [Shp01].
We give a short proof of it here, which is essentially Shpilka’s proof restricted to our special
case. We have the identity

S2
2k(X1, . . . , Xk+1, ℓ1, . . . , ℓk−1) = S2

k+1(X1, . . . , Xk+1) +

(X1 + · · ·+ Xk+1)(ℓ1 + · · · + ℓk−1) +

S2
k−1(ℓ1, . . . , ℓk−1)

Assuming for the sake of contradiction that the left hand side of the above equation is
zero, we get

S2
k+1(X1, . . . , Xk+1)

= −(X1 + · · ·+ Xk+1)(ℓ1 + · · ·+ ℓk−1) − S2
k−1(ℓ1, . . . , ℓk−1)

We take the first order partial derivatives with respect to X1, . . . , Xk+1 of both the sides
of the above equation. Since k 6= 0 in F, the vector space spanned by the set of first-order
partial derivatives of S2

k+1(X1, . . . , Xk+1) is of dimension k + 1. This follows from the fact
that the matrix Jk+1 − Ik+1 is of full rank if k 6= 0 in F, where Jk+1 is the (k + 1)× (k + 1)
all 1’s matrix and Ik+1 is the (k + 1) × (k + 1) identity matrix. The vector space spanned
by the first order partial derivatives of the right hand side of the above equation lies in the
span of the linear forms (X1 + · · ·+Xk+1) and ℓ1, . . . , ℓk−1. Hence its dimension is at most
k, which results in a contradiction. This proves the lemma.

Lemma 11 also proves upper bounds on the dimension of a subspace over which
S2

2k(X1, . . . , X2k) vanishes, but the proof does not use partial derivatives.

Lemma 11 Suppose k 6= −1 in the field F and F is not of characteristic 2. Then
S2

2k(X1, . . . , Xk+1, ℓ1, . . . , ℓk−1) 6= 0 for any k − 1 homogeneous linear forms ℓ1, . . . , ℓk−1

in the variables X1, . . . , Xk+1 over F.

Proof: Using the arguments of Section 4.1 (in particular (18) and (19)), we assume (using
the notation of that section) for the sake of contradiction that there exist vectors yj ∈
Fk−1, 1 ≤ j ≤ k + 1, such that the following equations hold (note that the characteristic of
F is not 2).

〈yj, yj〉 + 21T
k−1yj = 0 1 ≤ j ≤ k + 1

〈yj, yl〉 + 1T
k−1yj + 1T

k−1yl = −1 1 ≤ j < l ≤ k + 1

}

(27)
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where 〈v, w〉 ∆
= vT (Jk−1 − Ik−1)w is a symmetric bilinear form on vectors in Fk−1.

From the above equation, we get

〈yj − yl, yj − yl〉 = 2 1 ≤ j < l ≤ k + 1 (28)

We can think of equation (28) as placing k +1 points with pairwise “distance”
√

2 in Fk−1.
We now show that if k 6= −1 in F, this is impossible.

We have, for 1 < j < l ≤ k + 1

2 = 〈yj − yl, yj − yl〉 . . .using (28)

= 〈(yj − y1) − (yl − y1), (yj − y1) − (yl − y1)〉
= 〈yj − y1, yj − y1〉 − 2〈yj − y1, yl − y1〉 + 〈yl − y1, yl − y1〉
= 2 + 2 − 2〈yj − y1, yl − y1〉 . . .using (28)

Hence, since 2 6= 0 in F,

〈yj − y1, yl − y1〉 = 1 1 < j < l ≤ k + 1 (29)

Now define a k × k matrix A where

ajl
∆
= 〈yj+1 − y1, yl+1 − y1〉 1 ≤ j, l ≤ k

Using (28) and (29), we see that the matrix A has 2’s on the main diagonal and 1’s
in other places. Since k 6= −1 in F, A is of full rank. This implies that the vectors
y2 − y1, y3 − y1, . . . , yk+1 − y1 are linearly independent. In fact we have shown that the
vectors y1, . . . , yk+1 are affinely independent. Since these vectors lie in Fk−1, we have arrived
at a contradiction. Hence the lemma is proved.

We can now prove the following lemma. This lemma allows us to prove lower bounds
for computing S2

n(X) using (not necessarily homogeneous) ΣΠΣ arithmetic circuits over F

when F is not of characteristic 2 and n is even.

Lemma 12 S2
2k(X1, . . . , Xk+1, ℓ1, . . . , ℓk−1) 6= 0 for any k − 1 homogeneous linear forms

ℓ1, . . . , ℓk−1 in the variables X1, . . . , Xk+1 over a field F, if F is not of characteristic 2.

Proof: Follows from Lemmas 10 and 11.
We also prove the following lemma. This lemma allows us to prove lower bounds for

computing S2
n(X) using (not necessarily homogeneous) ΣΠΣ arithmetic circuits over F

when F is not of characteristic 2 and n is odd.

Lemma 13 Suppose k 6= 0,±1 in the field F and F is not of characteristic 2. Then
S2

2k+1(X1, . . . , Xk+1, ℓ1, . . . , ℓk) 6= 0 for any k homogeneous linear forms ℓ1, . . . , ℓk in the
variables X1, . . . , Xk+1 over F.

Proof: Using the arguments of Section 4.1 (in particular (18) and (19)), we assume (using
the notation of that section) for the sake of contradiction that there exist vectors yj ∈
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Fk, 1 ≤ j ≤ k + 1, such that the following equations hold (note that the characteristic of F

is not 2).
〈yj, yj〉 + 21T

k yj = 0 1 ≤ j ≤ k + 1
〈yj, yl〉 + 1T

k yj + 1T
k yl = −1 1 ≤ j < l ≤ k + 1

}

(30)

where 〈v, w〉 ∆
= vT (Jk − Ik)w is a symmetric bilinear form on vectors in Fk.

We can similarly show, as in the proof of Lemma 11, that the vectors y2 − y1, y3 −
y1, . . . , yk+1 − y1 are linearly independent (since k 6= −1 and 2 6= 0 in F). Also

〈yj − yl, yj − yl〉 = 2 1 ≤ j < l ≤ k + 1 (31)

Since k 6= 1 in F, let us define a vector c ∈ Fk, c
∆
= −1

k−1
1k. Now (Jk − Ik)c = −1k and

cT (Jk − Ik)c = k
k−1

. Hence we have, for 1 ≤ j ≤ k + 1

〈yj − c, yj − c〉 = 〈yj, yj〉 − 2〈yj, c〉 + 〈c, c〉

= 〈yj, yj〉 + 21T
k yj +

k

k − 1

Using the first equation in (30) and above equation, we get the following equation

〈yj − c, yj − c〉 =
k

k − 1
1 ≤ j ≤ k + 1 (32)

Shifting the origin to the vector c and using (31) and (32) we have (using the same letters
yj, 1 ≤ j ≤ k + 1 to denote the new vectors)

〈yj, yj〉 = k
k−1

1 ≤ j ≤ k + 1

〈yj − yl, yj − yl〉 = 2 1 ≤ j < l ≤ k + 1

}

(33)

We can think of equations (33) as placing k + 1 points of pairwise “distance”
√

2 on the

surface of a sphere of “radius”
√

k
k−1

in Fk. We now show that if k 6= 0,±1 in F, this is

impossible.
Using (33) we get, for 1 ≤ j < l ≤ k + 1

2 = 〈yj − yl, yj − yl〉
= 〈yj, yj〉 − 2〈yj, yl〉 + 〈yl, yl〉

=
2k

k − 1
− 2〈yj, yl〉

Since 2 6= 0 in F, we get

〈yj, yl〉 =
1

k − 1
1 ≤ j < l ≤ k + 1 (34)
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Using (33) and (34) we have, for 1 < j ≤ k + 1

〈
k+1
∑

i=1

yi, yj − y1〉 = 〈
k+1
∑

i=1

yi, yj〉 − 〈
k+1
∑

i=1

yi, y1〉

= 0

Since y2 − y1, y3 − y1, . . . , yk+1 − y1 are k linearly independent vectors in Fk, we conclude
that

k+1
∑

i=1

yi = 0 (35)

as only the zero vector is orthogonal to all vectors in Fk under the bilinear map induced
by the full rank matrix Jk − Ik (since k 6= 1 in F, Jk − Ik is of full rank). Using (33), (34)
and (35) and the fact that 2 6= 0 in F, we get

0 = 〈
k+1
∑

j=1

yj,
k+1
∑

j=1

yj〉

=
k+1
∑

j=1

〈yj, yj〉 + 2
∑

1≤j<l≤k+1

〈yj, yl〉

= (k + 1)
k

k − 1
+ 2

(k + 1)k

2

1

k − 1

=
2k(k + 1)

k − 1

We have thus come to a contradiction since k 6= 0,±1 and 2 6= 0 in F. Hence the lemma
is proved.

We can now prove our lower bound result for complex numbers. The proofs of our
lower bounds for GF(pr), p an odd prime can be found in the appendix.

Theorem 7 Any (not necessarily homogeneous) ΣΠΣ circuit computing S2
n(X1, . . . , Xn)

over the field of complex numbers requires at least
⌈

n
2

⌉

multiplication gates.

Proof: Since S2
3(X1, X2, X3) is an irreducible polynomial, any ΣΠΣ circuit computing it

should have at least 2 multiplication gates. For larger values of n, we invoke Lemmas 8,
12 and 13 to complete the proof.

Finally, we show that the n − 1 lower bound of Graham and Pollack also extends to
inhomogeneous ΣΠΣ circuits over rational and real numbers.

Theorem 8 Any (not necessarily homogeneous) ΣΠΣ circuit computing S2
n(X1, . . . , Xn)

over reals / rationals requires at least n − 1 multiplication gates.
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Proof: As observed in the introduction of this paper

T 2
n(X1, . . . , Xn) = (

n
∑

j=1

Xj)
2 − 2S2

n(X1, . . . , Xn)

Hence, any ΣΠΣ circuit computing S2
n(X1, . . . , Xn) with less than n − 1 multiplication

gates gives us a ΣΠΣ circuit computing T 2
n(X1, . . . , Xn) with less than n multiplication

gates. This implies, from the ideas of Section 4.1, that there are n− 1 homogeneous linear
forms ℓ1, . . . , ℓn−1 in the variable X1 such that T 2

n(X1, ℓ1, . . . , ℓn−1) = 0. This is clearly
impossible over rationals / reals, since the coefficient of X2

1 will not vanish.

5 Conclusion and open problems

In this paper, we have studied the problem of computing the degree two elementary sym-
metric polynomial in n variables, S2

n(X), in the ΣΠΣ arithmetic circuit model over various
fields. For R, Q and C, we obtain exact bounds for all n, and for GF(2) and GF(pr), p
an odd prime, we obtain exact bounds for infinitely many n. One of the implications of
this work is an exact bound of

⌈

n
2

⌉

for infinitely many n for the 1 mod p cover problem, p
prime, generalising a result of Graham and Pollack.

Our work, however, leaves some important questions open. The most immediate one is
to resolve the remaining gaps between upper and lower bounds for computing S2

n(X). This
would be especially interesting for the odd cover problem, since we know examples of n
where one requires more than

⌈

n
2

⌉

complete bipartite graphs to odd-cover the edges of Kn.
Another open problem is to prove exact bounds for ΣΠΣ arithmetic circuits computing the
degree k elementary symmetric polynomial in n variables, Sk

n(X), when k > 2. And finally,
probably the most important open problem in the field of arithmetic circuits today is to
prove super polynomial lower bounds for inhomogeneous ΣΠΣ arithmetic circuits com-
puting an explicit polynomial (e.g. permanent, determinant) over fields of characteristic
zero.
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Appendix

A Finite fields of odd characteristic

A.1 Bounds

Our Bounds Previous Bounds
Field Upper Bnds. Lower Bnds. Upper Bnds. Lower Bnds.

Hom. Inhom. Hom. Hom.

n even n
2
∀n n

2
∀n n

2
+ 1∀n n

2
∀n

GF(pr)
r even n odd

⌈

n
2

⌉

∀n
⌈

n
2

⌉

∃∞n
⌈

n
2

⌉

∀n
⌈

n
2

⌉

∃∞n
p > 3

⌊

n
2

⌋

∀n
⌊

n
2

⌋

∀n

n even n
2
∀n n

2
∀n n

2
+ 1∀n n

2
∀n

GF(3r)
r even n odd

⌈

n
2

⌉

∀n
⌊

n
2

⌋

∀n
⌈

n
2

⌉

∀n
⌈

n
2

⌉

∃∞n
⌊

n
2

⌋

∀n

n even n
2
∃∞n n

2
∀n n

2
+ 1∀n n

2
∀n

GF(pr)
r odd n odd

⌈

n
2

⌉

∀n
⌈

n
2

⌉

∃∞n
⌈

n
2

⌉

∀n
⌈

n
2

⌉

∃∞n
p ≡ 1 mod 4

⌊

n
2

⌋

∀n
⌊

n
2

⌋

∀n

n even n
2
∃∞n n

2
∀n n − 1∀n n

2
∀n

GF(pr)
r odd n odd

⌈

n
2

⌉

∃∞n
⌊

n
2

⌋

∀n n − 1∀n
⌊

n
2

⌋

∀n
p ≡ 3 mod 4

A.2 Proofs of the upper bounds

For GF(pr), r even and GF(pr), p ≡ 1 mod 4, r odd, the proof of the upper bound is very
similar to our upper bound proof for complex numbers. The technical reason behind this
is that these fields have square roots of −1. Since the fields GF(pr), p ≡ 3 mod 4, r odd
do not have square roots of −1, we cannot mimic the upper bound arguments for complex
numbers for these fields. To prove upper bounds for these fields, we use the upper bounds
for the 1 mod p cover problem. Because of this, the upper bound of

⌈

n
2

⌉

for infinitely many
odd n actually holds only for infinitely many odd n congruent to 1 mod p. For these fields,
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the lower bound of
⌈

n
2

⌉

for odd n in the homogeneous model only holds if n 6≡ 1 mod p.
Thus, for these fields, there is a gap of an additive term of 1 between the upper and the
lower bounds for infinitely many odd n.

GF(pr), r even, p odd and GF(pr), r odd, p ≡ 1 mod 4

Theorem 9 Let p be an odd prime. S2
n(X) can be computed by a homogeneous ΣΠΣ circuit

using
⌈

n
2

⌉

multiplication gates over GF(pr), r even. Over GF(pr), r odd, p ≡ 1 mod 4,
S2

n(X) can be computed using
⌈

n
2

⌉

multiplication gates if n is odd, n
2

multiplication gates
for infinitely many even n, and n

2
+ 1 multiplication gates for all even n.

Proof: If p ≡ 1 mod 4 then −1 and 2 have square roots in GF(p) (see e.g. [NZM91,
Chapter 3]). Hence using Lemmas 6 and 7, over GF(pr), r odd, p ≡ 1 mod 4 S2

n(X) can be
computed using

⌈

n
2

⌉

multiplication gates if n is odd, and using n
2

multiplication gates for
even n such that n − 1 has a square root in GF(pr), which holds for infinitely many even
n. For all even n, S2

n(X) can be computed using n
2

+ 1 multiplication gates by taking a
circuit with that many gates for S2

n+1(X1, . . . , Xn+1), and setting Xn+1 to 0. Over GF(pr),
r even every element of GF(p) has a square root (see e.g. [Art91, Chapter 13]). Hence,
using Lemmas 6 and 7 again, S2

n(X) can be computed using
⌈

n
2

⌉

multiplication gates for
all n.

GF(pr), r odd, p ≡ 3 mod 4

Theorem 10 Let p ≡ 3 mod 4 be a prime. For infinitely many even and odd n, S2
n(X) can

be computed by a homogeneous ΣΠΣ circuit using
⌈

n
2

⌉

multiplication gates over GF(pr), r
odd.

Proof: Such fields do not have a square root of −1. Hence we cannot use either of the
Lemmas 6 and 7. To get upper bounds of

⌈

n
2

⌉

for infinitely many even and odd n, we have
to make use of the fact that upper bounds for the 1 mod p cover problem (Theorem 4) give
us upper bounds for computing S2

n(X) in the homogeneous circuit model.

A.3 Proofs of the lower bounds

The proof of the lower bound is similar to the lower bound proof for complex numbers,
though, because of technical difficulties, the results are not as tight for some values of n,
as they were in the case of complex numbers.

Theorem 11 Any (not necessarily homogeneous) ΣΠΣ circuit computing S2
n(X1, . . . , Xn)

over GF(pr) where p is an odd prime, requires at least

1.
⌈

n
2

⌉

multiplication gates if n is even

2.
⌈

n
2

⌉

multiplication gates if n is odd and n 6≡ ±1, 3 mod p

3.
⌊

n
2

⌋

multiplication gates if n is odd and n ≡ ±1, 3 mod p
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Thus, as long as p is an odd prime, we have a lower bound of
⌊

n
2

⌋

for all n. If p > 3, we
have a

⌈

n
2

⌉

lower bound for all even and infinitely many odd n.

Proof: The lower bounds in parts 1 and 2 follow from Lemmas 8, 12 and 13. Suppose n is
odd. Since a ΣΠΣ circuit computing S2

n(X1, . . . , Xn) also gives us a ΣΠΣ circuit computing
S2

n−1(X1, . . . , Xn−1) for which we have a lower bound of n−1
2

, we get the lower bound in
part 3.
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