
Explicit Deterministic Constructions forMembership in the Bitprobe ModelJaikumar Radhakrishnan1, Venkatesh Raman2, S. Srinivasa Rao21 Tata Institute of Fundamental Research, Mumbai.jaikumar@tcs.tifr.res.in2 Institute of Mathematical Sciences, Chennai, India 600 113.fvraman,ssraog@imsc.ernet.inAbstract. We look at time-space tradeo�s for the static membershipproblem in the bit-probe model. The problem is to represent a set ofsize up to n from a universe of size m using a small number of bits sothat given an element of the universe, its membership in the set can bedetermined with as few bit probes to the representation as possible.We show several deterministic upper bounds for the case when the num-ber of bit probes, is small, by explicit constructions, culminating in onethat uses o(m) bits of space where membership can be determined withdlg lg ne + 2 adaptive bit probes. We also show two tight lower boundson space for a restricted two probe adaptive scheme.1 IntroductionWe look at the static membership problem: Given a subset S of up to n keysdrawn from a universe of size m, store it so that queries of the form \Is x in S?"can be answered quickly. We study this problem in the bit-probe model wherespace is counted as the number of bits used to store the data structure and timeas the number of bits of the data structure looked at in answering a query.A simple characteristic bit vector gives a solution to the problem using mbits of space in which membership queries can be answered using one bit probe.On the other hand, the structures given by Fredman et al.[4], Brodnik andMunro [1] and Pagh [5] can be used to get a scheme that uses O(n lgm) bits ofspace in which membership queries can be answered using O(lgm) bit probes.Recently Pagh [6] has given a structure that requires O(sm;n) bits of spaceand supports membership queries using O(lg(m=n)) bit probes to the structure,where sm;n = �(n lg(m=n)) is the information theoretic lower bound on spacefor any structure storing an n element subset of an m element universe.Buhrman et al.[2] have shown that both the above schemes are optimal. Inparticular they have shown that any deterministic scheme that answers mem-bership queries using one bit probe requires at least m bits of space and anydeterministic scheme using O(sm;n) bits of space requires at least 
(lg(m=n))probes to answer membership queries. They have considered the intermediateranges and have given some upper and lower bounds for randomized as well asdeterministic versions. Their main result is that the optimal O(n lgm) bits (for



n � m1�
(1)) and one bit probe per query are su�cient, if the query algorithmis allowed to make errors (both sided) with a small probability. For the determin-istic case, however, they have given some non-constructive upper bounds. Theyhave also given some explicit structures for the case when t is large (t � lgn).Our main contribution in this paper, is some improved deterministic upperbounds for the problem using explicit constructions, particularly for small valuesof t. For sets of size at most 2, we give a scheme that uses O(m2=3) bits of spaceand answers queries using 2 probes. This improves the O(m3=4) bit scheme in[2] shown using probabilistic arguments. We also show that the space bound isoptimal for a restricted two probe scheme. We then generalize this to a dlg lgne+2 probe scheme for storing sets of size at most n, which uses o(m) bits of space.This is the best known constructive scheme (in terms of the number of bit probesused) for general n that uses o(m) bits of space, though it is known [2] (usingprobabilistic arguments) that there exists a scheme using o(m) bits of spacewhere queries can be answered using a constant number of bit probes.The next section introduces some de�nitions. The following section givesimproved upper bounds for deterministic schemes. In section 4, we give somespace lower bounds for a restricted class of two probe schemes, matching ourupper bound. Finally, Section 5 concludes with some remarks and open problems.2 De�nitionsWe reproduce the de�nition of a storing scheme, introduced in [2]. An (n;m; s)-storing scheme, is a method for representing any subset of size at most n over auniverse of size m as an s-bit string. Formally, an (n;m; s)-storing scheme is amap � from the subsets of size at most n of f1; 2; : : :;mg to f0; 1gs. A determinis-tic (m; s; t)-query scheme is a family ofm boolean decision trees fT1; T2; : : : ; Tmg,of depth at most t. Each internal node in a decision tree is marked with an indexbetween 1 and s, indicating an address of a bit in an s-bit data structure. Allthe edges are labeled by \0" or \1" indicating the bit stored in the parent node.The leaf nodes are marked \Yes" or \No". Each tree Ti induces a map fromf0; 1gs ! fYes, Nog. An (n;m; s)-storing scheme and an (m; s; t)-query schemeTi together form an (n;m; s; t)-scheme which solves the (n;m)-membership prob-lem if 8S; x s:t: jSj � n; x 2 U : Tx(�(S)) = Y es if and only if x 2 S. A non-adaptive query scheme is a deterministic scheme where in each decision tree, allnodes on a particular level are marked with the same index.We follow the convention that whenever the universe f1; : : : ;mg is dividedinto blocks of size b (or m=b blocks), the elements f(i � 1)b + 1; : : : ; ibg fromthe universe belong to the ith block, for 1 � i � bm=bc and the remaining(at most b) elements belong to the last block. For integers x and a we de�ne,div(x; a) = bx=ac and mod(x; a) = x� a div(x; a). To simplify the notation, weignore integer rounding ups and downs at some places where they do not a�ectthe asymptotic analysis.



3 Upper bounds for deterministic schemesAs observed in [2], the static dictionary structure given by Fredman, Komlosand Szemeredi [4] can be modi�ed to give an adaptive (n;m; s; t)-scheme withs = O(nkm1=k) and t = O(lgn + lg lgm) + k, for any parameter k � 1. Thisgives a scheme when the number of probes is larger than lgn. In this section,we look at schemes which require fewer number of probes albeit requiring morespace.For two element sets, Buhrman et al.[2] have given a non-adaptive schemethat uses O(pm) bits of space and answers queries using 3 probes. If the queryscheme is adaptive, there is even a simpler structure. Our starting point is ageneralization of this scheme for larger n.Theorem 1. There is an explicit adaptive (n;m; s; t)-scheme with t = dlg(n +1)e+ 1 and s = (n+ dlg(n+ 1)e)m1=2.Proof. The structure consists of two parts. We divide the universe into blocksof size m1=2. The �rst part consists of a table T of size m1=2, each entry cor-responding to a block. We call a block non-empty if at least one element fromthe given set falls into that block and empty otherwise. For each non-emptyblock, we store its rank (the number of non-empty blocks appearing before andincluding it) in the table entry of that block and store a string of zeroes for eachempty block. Since the rank can be any number in the range [1; : : : ; n] (and westore a zero for the empty blocks), we need dlg(n+1)e bits for storing each entryof the table T .In the second part, we store the bit vectors corresponding to each non-emptyblock in the order in which they appear in the �rst part. For convenience, we callthe jth bit vector as table Tj. Thus the total space required for the structure isat most (n+ dlg(n+ 1)e)m1=2 bits.Every element x 2 [m] is associated with l+1 locations, where l is the numberof non-empty blocks: t(x) = div(x;m1=2) in table T and tj(x) = mod(x;m1=2)in table Tj for 1 � j � l. Given an element x, the query scheme �rst reads theentry j at location t(x) in table T . If j = 0, the scheme answers `No'. Otherwiseit looks at the bit Tj(tj(x)) in the second part and answers `Yes' if and only ifit is a one. utIf only two probes are allowed, Buhrman et al.[2] have shown that, any non-adaptive scheme must use m bits of space. For sets of size at most 2, they havealso proved the existence of an adaptive scheme using 2 probes and O(m3=4) bitsof space. We improve it to the following:Theorem 2. There is an explicit adaptive scheme that stores sets of size atmost 2 from a universe of size m using O(m2=3) bits and answers queries using2 bit-probes.Proof. Divide the universe into blocks of size m1=3 each. There are m2=3 blocks.Group m1=3 consecutive blocks into a superblock. There are m1=3 superblocksof size m2=3 each.



The storage scheme consists of three tables T , T0 and T1, each of size m2=3bits. Each element x 2 [m] is associated with three locations, t(x), t0(x) andt1(x), one in each of the three tables, as de�ned below. Let b = m2=3 andb1 = m1=3. Then, t(x) = div(x; b1), t0(x) = mod(x; b) and t1(x) = div(x; b) b1 +mod(x; b1). Given an element x 2 [m], the query scheme �rst looks at T (t(x)).If T (t(x)) = j, it looks at Tj(tj(x)) and answers `Yes' if and only if it is 1, forj 2 f0; 1g.To represent a set fx; yg, if both the elements belong to the same superblock(i.e. if div(x; b) = div(y; b)), then we set the bits T (t(x)) and T (t(y)) to 0, allother bits in T to 1; T0(t0(x)) and T0(t0(y)) to 1 and all other bits in T0 andT1 to 0. In other words, we represent the characteristic vector of the superblockcontaining both the elements, in T0, in this case.Otherwise, if both the elements belong to di�erent superblocks, we set T (t(x)),T (t(y)), T1(t1(x)) and T1(t1(y)) to 1 and all other bits in T , T0 and T1 to 0.In this case, each superblock has at most one non-empty block containing oneelement. So in T1, for each superblock, we store the characteristic vector of theonly non-empty block in it (if it exists) or any one block in it (which is a sequenceof zeroes) otherwise. One can easily verify that the storage scheme is valid andthat the query scheme answers membership queries correctly. utOne can immediately generalize this scheme for larger n to prove the fol-lowing. Notice that the number of probes is slightly smaller than that used inTheorem 1, though the space used is larger.Theorem 3. There is an explicit adaptive (n;m; s; t)-scheme with t = 1 +dlg(bn=2c + 2)e and s = O(m2=3(n=2 + lg(n=2 + 2) + 1)).Proof Sketch: The idea is to distinguish superblocks containing at least 2elements from those containing at most one element.In the �rst level, if a superblock contains at least 2 elements, we store itsrank among all superblocks containing at least 2 elements, with all its blocks.Since there can be at most bn=2c superblocks containing at least 2 elements, therank can be any number in the range f1; : : : ; bn=2cg. For blocks which fall intosuperblocks containing at most one element, we store the number bn=2c + 1, ifthe block is non-empty and a sequence of dlg(bn=2c+ 2)e zeroes, otherwise.The second level consists of bn=2c+ 1 bit vectors of size m2=3 each. We willstore the characteristic vector of the jth superblock in the jth bit vector for1 � j � l, where l is the number of superblocks containing at least 2 elements.We will store all zeroes in the bit vectors numbered l + 1 to bn=2c. In the(bn=2c + 1)st bit vector, for each superblock we store the characteristic vectorof the only non-empty block in it, if it has exactly one non-empty block or asequence of zeroes otherwise.On query x, we look at the �rst level entry of the block corresponding tox. We answer that the element is not present, if the entry is a sequence ofzeroes. Otherwise, if it is a number k in the range [1; : : : ; bn=2c], we look at thecorresponding location of x in the kth bit vector in the second level (which storesthe bit vector corresponding to the superblock containing x). Otherwise (if the



number is bn=2c+ 1), we look at the corresponding location of x in the last bitvector and answer accordingly. 2This can be further generalized as follows. In the �rst level, we will distinguishthe superblocks having at least k elements (for some integer k) from those withat most k � 1 elements in them. For superblocks having at least k elements, westore the rank of that superblock among all such superblocks, in all the blocksof that superblock. For the other superblocks, we store the rank of the blockamong all non-empty blocks in that superblock, if the block is non-empty anda sequence of zeroes otherwise. The second level will have bn=kc + k � 1 bitvectors of length m2=3 each where in the �rst bn=kc bit vectors, we store thecharacteristic vectors of the at most bn=kc superblocks containing at least kelements in them (in the order of increasing rank) and pad the rest of themwith zeroes. Each of the (bn=kc + j)th bit vectors, for 1 � j � k � 1, storesone block for every superblock. This block is the jth non-empty block in thatsuperblock, if that superblock contains at least j non-empty blocks and at mostk � 1 elements; we store a sequence of zeroes otherwise. The query scheme isstraightforward. This results in the following.Corollary 1. There is an explicit adaptive (n;m; s; t)-scheme with t = 1 +dlg(bn=kc + k)e and s = O(m2=3(n=k + lg(n=k + k) + k)).Choosing k = dpne, we get an explicit adaptive (n;m; s; t)-scheme witht = 2 + d12 lgne and s = O(m2=3pn).Actually, by choosing the block sizes to be m1=3(lgn)2=3n1=3 and the sizes of thesuperblocks to be m2=3(lgn)1=3n1=6 we get the following improved scheme:Corollary 2. There is an explicit adaptive (n;m; s; t)-scheme with t = 2 +d12 lgne and s = O(m2=3(n lgn)1=3).We generalize this to the following:Theorem 4. There is an explicit adaptive (n;m; s; t)-scheme with t = dlg ke +d 1k lgne + 1 and s = mk=(k+1) �lg k + 1k lgn+ kn1=k�, for k � 1.Proof. We divide the universe into blocks of size b (to be determined later) andconstruct a complete b-ary tree with these blocks at the leaves. Let the heightof this tree be k. Thus, we have m = bk+1 or b = m1=(k+1). Given a set S of nelements from the universe, we store it using a three level structure. We call ablock non-empty if at least one element of the given set S belongs to that blockand call it empty otherwise. We de�ne the height of a node in the tree to be thelength of the path (the number of nodes in the path) from that node to any leafin the subtree rooted at that node. Note that the height of the root is k+ 1 andthat of any leaf is one.In the �rst level we store an index in the range [0; : : : ; k � 1] correspondingto each block. Thus the �rst level consists of a table B of size bk where eachentry is a dlgke bit number. The index stored for an empty block is 0. For a



non-empty block, we store the height h � k � 1 of its ancestor (excluding theroot and the �rst level nodes of the tree) x of maximum height such that thetotal number of elements falling into all the blocks in the subtree rooted at nodex is more than �nh=k�. This will be a number in the range [0; : : : ; k� 1].In the second level we store a number in the range [1; : : : ; �n1=k� � 1] cor-responding to each block. Thus this level consists of a table T of size bk, eachentry of which is a �lgn1=k� bit number. The number stored for an empty blockis 0. For a non-empty block, we store the following:Observe that given any node x at height h which has at most �nh=k� ele-ments from the set, the number of its children which have more than �n(h�1)=k�elements from the set is less than �n1=k�. Suppose the index stored for a block isl. It means that the ancestor x of that block at height l has more than �nl=k� el-ements and the ancestor y at height l+1 has at most �n(l+1)=k� elements. Hencey can have less than �n1=k� children which have more than �nl=k� elements. Callthese the `large' children. With all the leaves rooted at each large child of y, westore the rank of that child among all large children (from left to right) in thesecond level.In the third level, we have k tables, each of size �n1=k�m=b bits. The ithtable stores the representations of all blocks whose �rst level entry (in table B)is i. We think of the ith table as a set of �n1=k� bit vectors, each of length m=b.Each of these bit vectors in the ith level stores the characteristic vector of aparticular child for each node at height i of the tree, in the left to right order.For each block (of size b) with �rst level entry i and second level entry j, westore the characteristic vector of that block in the jth bit vector of the ith tableat the location corresponding to its block of size bk�i. We store zeroes (i.e. thecharacteristic vector of an empty block of appropriate size) at all other locationsnot speci�ed above.Every element x 2 [m] is associated with k + 2 locations b(x), t(x) andti(x) for 0 � i � k � 1, as de�ned below: b(x) = t(x) = div(x; b), ti(x) =mod(div(x; bk�i)bi +mod(x; bi); bk).Given an element x, the query scheme �rst reads i = B(b(x)) and j = T (t(x))from the �rst two levels of the structure. If j = 0, it answers `No'. Otherwise,it reads the jth bit in the table entry at location ti(x) in table Ti and answers`Yes' if and only if it is 1.The space required for the structure is s = bk(dlgke+ � 1k lgn�+ mb k �n1=k�)bits. Substituting b = m1=(k+1) makes the space complexity to bemk=(k+1)(dlg ke+�1k lgn� + kn1=k). The number of probes required to answer a query is t =dlg ke+ d 1k lgne + 1. utOne can slightly improve the space complexity of the above structure bychoosing non-uniform block sizes and making the block sizes (branching factorsat each level, in the above tree structure) to be a function of n. More precisely,by choosing the branching factor of all the nodes at level i in the above treestructure to be bi, where bi = m1� ik+1 � dlg ke+d 1k lgnedn1=ke �i=(k+1), we get



Corollary 3. There is an explicit adaptive (n;m; s; t)-scheme with t = dlg ke+d 1k lgne + 1 and s = (k + 1)mk=(k+1) �n(dlg ke + �lgn1=k�)�1=(k+1), for k � 1.By setting k = lgn, we getCorollary 4. There is an explicit adaptive (n;m; s; t)-scheme with t = dlg lgne+2 and s = o(m) when n is O(m1= lg lgm).In the above adaptive scheme we �rst read dlg ke + d 1k lgne bits from thestructure, and depending on these bits we look at one more bit in the next levelto determine whether the query element is present. An obvious way to make thisscheme non-adaptive is to read the dlg ke+d 1k lgne bits and all possible k �n1=k�bits (in the next level) and determine the membership accordingly. Thus we getan explicit non-adaptive (n;m; s; t)-scheme with t = dlgke + d 1k lgne + kdn1=keand s = tmk=(k+1). By setting k = dlgne in this, we get a non-adaptive schemewith t = O(lgn) and s = o(m).These schemes give the best known explicit adaptive and non-adaptive schemesrespectively for general n using o(m) bits.4 Lower BoundsBuhrman et al.[2] have shown that for any (n;m; s; t) scheme s is 
(ntm1=t). Onecan achieve this bound easily for n = 1. They have also shown that for n � 2 anytwo probe non-adaptive scheme must use at least m bits of space. In this section,we show a space lower bound of 
(m2=3) bits for a restricted class of adaptiveschemes using two probes, for n � 2. Combining this with the upper bound ofTheorem 2, this gives a tight lower bound for this class of restricted schemes. Weconjecture that the lower bound applies even for unrestricted schemes. We alsoshow a lower bound of 
(m) bits for this restricted class of schemes for n � 3.Any two-probe O(s) bit adaptive scheme to represent sets of size at most 2from a universe U of size m, can be assumed to satisfy the following conditions(without loss of generality):1. It has three tables A, B and C each of size s bits.2. Each x 2 U is associated with three locations a(x), b(x) and c(x).3. On query x, the query scheme �rst looks at A(a(x)). If A(a(x)) = 0 then itanswers `Yes' if and only if B(b(x)) = 1 else if A(a(x)) = 1 then it answers`Yes' if and only if C(c(x)) = 1.4. Let Ai = fx 2 [m] : a(x) = ig, Bi = fb(x) : x 2 Aig and Ci = fc(x) : x 2Aig for 1 � i � s. For all 1 � i � s, jBij = jAij or jAij = jCij. I.e. the set ofelements looking at a particular location in table A will all look at a distinctlocations in one of the tables, B and C. (Otherwise, let x; y; x0; y0 2 Ai,x 6= y and x0 6= y0 be such that b(x) = b(y) and c(x0) = c(y0). Then we cannot represent the set fx; x0g.)



5. Each location of A;B and C is looked at by at least two elements of theuniverse, unless s � m. (If a location is looked at by only one element, thenset that location to 1 or 0 depending on whether the corresponding elementis present or not; we can remove that location and the element out of ourscheme.)6. There are at most two ones in B and C put together.De�ne the following restrictions:{ R1. For x; y 2 [m]; x 6= y, a(x) = a(y)) b(x) 6= b(y) and c(x) 6= c(y).{ R2. For i; j 2 [s]; i 6= j, Bi \Bj 6= �) Ci \Cj = �.{ R3. Either B or C is all zeroes.We show that if an adaptive (2;m; s; 2) scheme satis�es R3 (or equivalentlyR1 and R2, as we will show), then s is 
(m2=3). Note that the scheme given inTheorem 2 satis�es all these three conditions. We then show that if an adaptive(n;m; s; 2) scheme for n � 3 satis�es R3, then s � m.Theorem 5. If an adaptive (2;m; s; 2) scheme satis�es condition R3, then s is
(m2=3).Proof. We �rst show that (R3 ) R1 and R2) and then show that (R1 and R2) s is 
(m2=3)).Let a(x) = a(y) and b(x) = b(y) for x; y 2 [m]; x 6= y. Consider an elementz 6= x such that c(x) = c(z) (such an element exists by condition 5 above). Now,the set fy; zg cannot be represented satisfying R3. Thus we have, R3 ) R1.Again, let a(x1) = a(x2) = i, a(y1) = a(y2) = j, b(x1) = b(y1) and c(x2) =c(y2) (so that R2 is violated). Then, the set fx2; y1g cannot be representedsatisfying R3. Thus we have, R3 ) R2.Observe that R1 impliesjAij = jBij = jCij; 8i; 1 � i � s: (1)Hence sXi=1 jBij = sXi=1 jAij = m: (2)By R2, the sets Bi � Ci are disjoint (no pair occurs in two of these Carte-sian products). Thus, by Equation (1), Psi=1 jBij2 � s2. By Cauchy-Schwarz,s(Psi=1 jBij=s)2 � Psi=1 jBij2 � s2. By Equation (2), Pi jBij = m. Thus,m2=s � s2 or s � m2=3. utRemark: We observe that, in fact the condition R3 is equivalent to R1 and R2.To show this, it is enough to prove that R1 and R2 ) R3. We argue that anyscheme that satis�es R1 and R2 can be converted into a scheme that satis�esR3 also.



Consider any scheme which satis�es R1 and R2 but not R3. So, there existsa set fx; yg such that a(x) 6= a(y) for which the scheme stores this set as follows(without loss of generality):A(a(x)) = 0, A(a(y)) = 1,B(b(x)) = 1, C(c(y)) = 1,A(a(z)) = 1 for all z for which b(z) = b(x), A(a(z)) = 0 for all z for whichc(z) = c(y) and all other locations as zeroes.Let a(x) = i and a(y) = j. If Bi \ Bj = � then we can store this set asfollows: A(a(x)) = A(a(y)) = 0; B(b(x)) = B(b(y)) = 1 and all other entries inA as 1s, and all entries in B and C as zeroes, satisfying R3. Condition R1 (andthe fact that Bi \ Bj = �) ensures that this is a valid scheme to represent theset fx; yg.If Bi \Bj 6= �, then R2 ensures that Ci \ Cj = �. In this case, to store theset fx; yg we can set A(a(x)) = A(a(y)) = 1; C(c(x)) = C(c(y)) = 1 and allother entries as zeroes, satisfying R3.We now show the following.Theorem 6. If an adaptive (n;m; s; 2) scheme, for n � 3 satis�es conditionR3, then s � m.Proof. We �rst observe that any two probe adaptive scheme satis�es conditions1 to 5 of the adaptive schemes for sets of size at most 2. Consider an adaptive(3;m; s; 2) scheme with s < m. One can �nd �ve elements x, y, y0, z and z0 fromthe universe such that a(y) = a(y0), a(z) = a(z0), b(x) = b(y) and c(x) = c(z).(Start by �xing x, y, z and then �x x0 and y0.) Existence of such a situation isguaranteed by condition 5, as s < m. Then we can not represent the set fx; y0; z0gsatisfying R3, contradicting the assumption. Hence, s � m. ut5 ConclusionsWe have given several deterministic explicit schemes for the membership problemin the bit probe model for small values of t. Our main goal is to achieve o(m)bit space and answer queries using as few probes as possible. We could achievedlg lgne + 2 adaptive probes through an explicit scheme, though it is known(probabilistically) that one can get a o(m) bit structure which uses only 5 probesto answer queries. It is a challenging open problem to come up with explicitscheme achieving this bound. We conjecture that one can not get a three probeo(m) bit structure.One can also �x some space bound and ask for the least number of probesrequired to answer the queries. For example, if s = O(npm), Theorem 1 gives alg(n+1)+1 probe adaptive scheme. It would be interesting to see if this can beimproved. Also this scheme immediately gives an n+O(lgn) probe non-adaptivescheme, with the same space bound. Demaine et al.[3] have improved this to anO(pn lgn) probe non-adaptive scheme with s = O(pmn lgn).Acknowledgment. Part of the work was done while the second author was visitingthe University of Waterloo, Canada. He thanks Ian Munro and Erik Demainefor useful discussions.



References1. A. Brodnik and J. I. Munro, \Membership in constant time and almost minimumspace", SIAM Journal on Computing, 28(5), 1628-1640 (1999).2. H. Buhrman, P. B. Miltersen, J. Radhakrishnan and S. Venkatesh, \Are BitvectorsOptimal?", Proceedings of Symposium on Theory of Computing (2000) 449-458.3. E. D. Demaine, J. I. Munro, V. Raman and S. S. Rao, \Beating Bitvectors withOblivious Bitprobes", I.M.Sc. Technical Report (2001).4. M. L. Fredman, J. Koml�os and E. Szemer�edi, \Storing a sparse table with O(1)access time", Journal of the Association for Computing Machinery, 31 (1984) 538-544.5. Rasmus Pagh, \Low redundancy in dictionaries with O(1) worst case lookup time",Proceedings of the International Colloquium on Automata, Languages and Pro-gramming, LNCS 1644 (1999) 595-604.6. Rasmus Pagh, \On the Cell Probe Complexity of Membership and Perfect Hash-ing", Proceedings of Symposium on Theory of Computing (2001).


