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A direct sum theorem in communication complexity via message
compression

Rahul Jain∗ Jaikumar Radhakrishnan† Pranab Sen‡

Abstract

We prove lower bounds for thedirect sumproblem for two-party bounded error randomised multiple-
round communication protocols. Our proofs use the notion ofinformation costof a protocol, as defined
by Chakrabarti et al. [CSWY01] and refined further by Bar-Yossef et al. [BJKS02]. Our main technical
result is a ‘compression’ theorem saying that, for any probability distributionµ over the inputs, ak-round
private coin bounded error protocol for a functionf with information costc can be converted into ak-
round deterministic protocol forf with bounded distributional error and communication costO(kc). We
prove this result using asubstatetheorem aboutrelative entropyand arejection samplingargument. Our
direct sum result follows from this ‘compression’ result via elementary information theoretic arguments.

We also consider the direct sum problem in quantum communication. Using a probabilistic argument,
we show that messages cannot be compressed in this manner even if they carry small information. Hence,
new techniques may be necessary to tackle the direct sum problem in quantum communication.

1 Introduction

We consider the two-partycommunication complexityof computing a functionf : X × Y → Z. There
are two players Alice and Bob. Alice is given an inputx ∈ X and Bob is given an inputy ∈ Y. They
then exchange messages in order to determinef(x, y). The goal is to devise a protocol that minimises the
amount of communication. In therandomisedcommunication complexity model, Alice and Bob are allowed
to toss coins and base their actions on the outcome of these coin tosses, and are required to determine the
correct value with high probability for every input. There are two models for randomised protocols: in the
private coinmodel the coin tosses are private to each player; in thepublic coinmodel the two players share a
string that is generated randomly (independently of the input). A protocol wherek messages are exchanged
between the two players is called ak-round protocol. One also considers protocols where the twoparties
send a message each to a referee who determines the answer: this is thesimultaneousmessage model.

The starting point of our work is a recent result of Chakrabarti, Shi, Wirth and Yao [CSWY01] con-
cerning thedirect sumproblem in communication complexity. For a functionf : X × Y → Z, the

m-fold direct sumis the functionfm : Xm × Ym → Zm, defined byfm(〈x1, . . . , xm〉, 〈y1, . . . , ym〉) ∆
=

〈f(x1, y1), . . . , f(xm, ym)〉. One then studies the communication complexity offm as the parameterm in-
creases. Chakrabarti et al. [CSWY01] considered the directsum problem in the bounded error simultaneous
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message private coin model and showed that for the equality functionEQn : {0, 1}n × {0, 1}n → {0, 1},
the communication complexity ofEQm

n is Ω(m) times the communication complexity ofEQn. In fact, their
result is more general. LetRsim(f) be the bounded error simultaneous message private coin communication

complexity off : {0, 1}n × {0, 1}n → {0, 1}, and letR̃sim(f)
∆
= minS Rsim(f |S×S), whereS ranges over

all subsets of{0, 1}n of size at least(2
3)2n.

Theorem ([CSWY01]) Rsim(fm) = Ω(m(R̃sim(f) − O(log n))). A similar result holds for two-party
bounded error one-round protocols too.

The proof of this result in [CSWY01] had two parts. The first part used the notion of information cost of
randomised protocols, which is the mutual information between the inputs (which were chosen with uniform
distribution in [CSWY01]) and the transcript of the communication between the two parties. Clearly, the
information cost is bounded by the length of the transcript.So, showing lower bounds on the information
cost gives a lower bound on the communication complexity. Chakrabarti et al. showed that the information
cost is super-additive, that is, the information cost offm is at leastm times the information cost off . The
second part of their argument showed an interesting messagecompression result for communication proto-
cols. This result can be stated informally as follows: if themessage contains at mosta bits of information
about a player’s input, then one can modify the (one-round orsimultaneous message) protocol so that the
length of the message isO(a + log n). Thus, one obtains a lower bound on the information cost off if one
has a suitable lower bound on the communication complexityf . By combining this with the first part, we
see that the communication complexity offm is at leastm times this lower bound on the communication
complexity off .

In this paper, we examine if this approach can be employed forprotocols with more than one-round
of communication. LetRk

δ (f) denote thek-round private coin communication complexity off where the
protocol is allowed to err with probability at mostδ on any input. Letµ be a probability distribution on
the inputs off . Let Ck

µ,δ(f) denote the deterministick-round communication complexity off , where the

protocol errs for at mostδ fraction, according to the distributionµ, of the inputs. LetCk
[ ],δ(f) denote the

maximum, over all product distributionsµ, of Ck
µ,δ(f). We prove the following.

Theorem: Let m,k be positive integers, andǫ, δ > 0. Let f : X × Y → Z be a function. Then,
Rk

δ (f
m) ≥ m · ( ǫ2

2k · Ck
[ ],δ+2ǫ(f) − 2).

The proof this result, like the proof in [CSWY01], has two parts, where the first part uses a notion of infor-
mation cost fork-round protocols, and the second shows how messages can be compressed in protocols with
low information cost. We now informally describe the ideas behind these results. To keep our presentation
simple, we will assume that Alice’s and Bob’s inputs are chosen uniformly at random from their input sets.

The first part of our argument uses the extension of the notionof information cost tok-round protocols.
The information cost of ak-round randomised protocol is the mutual information between the inputs and
the transcript. This natural extension, and its refinement to conditional information costby [BJKS02] has
proved fruitful in several other contexts [BJKS02, JRS03].It is easy to see that it is bounded above by the
length of the transcript, and a lower bound on the information cost of protocols gives a lower bound on the
randomised communication complexity. The first part of the argument in [CSWY01] is still applicable: the
information cost is super-additive; in particular, thek-round information cost offm is at leastm times the
k-round information cost off .
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The main contribution of this work is in the second part of theargument. This part of Chakrabarti et
al. [CSWY01] used a technical argument to compress messagesby exploiting the fact that they carry low
information. Our proof is based on the connection between mutual information of random variables and
the relative entropy of probability distributions (see Section 2 for definition). Intuitively, it is reasonable to
expect that if the message sent by Alice contains little information about her inputX, then for various values
x of X, the conditional distribution on the message, denoted byPx, are similar. In fact, if we use relative
entropy to compare distributions, then one can show that themutual information is the average taken over
x of the relative entropyS(Px‖Q) of Px andQ, whereQ = EX [PX ]. Thus, if the information between
Alice’s input and her message is bounded bya, then typicallyS(Px‖Q) is abouta. To exploit this fact,
we use the Substate theorem of [JRS02] which states (roughly) that if S(Px‖Q) ≤ a, thenPx ≤ 2−aQ.
Using a standardrejection samplingidea we then show that Alice can restrict herself to a set of just 2O(a)n
messages; consequently, her messages can be encoded inO(a + log n) bits. In fact, such a compact set of
messages can be obtained by sampling2O(a)n times from distributionQ.

We believe this connection between relative entropy and sampling is an important contribution of this
work. Besides giving a more direct proof of the second part ofChakrabarti et al.’s [CSWY01] argument, our
approach quickly generalises to two party bounded error private coin multiple round protocols, and allows
us to prove a message compression result and a direct sum lower bound for such protocols. Direct sum lower
bounds for such protocols were not known earlier. In addition, our message compression result and direct
sum lower bound for multiple round protocols hold for protocols computing relations too.

The second part of our argument raises an interesting question in the setting of quantum communication.
Can we always make the length of quantum messages comparableto the amount of information they carry
about the inputs without significantly changing the error probability of the protocol? That is, forx ∈
{0, 1}n, instead of distributionsPx we have density matricesρx so that the expected quantum relative

entropyEX [S(ρx‖ρ)] ≤ a, whereρ
∆
= EX [ρx]. Also, we are given measurements (POVM elements)Mx

y ,

x, y ∈ {0, 1}n. Then, we wish to replaceρx by ρ′x so that there is a subspace of dimensionn · 2O(a/ǫ)

that contains the support of eachρ′x; also, there is a setA ⊆ {0, 1}n, |A| ≥ 2
3 · 2n such that for each

(x, y) ∈ A × {0, 1}n, |Tr Mx
y ρx − Tr Mx

y ρ′x| ≤ ǫ. Fortunately, the quantum analogue of the Substate
theorem has already been proved by Jain, Radhakrishnan and Sen [JRS02]. Unfortunately, it is the rejection
sampling argument that does not generalise to the quantum setting. Indeed, we can prove the following
strong negative result about compressibility of quantum information: For sufficiently large constanta, there
existρx, Mx

y , x, y ∈ {0, 1}n as above such that any subspace containing the supports ofρ′x as above has

dimension at least2n/6. This strong negative result seems to suggest that new techniques may be required
to tackle the direct sum problem for quantum communication.

1.1 Previous results

The direct sum problem for communication complexity has been extensively studied in the past (see Kushile-
vitz and Nisan [KN97]). Letf : {0, 1}n × {0, 1}n → {0, 1} be a function. LetC(f) (R(f)) denote the
deterministic (bounded error private coin randomised) two-party communication complexity off . Ceder,
Kushilevitz, Naor and Nisan [FKNN95] showed that there exists a partial functionf with C(f) = Θ(log n),
whereas solvingm copies takes onlyC(fm) = O(m + log m · log n). They also showed a lower bound
C(fm) ≥ m(

√
C(f)/2− log n−O(1)) for total functionsf . For the one-round deterministic model, they

showed thatC(fm) ≥ m(C(f)− log n−O(1)) even for partial functions. For the two-round deterministic
model, Karchmer, Kushilevitz and Nisan [KKN92] showed thatC(fm) ≥ m(C(f) − O(log n)) for any
relationf . Feder et al. [FKNN95] also showed that for the equality problem R(EQm

n ) = O(m + log n).
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1.2 Our results

We now state the new results in this paper.

Result 1 (Compression result, multiple-rounds)Suppose thatΠ is a k-round private coin randomised
protocol forf : X × Y → Z. Let the average error ofΠ under a probability distributionµ on the inputs
X × Y beδ. LetX,Y denote the random variables corresponding to Alice’s and Bob’s inputs respectively.
Let T denote the complete transcript of messages sent by Alice andBob. SupposeI(XY : T ) ≤ a. Let
ǫ > 0. Then, there is another deterministic protocolΠ′ with the following properties:

(a) The communication cost ofΠ′ is at most2k(a+1)
ǫ2 + 2k

ǫ bits;

(b) The distributional error ofΠ′ underµ is at mostδ + 2ǫ.

Result 2 (Direct sum, multiple-rounds) Letm,k be positive integers, andǫ, δ > 0. Letf : X × Y → Z
be a function. Then,Rk

δ (f
m) ≥ m ·

(
ǫ2

2k · Ck
[ ],δ+2ǫ(f) − 2

)
.

Result 3 (Quantum incompressibility) Let m,n, d be positive integers andk ≥ 7. Let d ≥ 1602, 1600 ·
d4 · k2k ln(20d2) < m and3200 · d5 · 22k ln d < n. Let the underlying Hilbert space beCm. There existn
statesρl andn orthogonal projectionsMl, 1 ≤ l ≤ n, such that

(a) ∀l Tr Mlρl = 1.

(b) ρ
∆
= 1

n · ∑l ρl = 1
m · I, whereI is the identity operator onCm.

(c) ∀l S(ρl‖ρ) = k.

(d) For all d-dimensional subspacesW of C
m, for all ordered sets of density matrices{σl}l∈[n] with

support inW , |{l : Tr Mlσl ≤ 1/10}| ≥ n/4.

Remark: The above result intuitively says that the statesρl on log m qubits cannot be compressed to less
thanlog d qubits with respect to the measurementsMl.

1.3 Organisation of the rest of the paper

Section 2 defines several basic concepts which will be required for the proofs of the main results. In Sec-
tion 3, we prove a version of the message compression result for bounded error private coin simultaneous
message protocols and state the direct sum result for such protocols. Our version is slightly stronger than the
one in [CSWY01]. The main ideas of this work (i.e. the use of the Substate theorem and rejection sampling)
are already encountered in this section. In Section 4, we prove the compression result fork-round bounded
error private coin protocols, and state the direct sum result for such protocols. We prove the impossibility of
quantum compression in Section 5. Finally, we conclude by mentioning some open problems in Section 6.

2 Preliminaries

2.1 Information theoretic background

In this paper,ln denotes the natural logarithm andlog denotes logarithm to base2. All random variables will

have finite range. Let[k]
∆
= {1, . . . , k}. Let P,Q : [k] → R. The total variation distance(also known as

4



ℓ1-distance) betweenP,Q is defined as‖P − Q‖1
∆
=

∑
i∈[k] |P (i)−Q(i)|. We sayP ≤ Q iff P (i) ≤ Q(i)

for all i ∈ [k]. SupposeX,Y,Z are random variables with some joint distribution. TheShannon entropyof

X is defined asH(X)
∆
= −∑

x Pr[X = x] log Pr[X = x]. The mutual information ofX andY is defined

asI(X : Y )
∆
= H(X) + H(Y ) − H(XY ). For z ∈ range(Z), I((X : Y ) | Z = z) denotes the mutual

information ofX andY conditioned on the eventZ = z i.e. the mutual information arising from the joint

distribution ofX,Y conditioned onZ = z. DefineI((X : Y ) | Z)
∆
= EZ I((X : Y ) | Z = z). It is

readily seen thatI((X : Y ) | Z) = H(XZ) + H(Y Z) − H(XY Z) − H(Z). For a good introduction to
information theory, see e.g. [CT91].

We now recall the definition of an important information theoretic quantity calledrelative entropy, also
known asKullback-Leibler divergence.

Definition 1 (Relative entropy) LetP andQ be probability distributions on a set[k]. The relative entropy

of P andQ is given byS(P‖Q)
∆
=

∑

i∈[k]

P (i) log
P (i)

Q(i)
.

The following facts follow easily from the definitions.

Fact 1 LetX,Y,Z,W be random variables with some joint distribution. Then,

(a) I(X : Y Z) = I(X : Y ) + I((X : Z) | Y );

(b) I(XY : Z | W ) ≥ I(XY : Z) − H(W ).

Fact 2 Let (X,M) be a pair of random variables with some joint distribution. Let P be the (marginal)
probability distribution ofM , and for eachx ∈ range(X), let Px be the conditional distribution ofM
givenX = x. ThenI(X : M) = EX [S(Px‖P )], where the expectation is taken according to the marginal
distribution ofX.

Thus, ifI(X : M) is small, then we can conclude thatS(Px‖P ) is small on the average.
Using Jensen’s inequality, one can derive the following property of relative entropy.

Fact 3 (Monotonicity) Let P and Q be probability distributions on the set[k] and E ⊆ [k]. Let DP =
(P (E), 1 − P (E)) and DQ = (Q(E), 1 − Q(E)) be the two-point distributions determined byE . Then,
S(DP ‖DQ) ≤ S(P‖Q).

Our main information theoretic tool in this paper is the following theorem (see [JRS02]).

Fact 4 (Substate theorem)SupposeP andQ are probability distributions on[k] such thatS(P‖Q) = a.
Let r ≥ 1. Then,

(a) the setGood
∆
= {i ∈ [k] : P (i)

2r(a+1) ≤ Q(i)} has probability at least1 − 1
r in P ;

(b) There is a distributioñP on [k] such that
∥∥∥P − P̃

∥∥∥
1
≤ 2

r andαP̃ ≤ Q, whereα
∆
=

(
r−1

r

)
2−r(a+1).

Proof: Let Bad
∆
= [k] − Good. Consider the two-point distributionsDP = (P (Good), 1 − P (Good)) and

DQ = (Q(Good), 1 − Q(Good)). By Fact 3,S(DP ‖DQ) ≤ a, that is,

P (Good) log
P (Good)

Q(Good)
+ P (Bad) log

P (Bad)

Q(Bad)
≤ a.
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From our definition,P (Bad)/Q(Bad) > 2r(a+1). Now,P (Good) log P (Good)
Q(Good) ≥ P (Good) log P (Good) >

−1 (becausex log x ≥ (− log e)/e > −1 for 0 ≤ x ≤ 1). It follows thatP (Bad) ≤ 1
r , thus proving part

(a). LetP̃ (i)
∆
= P (i)/P (Good) for i ∈ Good andP̃ (i) = 0 otherwise. Then,̃P satisfies the requirements

for part (b).

2.2 Chernoff-Hoeffding bounds

We will need the following standard Chernoff-Hoeffding bounds on tails of probability distributions of
sequences of bounded, independent, identically distributed random variables. Below, the notationB(t, q)
stands for the binomial distribution got byt independent coin tosses of a binary coin with success probability
q for each toss. Arandomised predicateS on [k] is a functionS : [k] → [0, 1]. For proofs of the following
bounds, see e.g. [AS00, Corollary A.7, Theorem A.13].

Fact 5

(a) LetP be a probability distribution on[k] andS a randomised predicate on[k]. Letp
∆
= E

x∈P [k]
[S(x)].

Let Y
∆
= 〈Y1, . . . , Yr〉 be a sequence ofr independent random variables, each with distributionP .

Then,
Pr
Y

[| E
i∈U [r]

[S(Yi)] − p| > ǫ] < 2 exp(−2ǫ2r).

(b) LetR be a random variable with binomial distributionB(t, q). Then,

Pr[R <
1

2
tq] < exp

(
−1

8
tq

)
.

2.3 Communication complexity background

In the two-party private coin randomised communication complexity model [Yao79], two players Alice and
Bob are required to collaborate to compute a functionf : X × Y → Z. Alice is givenx ∈ X and Bob is
giveny ∈ Y. Let Π(x, y) be the random variable denoting the entire transcript of themessages exchanged
by Alice and Bob by following the protocolΠ on inputx andy. We sayΠ is aδ-error protocol if for allx
andy, the answer determined by the players is correct with probability (taken over the coin tosses of Alice
and Bob) at least1 − δ. The communication cost ofΠ is the maximum length ofΠ(x, y) over allx andy,
and over all random choices of Alice and Bob. Thek-roundδ-error private coin randomised communication
complexity off , denotedRk

δ (f), is the communication cost of the best private coink-roundδ-error protocol
for f . Whenδ is omitted, we mean thatδ = 1

3 .
We also consider private coin randomised simultaneous protocols in this paper.Rsim

δ (f) denotes the
δ-error private coin randomised simultaneous communication complexity off . Whenδ is omitted, we mean
thatδ = 1

3 .
Let µ be a probability distribution onX × Y. A deterministic protocolΠ has distributional errorδ

if the probability of correctness ofΠ, averaged with respect toµ, is least1 − δ. The k-round δ-error
distributional communication complexity off , denotedCk

µ,δ(f), is the communication cost of the best
k-round deterministic protocol forf with distributional errorδ. µ is said to be a product distribution if
there exist probability distributionsµX on X and µY on Y such thatµ(x, y) = µX (x) · µY(y) for all
(x, y) ∈ X × Y. Thek-roundδ-error product distributional communication complexity of f is defined as

6



Ck
[ ],δ(f) = supµ Ck

µ,δ(f), where the supremum is taken over all product distributionsµ onX × Y. Whenδ

is omitted, we mean thatδ = 1
3 .

We now recall the definition of the important notion ofinformation costof a communication protocol
from Bar-Yossef et al. [BJKS02].

Definition 2 (Information cost) LetΠ be a private coin randomised protocol for a functionf : X × Y →
Z. Let Π(x, y) be the entire message transcript of the protocol on input(x, y). Let µ be a distribution on
X ×Y, and let the input random variable(X,Y ) have distributionµ. Theinformation cost ofΠ underµ is
defined to beI(XY : Π(X,Y )). Thek-roundδ-error information complexity off under the distributionµ,
denoted byICk

µ,δ(f), is the infimum information cost underµ of ak-roundδ-error protocol forf . ICsim
δ (f)

denotes the infimum information cost under the uniform probability distribution on the inputs of a private
coin simultaneousδ-error protocol forf .

Remark: In Chakrabarti et al. [CSWY01], the information cost of a private coinδ-error simultaneous
message protocolΠ is defined as follows: LetX (Y ) denote the random variable corresponding to Alice’s
(Bob’s) input, and letM (N ) denote the random variable corresponding to Alice’s (Bob’s) message to the
referee. The information cost ofΠ is defined as I(X:M) + I(Y:N). We note that our definition of information
cost coincides with Chakrabarti et al.’s definition for simultaneous message protocols.

Let µ be a probability distribution onX ×Y. The probability distributionµm onXm×Ym is defined as

µm(〈x1, . . . , xm〉, 〈y1, . . . , ym〉) ∆
= µ(x1, y1) · µ(x2, y2) · · · µ(xm, ym). Supposeµ is a product probability

distribution onX × Y. It can be easily seen (see e.g. [BJKS02]) that for any positive integersm,k, and
real δ > 0, ICk

µm,δ(f
m) ≥ m · ICk

µ,δ(f). The reason for requiringµ to be a product distribution is as
follows. We define the notion of information cost for privatecoin protocols only. This is because the proof
of our message compression theorem (Theorem 3), which makesuse of information cost, works for private
coin protocols only. Ifµ is not a product distribution, the protocol forf which arises out of the protocol
for fm in the proof of the above inequality fails to be a private coinprotocol, even if the protocol forfm

was private coin to start with. To get over this restriction on µ, Bar-Yossef et al. [BJKS02] introduced the
notion of conditional information costof a protocol. Suppose the distributionµ is expressed as a convex
combinationµ =

∑
d∈K κdµd of product distributionsµd, whereK is some finite index set. Letκ denote

the probability distribution onK defined by the numbersκd. Define the random variableD to be distributed
according toκ. Conditioned onD, µ is a product distribution onX ×Y. We will call µ a mixture of product
distributions{µd}d∈K and say thatκ partitions µ. The probability distributionκm on Km is defined as

κm(d1, . . . , dm)
∆
= κ(d1) · κ(d2) · · · κ(dm). Thenκm partitionsµm in a natural way. The random variable

Dm has distributionκm. Conditioned onDm, µm is a product distribution onXm × Ym.

Definition 3 (Conditional information cost) Let Π be a private coin randomised protocol for a function
f : X × Y → Z. Let Π(x, y) be the entire message transcript of the protocol on input(x, y). Let µ
be a distribution onX × Y, and let the input random variable(X,Y ) have distributionµ. Let µ be a
mixture of product distributions partitioned byκ. Let the random variableD be distributed according to
κ. Theconditional information cost ofΠ under(µ, κ) is defined to beI((XY : Π(X,Y )) | D). Thek-
roundδ-error conditional information complexity off under(µ, κ), denoted byICk

µ,δ(f | κ), is the infimum
conditional information cost under(µ, κ) of ak-roundδ-error protocol forf .

The following facts follow easily from the results in Bar-Yossef et al. [BJKS02] and Fact 1.

Fact 6 Letµ be a probability distribution onX × Y. Letκ partition µ. For anyf : X × Y → Z, positive
integersm,k, real δ > 0, ICk

µm,δ(f
m | κm) ≥ m · ICk

µ,δ(f | κ) ≥ m · (ICk
µ,δ(f) − H(κ)).

7



Fact 7 With the notation and assumptions of Fact 6,Rk
δ (f) ≥ ICk

µ,δ(f | κ).

2.4 Sampling uniformly random orthonormal sets of vectors

To prove our result about the incompressibility of quantum information, we need to define the notion of a
uniformly random set of sized of orthonormal vectors fromCm. LetU(m) denote the group (under matrix
multiplication) ofm×m complex unitary matrices. Being a compact topological group, it has a unique Haar
probability measure on its Borel sets which is both left and right invariant under multiplication by unitary
matrices (see e.g. [Chapter 14, Corollary 20][Roy88]). LetUm,d, (1 ≤ d ≤ m) denote the topological space
of m×d complex matrices with orthonormal columns.Um,d is compact, and the groupU(m) acts onUm,d

via multiplication from the left. Letfm,d : U(m) → Um,d be the map got by discarding the lastm − d
columns of a unitary matrix.fm,d induces a probability measureµm,d on the Borel sets ofUm,d from the
Haar probability measure onU(m). µm,d is invariant under the action ofU(m), and is in fact the unique
U(m)-invariant probability measure on the Borel sets ofUm,d (see e.g. [Chapter 14, Theorem 25][Roy88]).
By a uniformly random ordered set(v1, . . . , vd), 1 ≤ d ≤ m of orthonormal vectors fromCm, we mean
an element ofUm,d chosen according toµm,d. By a uniformly randomd dimensional subspaceV of C

m,

we mean a subspaceV
∆
= Span(v1, . . . , vd), where(v1, . . . , vd) is a uniformly random ordered set of

orthonormal vectors fromCm.
Let O(m) denote the group (under matrix multiplication) ofm × m real orthogonal matrices. Identify

C
m with R

2m by treating a complex number as a pair of real numbers. A uniformly random unit vector in
C

m (i.e. a vector distributed according toµm,1) is the same as a uniformly random unit vector inR
2m, since

U(m) is contained inO(2m). From now on, while considering metric and measure theoretic properties of
Um,1, it may help to keep the above identification ofC

m andR
2m in mind.

One way of generating a uniformly random unit vector inR
m is as follows: First choose〈y1, . . . , ym〉

independently, eachyi being chosen according to the one dimensional Gaussian distribution with mean0

and variance1 (i.e. a real valued random variable with probability density function exp(−y2)√
2π

). Normalise to

get the unit vector〈x1, . . . , xm〉, wherexi
∆
= yi√

y2
1+···+y2

m

(note that anyyi = 0 with zero probability). It

is easily seen that the resulting distribution on unit vectors isO(m)-invariant, and hence, the above process
generates a uniformly random unit vector inR

m.
From the above discussion, one can prove the following fact.

Fact 8

(a) Let1 ≤ d ≤ m. Let (v1, . . . , vd) be distributed according toµm,d. Then for eachi, vi is distributed
according toµm,1, and for eachi, j, i 6= j, (vi, vj) is distributed according toµm,2,

(b) Supposex, y are independent unit vectors, each distributed according to µm,1. Letw′′ ∆
= y − 〈x|y〉x,

and setw
∆
= x and w′ ∆

= w′′

‖w′′‖ (note thatw′′ = 0 with probability zero). Then the pair(w,w′) is
distributed according toµm,2.

(c) Supposex, y are independent unit vectors, each distributed according to µm,1. LetV be a subspace

of C
m and definêx

∆
= Px

‖Px‖ , ŷ
∆
= Py

‖Py‖ , whereP is the orthogonal projection operator ontoV (note
thatPx = 0, Py = 0 are each zero probability events). Thenx̂, ŷ are uniformly random independent
unit vectors inV .
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We will need to ‘discretise’ the set ofd-dimensional subspaces ofC
m. The discretisation is done by

using aδ-densesubset ofUm,1. A subsetN of Um,1 is said to beδ-dense if each vectorv ∈ Um,1 has
some vector inN at distance no larger thanδ from it. We require the following fact aboutδ-dense subsets
of Um,1.

Fact 9 ([Mat02, Lemma 13.1.1, Chapter 13])For each0 < δ ≤ 1, there is aδ-dense subsetN of Um,1

satisfying|N | ≤ (4/δ)2m.

A mappingf between two metric spaces is said to be1-Lipschitz if the distance betweenf(x) and
f(y) is never larger than the distance betweenx andy. The following fact says that a1-Lipschitz func-
tion f : Um,1 → R greatly exceeds its expectation with very low probability.It follows by combining
Theorem 14.3.2 and Proposition 14.3.3 of [Mat02, Chapter 14].

Fact 10 Let f : Um,1 → R be 1-Lipschitz. Then for all0 ≤ t ≤ 1, Pr[f > E[f ] + t + 12/
√

2m] ≤
2 exp(−t2m).

2.5 Quantum information theoretic background

We consider a quantum system with Hilbert spaceC
m. ForA,B Hermitian operators onCm, A ≤ B is a

shorthand for the statement “B − A is positive semidefinite”. APOVM elementM overCm is a Hermitian
operator satisfying the property0 ≤ M ≤ I, where0, I are the zero and identity operators respectively on

C
m. For a POVM elementM overC

m and a subspaceW of C
m, defineM(W )

∆
= max

w∈W :‖w‖=1
〈w|M |w〉.

For subspacesW,W ′ of C
m, define∆(W,W ′)

∆
= maxM |M(W )−M(W ′)|, where the maximum is taken

over all POVM elementsM over C
m. ∆(W,W ′) is a measure of how well one can distinguish between

subspacesW,W ′ via a measurement. For a good introduction to quantum information theory, see [NC00].
The following fact can be proved from the results in [AKN98].

Fact 11 Let M be a POVM element overCm and letw, ŵ ∈ C
m be unit vectors. Then,|〈w|M |w〉 −

〈ŵ|M |ŵ〉| ≤ ‖w − ŵ‖.

A density matrixρ overCm is a Hermitian, positive semidefinite operator onC
m with unit trace. IfA is

a quantum system with Hilbert spaceC
m having density matrixρ, thenS(A)

∆
= S(ρ)

∆
= −Tr ρ log ρ is the

von Neumann entropyof A. If A,B are two disjoint quantum systems, themutual informationof A andB

is defined asI(A : B)
∆
= S(A) + S(B)−S(AB). For density matricesρ, σ overCm, their relative entropy

is defined asS(ρ‖σ)
∆
= Tr ρ(log ρ − log σ). Let X be a classical random variable with finite range andM

be am-dimensional quantum encoding ofX i.e. for everyx ∈ range(X) there is a density matrixσx over

C
m (σx represents a ‘quantum encoding’ ofx). Let σ

∆
= EX σx, where the expectation is taken over the

(marginal) probability distribution ofX. Then,I(X : M) = EX S(σx‖σ).

3 Simultaneous message protocols

In this section, we prove a result of [CSWY01], which states that if the mutual information between the
message and the input is at mostk, then the protocol can be modified so that the players send messages of
length at mostO(k+log n) bits. Our proof will make use of the Substate Theorem and a rejection sampling
argument. In the next section, we will show how to extend thisargument to multiple-round protocols.
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Before we formally state the result and its proof, let us outline the main idea. Fix a simultaneous
message protocol for computing the functionf : {0, 1}n × {0, 1}n → Z. Let X ∈U {0, 1}n. Suppose
I(X : M) ≤ a, whereM be the message sent by Alice to the referee when her input isX. Let sxy(m) be
conditional probability that the referee computesf(x, y) correctly when Alice’s message ism, her input is
x and Bob’s input isy.

We want to show that we can choose a small subsetM of possible messages, so that for mostx, Alice
can generate a messageM ′

x from this subset (according to some distribution that depends onx), and still
ensure thatE[sxy(M

′
x)] is close to 1, for ally. Let Px be the distribution ofM conditioned on the event

X = x. For a fixedx, it is possible to argue that we can confine Alice’s messages to a certain small subset
Mx ⊆ [k]. Let Mx consist ofO(n) messages picked according to the distributionPx. Then, instead of
sending messages according to the distributionPx, Alice can send a random message chosen fromMx.
Using Chernoff-Hoeffding bounds one can easily verify thatMx will serve our purposes with exponentially
high probability.

However, what we really require is a set of samples{Mx} whose union is small, so that she and the
referee can settle on a common succinct encoding for the messages. Why should such samples exist? Since
I(X : M) is small, we have by Fact 2 that for mostx, the relative entropyS(Px‖Q) is bounded (hereQ
is the distribution of the messageM , i.e., Q = EX [PX ]). By combining this fact, the Substate Theorem
(Fact 4) and arejection samplingargument (see e.g. [Ros97, Chapter 4, Section 4.4]), one canshow that if
we choose a sample of messages according to the distributionQ, then, for mostx, roughly one in every2O(a)

messages ‘can serve’ as a message sampled according to the distributionPx. Thus, if we pick a sample of
sizen · 2O(a) according toQ, then for mostx we can get a the required sub-sampleMx. of O(n) elements.
The formal arguments are presented below.

The following easy lemma is the basis of the rejection sampling argument.

Lemma 1 (Rejection sampling) Let P and Q be probability distributions on[k] such that2−aP ≤ Q.
Then, there exist correlated random variablesX andχ taking values in[k] × {0, 1}, such that: (a)X has
distributionQ, (b) Pr[χ = 1] = 2−a and (c)Pr[X = i | χ = 1] = P (i).

Proof: Since the distribution ofX is required to beQ, we will just describe the conditional distribution of
χ for each potential valuei for X: let Pr[χ = 1 | X = i] = P (i)/(2aQ(i)). Then,

Pr[χ = 1] =
∑

i∈[k]

P [X = i] · Pr[χ = 1 | X = i] = 2−a

and

Pr[X = i | χ = 1] =
Pr[X = i ∧ χ = 1]

Pr[χ = 1]
=

Q(i) · P (i)/(2aQ(i))

2−a
= P (i).

In order to combine this argument with the Substate Theorem to generate simultaneously a sampleM
of messages according to the distributionQ and several subsamplesMx, we will need a slight extension of
the above lemma.

Lemma 2 Let P and Q be probability distributions on[k] such that2−aP ≤ Q. Then, for each integer
t ≥ 1, there exist correlated random variablesX = 〈X1,X2, . . . ,Xt〉 andY = 〈Y1, Y2, . . . , YR〉 such that

(a) The random variables(Xi : i ∈ [t]) are independent and eachXi has distributionQ;

(b) R is a random variable with binomial distributionB(t, 2−a);
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(c) Conditioned on the eventR = r, the random variables(Yi : i ∈ [r]) are independent and eachYi has
distributionP .

(d) Y is a subsequence ofX (with probability 1).

Proof: We generatet independent copies of the random variables(X,χ) promised by Lemma 1; this gives

usX = 〈X1,X2, . . . ,Xt〉 andχ = 〈χ1, χ2, . . . , χt〉. Let Y
∆
= 〈Xi : χi = 1〉. It is easy to verify thatX

andY satisfy conditions (a)–(d).
Our next lemma uses Lemma 2 to pick a sample of messages according to the average distributionsQ and

find sub-samples inside it for several distributionsPx. This lemma will be crucial to show the compression
result for simultaneous message protocols (Theorem 1).

Lemma 3 Let Q andP1, P2, . . . , PN be probability distributions on[k]. Defineai
∆
= S(Pi‖Q). Suppose

ai < ∞ for all i ∈ [N ]. Let sij, sij , . . . , sij be functions from[k] to [0, 1]. (In our application, they will
correspond to conditional probability that the referee gives the correct answer when Alice sends a certain

message from [k]). Letpij
∆
= Ey∈Pi

[k][sij(y)]. Fix ǫ ∈ (0, 1]. Then, there exists a sequencex
∆
= 〈x1, . . . , xt〉

of elements of[k] and subsequencesy1, . . . ,yN of x such that

(a) yi is a subsequence of〈x1, . . . , xti〉 where, ti
∆
=

⌈
8·2(ai+1)/ǫ·log(2N)

(1−ǫ)ǫ2

⌉
.

(b) For i, j = 1, 2, . . . , N ,

∣∣∣∣∣ E
ℓ∈U [ri]

[sij(y
i[ℓ])] − pij

∣∣∣∣∣ ≤ 2ǫ, whereri is the length ofyi.

(c) t
∆
= maxi ti.

Proof: Using part (b) of Fact 4, we obtain distributions̃Pi such that

∀i ∈ [k],
∥∥∥Pi − P̃i

∥∥∥
1
≤ 2ǫ and (1 − ǫ)2−(ai+1)/ǫP̃i ≤ Q.

Using Lemma 2, we can construct correlated random variables(X,Y1,Y2, . . . ,YN ) such thatX is a

sequence oft
∆
= maxi ti independent random variables, each distributed accordingto Q, and(X[1, ti],Y

i)
satisfying conditions (a)–(d) (withP = Pi, a = (ai + 1)/ǫ − log(1 − ǫ) andt = ti). We will show that
with non-zero probability these random variables satisfy conditions (a) and (b) of the present lemma. This
implies that there is a choice(x,y1, . . . ,yN ) for (X,Y1, . . . ,YN ) satisfying parts (a) and (b) of the present
lemma.

Let Ri denote the length ofYi. Using part (b) of Fact 5,Pr[∃i, Ri < (4/ǫ2) log(2N)] < N · 1
2N = 1

2 .

Now, condition on the eventRi ≥
(

4
ǫ2

)
log(2N), for all 1 ≤ i ≤ N . Definep̃ij

∆
= Pr

y∈
P̃i

[k]
[sij(y)]. We use

part (a) of Fact 5 to conclude that

Pr
Yi

[∣∣∣∣∣ E
ℓ∈U [ri]

[sij(Y
i[ℓ])] − p̃ij

∣∣∣∣∣ > ǫ

]
<

2

(2N)8
, ∀i, j = 1, . . . , N, (1)

implying that

Pr
Y1,...,YN

[
∃i, j,

∣∣∣∣∣ E
ℓ∈U [ri]

[sij(Y
i[l])] − p̃ij

∣∣∣∣∣ > ǫ

]
≤ N2 × 2

(2N)8
<

1

2
. (2)
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From (1), (2) and the fact that∀i, j |pij − p̃ij | ≤ ǫ (since
∥∥∥Pi − P̃i

∥∥∥
1
≤ 2ǫ), it follows that part(b) of our

lemma holds with non-zero probability. Part(a) is never violated. Part(c) is true by definition oft.

Theorem 1 (Compression result, simultaneous messages)Suppose thatΠ is a δ-error private coin si-
multaneous message protocol forf : {0, 1}n × {0, 1}n → Z. Let the inputs tof be chosen according to
the uniform distribution. LetX,Y denote the random variables corresponding to Alice’s and Bob’s inputs
respectively, andMA,MB denote the random variables corresponding to Alice’s and Bob’s messages re-
spectively. SupposeI(X : MA) ≤ a andI(Y : MB) ≤ b. Then, there exist setsGoodA,GoodB ⊆ {0, 1}n

such that|GoodA| ≥ 2
3 · 2n and |GoodB| ≥ 2

3 · 2n, and a private coin simultaneous message protocolΠ′

with the following properties:

(a) In Π′, Alice sends messages of length at most3a+1
ǫ + log(n + 1) + log 1

ǫ2(1−ǫ)
+ 4 bits and Bob sends

messages of length at most3b+1
ǫ + log(n + 1) + log 1

ǫ2(1−ǫ)
+ 4 bits.

(b) For each input(x, y) ∈ GoodA × GoodB, the error probability ofΠ′ is at mostδ + 4ǫ.

Proof: Let P be the distribution ofMA, and letPx be its distribution under the conditionX = x. Note that
by Fact 2, we haveEX [S(Px‖P )] ≤ a, where the expectation is got by choosingx uniformly from{0, 1}n.
Therefore there exists a setGoodA, |GoodA| ≥ 2

3 · 2n, such that for allx ∈ GoodA, S(Px‖P ) ≤ 3a.

Define ta
∆
= 8(n+1)2(3a+1)/ǫ

ǫ2(1−ǫ)
. From Lemma 3, we know that there is a sequence of messagesσ =

〈m1, . . . ,mta〉 and subsequencesσx of σ such that on inputx ∈ GoodA, if Alice sends a uniformly chosen
random message ofσx instead of sending messages according to distributionPx, the probability of error
for anyy ∈ {0, 1}n changes by at most2ǫ. We now define an intermediate protocolΠ′′ as follows. The
messages inσ are encoded using at mostlog ta + 1 bits. In protocolΠ′′ for x ∈ GoodA, Alice sends a
uniformly chosen random message fromσx; for x /∈ GoodA, Alice sends a fixed arbitrary message fromσ.
Bob’s strategy inΠ′′ is the same as inΠ. In Π′′, the error probability of an input(x, y) ∈ GoodA×{0, 1}n is
at mostδ + 2ǫ, andI(Y : MB) ≤ b. Now arguing similarly, the protocolΠ′′ can be converted to a protocol

Π′ by compressing Bob’s message to at mostlog tb + 1 bits, wheretb
∆
= 8(n+1)2(3b+1)/ǫ

ǫ2(1−ǫ)
. In Π′, the error for

an input(x, y) ∈ GoodA × GoodB is at mostδ + 4ǫ.

Corollary 1 Let δ, ǫ > 0. Let f : {0, 1}n × {0, 1}n → Z be a function. Let the inputs tof be chosen
according to the uniform distribution. Then there exist setsGoodA,GoodB ⊆ {0, 1}n such that|GoodA| ≥
2
3 · 2n, |GoodB | ≥ 2

3 · 2n, andICsim
δ (f) ≥ ǫ

3(Rsim
δ+4ǫ(f

′) − 2 log(n + 1) − 2 log 1
ǫ2(1−ǫ)

− 2
ǫ − 8), wheref ′

is the restriction off to GoodA × GoodB .

We can now prove the key theorem of Chakrabarti et al. [CSWY01].

Theorem 2 (Direct sum, simultaneous messages)Let δ, ǫ > 0. Let f : {0, 1}n × {0, 1}n → Z be a

function. DefineR̃sim
δ (f)

∆
= minf ′ Rsim

δ (f ′), where the minimum is taken over all functionsf ′ which are
the restrictions off to sets of the formA × B, A,B ⊆ {0, 1}n, |A| ≥ 2

3 · 2n, |B| ≥ 2
3 · 2n. Then,

Rsim
δ (fm) ≥ mǫ

3 (R̃sim
δ+4ǫ(f) − 2 log(n + 1) − 2 log 1

ǫ2(1−ǫ)
− 2

ǫ − 8).

Proof: Immediate from Fact 7, Fact 6 and Corollary 1.
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Remarks:
1. The above theorem implies lower bounds for the simultaneous direct sum complexity of equality, as
well as lower bounds for some related problems as in Chakrabarti et al. [CSWY01]. The dependence of the
bounds onǫ is better in our version.
2. A very similar direct sum theorem can be proved about two-party one-round private coin protocols.
3. All the results in this section, including the above remark, hold even whenf is a relation.

4 Two-party multiple-round protocols

We first prove Lemma 4, which intuitively shows that ifP,Q are probability distributions on[k] such that
P ≤ 2aQ, then about it is enough to sampleQ independently2O(a) times to produce one sample element
Y according toP . In the statement of the lemma, the random variableX represents an infinite sequence of
independent sample elements chosen according toQ, the random variableR indicates how many of these
elements have to be considered till ‘stopping’.R = ∞ indicates that we do not ‘stop’. If we do ‘stop’, then
either we succeed in producing a sample accordingP (in this case, the sampleY = XR), or we give up (in
this case, we setY = 0). In the proof of the lemma,⋆ indicates that we do not ‘stop’ at the current iteration
and hence the rejection sampling process must go further.

Lemma 4 LetP andQ be probability distributions on[k], such thatGood
∆
= {i ∈ [k] : P (i)

2a ≤ Q(i)} has

probability exactly1− ǫ in P . Then, there exist correlated random variablesX
∆
= 〈Xi〉i∈N+ , R andY such

that

(a) the random variables(Xi : i ∈ N+) are independent and each has distributionQ;

(b) R takes values inN+ ∪ {∞} andE[R] = 2a;

(c) if R 6= ∞, thenY = XR or Y = 0;

(d) Y takes values in{0} ∪ [k], such that:Pr[Y = i] =





P (i) if i ∈ Good

0 if i ∈ [k] − Good

ǫ if i = 0.

Proof: First, we define a pair of correlated random variables(X,Z), whereX takes values in[k] andZ
in [k] ∪ {0, ⋆}. Let P ′ : [k] → [0, 1] be defined byP ′(i) = P (i) for i ∈ Good, andP ′(i) = 0 for

i ∈ [k]−Good. Letβ
∆
= ǫ2−a/(1− (1− ǫ)2−a) andγi

∆
= P ′(i)2−a/Q(i). The joint probability distribution

of X andZ is given by

∀i ∈ [k], Pr[X = i] = Q(i) and Pr[Z = j | X = i] =





γi ifj = i
β(1 − γi) ifj = 0

1 − γi − β(1 − γi) ifj = ⋆
0 otherwise.

Note that this implies that

Pr[Z 6= ⋆] =
∑

i∈[k]

Q(i) · [γi + β(1 − γi)] = β + (1 − β)
∑

i∈[k]

P ′(i)2−a = β + (1 − β)(1 − ǫ)2−a = 2−a.
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Now, consider the sequence of random variablesX
∆
= 〈Xi〉i∈N+ andZ

∆
= 〈Zi〉i∈N+ , where each(Xi, Zi)

has the same distribution as(X,Z) defined above and(Xi, Zi) is independent of all(Xj , Zj), j 6= i. Let

R
∆
= min{i : Zi 6= ⋆}; R

∆
= ∞ if {i : Zi 6= ⋆} is the empty set.R is a geometric random variable with

success probability2−a, and so satisfies part (b) of the present lemma. LetY
∆
= ZR if R 6= ∞ andY

∆
= 0

if R = ∞. Parts (a) and (c) are satisfied by construction.
We now verify that part (d) is satisfied. SincePr[R = ∞] = 0, we see that

Pr[Y = i] =
∑

r∈N+

Pr[R = r] · Pr[Zr = i | R = r]

=
∑

r∈N+

Pr[R = r] · Pr[Zr = i | Zr 6= ⋆]

=
∑

r∈N+

Pr[R = r] · Pr[Zr = i]

Pr[Zr 6= ⋆]
,

where the second equality follows from the independence of(Xr, Zr) from all (Xj , Zj), j 6= r. If i ∈ [k],
we see that

Pr[Y = i] =
∑

r∈N+

Pr[R = r] · Pr[Zr = i]

Pr[Zr 6= ⋆]

=
∑

r∈N+

Pr[R = r] · Pr[Xr = i] · Pr[Zr = i | Xr = i]

Pr[Zr 6= ⋆]

=
∑

r∈N+

Pr[R = r] · Q(i)γi

2−a

=
∑

r∈N+

Pr[R = r]P ′(i) = P ′(i).

Thus, fori ∈ Good, Pr[Y = i] = P (i), and fori ∈ [k] − Good, Pr[Y = i] = 0. Finally,

Pr[Y = 0] =
∑

r∈N+

Pr[R = r] · Pr[Zr = 0]

Pr[Zr 6= ⋆]

=
∑

r∈N+

Pr[R = r]

2−a

∑

j∈[k]

Pr[Xr = j] · Pr[Zr = 0 | Xr = j]

=
∑

r∈N+

Pr[R = r]

2−a

∑

j∈[k]

Q(j) · β(1 − γj)

=
∑

r∈N+

Pr[R = r]ǫ = ǫ.

Lemma 5 follows from Lemma 4, and will be used to prove the message compression result for two-party
multiple-round protocols (Theorem 3).

Lemma 5 Let Q and P1, . . . , PN be probability distributions on[k]. DefineS(Pi‖Q) = ai. Suppose
ai < ∞ for all i ∈ [N ]. Fix ǫ ∈ (0, 1]. Then, there exist random variablesX = 〈Xi〉i∈N+ , R1, . . . , RN and
Y1, . . . , YN such that
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(a) (Xi : i ∈ N+) are independent random variables, each having distribution Q;

(b) Ri takes values inN+ ∪ {∞} andE[Ri] = 2(ai+1)/ǫ;

(c) Yj takes values in[k] ∪ {0}, and there is a setGoodj ⊆ [k] with Pj(Goodj) ≥ 1 − ǫ such that for
all ℓ ∈ Goodj , Pr[Yj = ℓ] = Pj(ℓ), for all ℓ ∈ [k] − Goodj, Pr[Yj = ℓ] = 0 and Pr[Yj = 0] =
1 − Pj(Goodj) ≤ ǫ;

(d) if Rj < ∞, thenYj = XRj or Y = 0.

Proof: Using part (a) of Fact 4, we obtain forj = 1, . . . , N , a setGoodj ⊆ [k] such thatPj(Goodj) ≥ 1− ǫ
andPj(i)2

−(aj+1)/ǫ ≤ Q(i) for all i ∈ Goodj . Now from Lemma 4, we can construct correlated random
variablesX, Y1, . . . , YN , andR1, . . . , RN satisfying the requirements of the present lemma.

Theorem 3 (Compression result, multiple rounds)SupposeΠ is ak-round private coin randomised pro-
tocol forf : X ×Y → Z. Let the average error ofΠ under a probability distributionµ on the inputsX ×Y
beδ. LetX,Y denote the random variables corresponding to Alice’s and Bob’s inputs respectively. LetT
denote the complete transcript of messages sent by Alice andBob. SupposeI(XY : T ) ≤ a. Let ǫ > 0.
Then, there is another deterministic protocolΠ′ with the following properties:

(a) The communication cost ofΠ′ is at most2k(a+1)
ǫ2

+ 2k
ǫ bits;

(b) The distributional error ofΠ′ underµ is at mostδ + 2ǫ.

Proof: The proof proceeds by defining a series of intermediatek-round protocolsΠ′
k,Π

′
k−1, . . . ,Π

′
1. Π′

i is
obtained fromΠ′

i+1 by compressing the message of theith round. Thus, we first compress thekth message,
then the(k − 1)th message, and so on. Each message compression step introduces an additional additive
error of at mostǫ/k for every input(x, y). ProtocolΠ′

i uses private coins for the firsti − 1 rounds, and
public coins for roundsi to k. In fact,Π′

i behaves the same asΠ for the firsti − 1 rounds. LetΠ′
k+1 denote

the original protocolΠ.
We now describe the construction ofΠ′

i from Π′
i+1. Suppose theith message inΠ′

i+1 is sent by Alice.
Let M denote the random variable corresponding to the firsti messages inΠ′

i+1. M can be expressed as
(M1,M2), whereM2 represents the random variable corresponding to theith message andM1 represents
the random variable corresponding to the initiali − 1 messages. From Fact 1 (note that the distributions
below are as in protocolΠ′

i+1 with the input distributed according toµ),

I(XY : M) = I(XY : M1)+ E
M1

[I((XY : M2) | M1 = m1)] = I(XY : M1)+ E
M1XY

[S(Mxym1
2 ‖Mm1

2 )]

whereMxym1
2 denotes the distribution ofM2 when(X,Y ) = (x, y) andM1 = m1, andMm1

2 denotes the
distribution ofM2 whenM1 = m1. Note that the distribution ofMxym1

2 is independent ofy, asΠ′
i+1 is

private coin up to theith round. Defineai
∆
= EM1XY [S(Mxym1

2 ‖Mm1
2 )].

ProtocolΠ′
i behaves the same asΠ′

i+1 for the firsti− 1 rounds; henceΠ′
i behaves the same asΠ for the

first i − 1 rounds. In particular, it is private coin for the firsti − 1 rounds. Alice generates theith message
of Π′

i using a fresh public coinCi as follows: For each distributionMm1
2 , m1 ranging over all possible

initial i − 1 messages,Ci stores an infinite sequenceΓm1
∆
= 〈γm1

j 〉j∈N+ , where(γm1
j : j ∈ N+) are chosen

independently from distributionMm1
2 . Note that the distributionMm1

2 is known to both Alice and Bob as
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m1 is known to both of them; so both Alice and Bob know which part of Ci to ‘look’ at in order to read from
the infinite sequenceΓm1 . Using Lemma 5, Alice generates theith message ofΠ′

i which is eitherxm1
j for

somej, or the dummy message0. The probability of generating0 is less than or equal toǫk . If Alice does
not generate0, her message lies in a setGoodxm1 which has probability at least1 − ǫ

k in the distribution
Mxym1

2 . The probability of a messagem2 ∈ Goodxm1 being generated is exactly the same as the probability

of m2 in Mxym1
2 . The expected value ofj is 2k(S(M

xym1
2 ‖Mm1

2 )+1)/ǫ. Actually, Alice just sends the value
of j or the dummy message0 to Bob, using a prefix free encoding, as theith message ofΠ′

i. After Alice
sends off theith message,Π′

i behaves the same asΠ′
i+1 for roundsi + 1 to k. In particular, the coinCi is

not ‘used’ for roundsi + 1 to k; instead, the public coins ofΠ′
i+1 are ‘used’ henceforth.

By the concavity of the logarithm function, the expected length of theith message ofΠ′
i is at most

2kǫ−1(S(Mxym1
2 ‖Mm1

2 ) + 1) + 2 bits for each(x, y,m1) (The multiplicative and additive factors of2 are
there to take care of the prefix-free encoding). Also inΠ′

i, for each(x, y,m1), the expected length (averaged
over the public coins ofΠ′

i, which in particular includeCi and the public coins ofΠ′
i+1) of the (i + 1)th

to kth messages does not increase as compared to the expected length (averaged over the public coins of
Π′

i+1) of the (i + 1)th to kth messages inΠ′
i+1. This is because in theith round ofΠ′

i, the probability of
any non-dummy message does not increase as compared to that in Π′

i+1, and if the dummy message0 is
sent in theith roundΠ′

i aborts immediately. For the same reason, the increase in theerror fromΠ′
i+1 to Π′

i

is at most an additive term ofǫk for each(x, y,m1). Thus the expected length, averaged over the inputs and
public and private coin tosses, of theith message inΠ′

i is at most2kǫ−1(ai + 1) + 2 bits. Also, the average
error ofΠ′

i under input distributionµ increases by at most an additive term ofǫ
k .

By Fact 1,
∑k

i=i ai = I(XY : T ) ≤ a, whereI(XY : T ) is the mutual information in the original
protocolΠ. This is because the quantityEM1XY [S(Mxym1

2 ‖Mm1
2 )] is the same irrespective of whether it is

calculated for protocolΠ or protocolΠ′
i+1, asΠ′

i+1 behaves the same asΠ for the firsti rounds. Doing the
above ‘compression’ procedurek times gives us a public coin protocolΠ′

1 such that the expected communi-
cation cost (averaged over the inputs as well as all the public coins ofΠ′

1) of Π′
1 is at most2kǫ−1(a+1)+2k,

and the average error ofΠ′
1 under input distributionµ is at mostδ + ǫ. By restricting the maximum com-

munication to2kǫ−2(a + 1) + 2kǫ−1 bits and applying Markov’s inequality, we get a public coin protocol
Π′′ from Π′

1 which has average error under input distributionµ at mostδ + 2ǫ. By setting the public coin
tosses to a suitable value, we get a deterministic protocolΠ′ from Π′′ where the maximum communication
is at most2kǫ−2(a + 1) + 2kǫ−1 bits, and the distributional error underµ is at mostδ + 2ǫ.

Corollary 2 Let f : X × Y → Z be a function. Letµ be a product distribution on the inputsX × Y. Let
δ, ǫ > 0. Then,ICk

µ,δ(f) ≥ ǫ2

2k · Ck
µ,δ+2ǫ(f) − 2.

Theorem 4 (Direct sum,k-round) Let m,k be positive integers, andǫ, δ > 0. Let f : X × Y → Z be

a function. Then,Rk
δ (f

m) ≥ m · supµ,κ

(
ǫ2

2k · Ck
µ,δ+2ǫ(f) − 2 − H(κ)

)
, where the supremum is over all

probability distributionsµ onX × Y and partitionsκ of µ.

Proof: Immediate from Fact 7, Fact 6 and Corollary 2.

Corollary 3 Let m,k be positive integers, andǫ, δ > 0. Let f : X × Y → Z be a function. Then,

Rk
δ (f

m) ≥ m ·
(

ǫ2

2k · Ck
[ ],δ+2ǫ(f) − 2

)
.

Remarks:
1. Note that all the results in this section hold even whenf is a relation.
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2. The above corollary implies that the direct sum property holds for constant round protocols for the pointer
jumping problem with the ‘wrong’ player starting (the bit version, the full pointer version and the tree
version), since the product distributional complexity (infact, for the uniform distribution) of pointer jumping
is the same as its randomised complexity [NW93, PRV01].

5 Impossibility of quantum compression

In this section, we show that the information cost based message compression approach does not work in
the quantum setting. We first need some preliminary definitions and lemmas.

Lemma 6 Fix positive integersd,m and real ǫ > 0. Then there is a setS of at mostd-dimensional
subspaces ofCm such that

(a) |S| ≤
(

8
√

d
ǫ

)2md
.

(b) For all d-dimensional subspacesW of C
m, there is an at mostd-dimensional subspacêW ∈ S such

that∆(W,Ŵ ) ≤ ǫ.

Proof: Let N be aδ-dense subset ofUm,1 satisfying Fact 9. For a unit vectorv ∈ C
m, let ṽ denote the

vector inN closest to it (ties are broken arbitrarily). LetW be a subspace ofCm of dimensiond. Let w =∑d
i=1 αiwi be a unit vector inW , where{w1, . . . , wd} is an orthonormal basis forW and

∑d
i=1 |αi|2 = 1.

Definew′ ∆
=

∑d
i=1 αiw̃i andŵ

∆
= w′

‖w′‖ if w′ 6= 0, ŵ
∆
= 0 if w′ = 0. It is now easy to verify the following.

(a) ‖w − w′‖ ≤ δ
√

d.

(b) ‖w′‖ ≥ 1 − δ
√

d.

(c) ‖w − ŵ‖ ≤ 2δ
√

d.

Chooseδ
∆
= ǫ

2
√

d
. DefineŴ to be the subspace spanned by the set{w̃1, . . . , w̃d}. dim(Ŵ ) ≤ d. By

Fact 11 and (c) above,∆(W,Ŵ ) ≤ ǫ. DefineS ∆
= {Ŵ : W subspace ofCm of dimension d}. S satisfies

part (b) of the present lemma. Also|S| ≤ (4/δ)2md = (8
√

d/ǫ)2md, thus proving part (a) of the present
lemma.

We next prove the following two propositions using Fact 10.

Proposition 1 Letm,d, l be positive integers such thatd <
√

m
l and l < m

20 . LetV be a fixed subspace of
C

m of dimensionm/l. LetP be the orthogonal projection operator onV . Let(w,w′) be an independently
chosen random pair of unit vectors fromCm. Then,

(a) Pr
[
|〈w|w′〉| ≥ 1

5d2

]
≤ 2 exp

(
− m

100d4

)
,

(b) Pr
[
‖Px‖ ≥ 2√

l

]
≤ 2 exp

(
−m

4l

)
, x = w,w′,

(c) Pr
[
|〈w|P |w′〉| ≥ 4

5d2l

]
≤ 6 exp

(
− m

100d4l

)
.
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Proof: To prove the first inequality, we can assume by theU(m)-invariance ofµm,1 thatw′ = e1. The map
w 7→ |〈w|e1〉| is 1-Lipschitz, with expectation at most1√

m
by U(m)-symmetry and using convexity of the

square function. By Fact 10,

Pr

[
|〈w|w′〉| ≥ 1

5d2

]
≤ Pr

[
|〈w|w′〉| > 1/

√
m + 12/

√
2m +

1

10d2

]
≤ 2 exp

(
− m

100d4

)
,

proving part (a) of the present proposition.
The argument for the second inequality is similar. ByU(m)-symmetry and using convexity of the

square function,E[‖Pw‖] = E[‖Pw′‖] ≤ 1√
l
. Since the mapw 7→ ‖Pw‖ is 1-Lipschitz, by Fact 10 we get

that

Pr

[
‖Px‖ ≥ 2√

l

]
≤ Pr

[
‖Px‖ >

1√
l
+

12√
2m

+
1

2
√

l

]
≤ 2 exp

(
−m

4l

)
, x = w,w′,

proving part (b) of the present proposition.

We now prove part (c) of the present proposition. Letŵ
∆
= Pw

‖Pw‖ andŵ′ ∆
= Pw′

‖Pw′‖ (note that‖Pw‖ = 0

and‖Pw′‖ = 0 are each zero probability events). By Fact 8,ŵ, ŵ′ are random independently chosen unit
vectors inV . By the argument used in the proof of part (a) of the present proposition, we get that

Pr

[
|〈ŵ|ŵ′〉| ≥ 1

5d2

]
≤ 2 exp

(
− m

100ld4

)
.

Now,

Pr

[
|〈Pw|Pw′〉| ≥ 4

5d2l

]
≤ 2 exp

(
− m

100d4l

)
+ 4exp

(
−m

4l

)
≤ 6 exp

(
− m

100d4l

)
,

proving part (c) of the present proposition.

Proposition 2 Letm,d, l be positive integers such thatd <
√

m
l and l < m

20 . LetV be a fixed subspace of
C

m of dimensionm/l. LetP be the orthogonal projection operator onV . Let (w,w′) be a random pair of
orthonormal vectors fromCm. Then,

Pr

[
|〈w|P |w′〉| ≥ 2

d2l

]
≤ 10 exp

(
− m

100d4l

)
.

Proof: By Fact 8, to generate a random pair of orthonormal vectors(w,w′) from C
m we can do as follows:

First generate unit vectorsx, y ∈ C
m randomly and independently, letw′′ ∆

= y− 〈x|y〉x, and setw
∆
= x and

w′ ∆
= w′′

‖w′′‖ . Now (note thatPr[w′′ = 0] = 0),

|〈w|P |w′〉 =
|〈w|P |w′′〉|

‖w′′‖ ≤ |〈x|P |y〉 + |〈x|y〉|〈x|P |x〉
1 − |〈x|y〉| .

By Proposition 1 we see that,

Pr

[
|〈w|P |w′〉| ≥ 2

d2l

]
≤ Pr

[
|〈w|P |w′〉| ≥ 4/(5d2l) + (1/(5d2)) · (4/l)

1 − (1/(5d2))

]

≤ 6 exp
(
− m

100d4l

)
+ 2exp

(
− m

100d4

)
+ 2exp

(
−m

4l

)

≤ 10 exp
(
− m

100d4l

)
,

proving the present proposition.
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Lemma 7 Letm,d, l be positive integers such that200d4l ln(20d2) < m. LetV be a fixed subspace ofC
m

of dimensionm/l. LetP be the orthogonal projection operator onV . LetW be a random subspace ofC
m

of dimensiond. Then,

Pr[∃w ∈ W, ‖w‖ = 1 and |〈w|P |w〉| ≥ 6/l] ≤ exp
(
− m

200d4l

)
.

Proof: Let (w1, . . . , wd) be a randomly chosen ordered orthonormal set of sized in C
m, and letW

∆
=

Span(w1, . . . , wd). By Fact 8, eachwi is a random unit vector ofCm and each(wi, wj), i 6= j is a
random pair of orthonormal vectors ofC

m. By Propositions 1 and 2, we have with probability at least
1 − 2d exp

(
−m

4l

)
− 10d2 exp

(
− m

100d4l

)
,

∀i, 〈wi|P |wi〉 <
4

l
and ∀i, j, i 6= j, |〈wi|P |wj〉| <

2

d2l
.

We show that whenever this happens|〈w|P |w〉| ≤ 6/l for all w ∈ W , ‖w‖ = 1. Let w
∆
=

∑d
i=1 αiwi,

where
∑d

i=1 |αi|2 = 1. Then,

|〈w|P |w〉| =

∣∣∣∣∣∣

∑

i,j

α∗
i αj〈wi|P |wj〉

∣∣∣∣∣∣

≤
∑

i

|αi|2|〈wi|P |wi〉| +
∑

i,j:i6=j

|α∗
i αj||〈wi|P |wj〉|

<
4

l
+ d2 · 2

d2l

=
6

l
.

Thus,

Pr[∃w ∈ W, ‖w‖ = 1 and |〈w|P |w〉| ≥ 6/l] ≤ 2d exp
(
−m

4l

)
+ 10d2 exp

(
− m

100d4l

)

≤ exp
(
− m

200d4l

)
,

completing the proof of the present lemma.
We can now prove the following ‘incompressibility’ theoremabout (mixed) state compression in the

quantum setting.

Theorem 5 (Quantum incompressibility) Let m,d, n be positive integers andk a positive real number
such thatk > 7, d > 1602, 1600d4k2k ln(20d2) < m and320022kd5 ln d < n. Let the underlying Hilbert
space beCm. There existn statesρl andn orthogonal projectionsMl, 1 ≤ l ≤ n such that

(a) ∀l Tr Mlρl = 1.

(b) ρ
∆
= 1

n · ∑l ρl = 1
m · I, whereI is the identity operator onCm.

(c) ∀l S(ρl‖ρ) = k.

(d) For all subspacesW of dimensiond, |{Ml : Ml(W ) ≤ 1/10}| ≥ n/4.
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Proof: In the proof, we will index then statesρl, 1 ≤ l ≤ n asρij , 1 ≤ i ≤ n
2k , 1 ≤ j ≤ 2k. We

will also index then orthogonal projectionsMl asMij . For 1 ≤ i ≤ n
2k , chooseBi = (|bi

1〉, . . . , |bi
m〉)

to be a random ordered orthonormal basis ofC
m. Bi is chosen independently ofBi′ , i′ 6= i. Partition the

sequenceBi into 2k equal parts; call these partsBij, 1 ≤ j ≤ 2k. Defineρij
∆
= 2k

m · ∑v∈Bij |v〉〈v|. Define

Mij
∆
=

∑
v∈Bij |v〉〈v|. DefineVij

∆
= Span(v : v ∈ Bij). Vij is the support ofρij. It is easy to see that

ρij ,Mij satisfy parts (a), (b) and (c) of the present theorem.
To prove part (d), we reason as follows. LetW be a fixed subspace ofC

m of dimensiond. Let Pij

denote the orthogonal projection operator ontoVij. By theU(m)-invariance of the distributionµm,d and
from Lemma 7, for eachi, j,

Pr

[
∃w ∈ W, ‖w‖ = 1 and |〈w|Pij |w〉| ≥ 6

2k

]
≤ exp

(
− m

200 · 2kd4

)
,

where the probability is over the random choice of the basesBi, 1 ≤ i ≤ n
2k . Define the set

Bad
∆
= {i ∈ [n/2k] : ∃j ∈ [2k],Mij(W ) ≥ 6

2k
}.

Hence for a fixedi ∈
[

n
2k

]
,

Pr[i ∈ Bad] ≤ 2k exp
(
− m

200 · 2kd4

)
≤ exp

(
− m

400 · 2kd4

)
.

Since the eventsi ∈ Bad are independent,

Pr

[
|Bad| ≥ 3

4
· n

2k

]
≤

( n
2k

3n
4·2k

)
exp

(
− 3mn

1600 · 22kd4

)
. ≤

(
4e

3

) 3n

2k+2

exp

(
− 3mn

1600 · 22kd4

)
.

So,

Pr

[∣∣∣∣
{

Mij : Mij(W ) ≥ 6

2k

}∣∣∣∣ ≥
3n

4

]
≤

(
4e

3

) 3n

2k+2

exp

(
− 3mn

1600 · 22kd4

)
.

By settingǫ = 1/20 in Lemma 6, we get

Pr

[
∃Ŵ ∈ S,

∣∣∣∣
{

Mij : Mij(W ) ≥ 1

20

}∣∣∣∣ ≥
3n

4

]

≤
(

4e

3

) 3n

2k+2

(8
√

d/ǫ)2md exp

(
− 3mn

1600 · 22kd4

)

< 1,

for the given constraints on the parameters. Again by Lemma 6, we get

Pr

[
∃W subspace of C

m,dim(W ) = d,

∣∣∣∣
{

Mij : Mij(W ) ≥ 1

10

}∣∣∣∣ ≥
3n

4

]

= Pr

[
∃Ŵ ∈ S,

∣∣∣∣
{

Mij : Mij(W ) ≥ 1

20

}∣∣∣∣ ≥
3n

4

]

< 1.

This completes the proof of part (d) of the present theorem.
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6 Conclusion and open problems

In this paper, we have shown a compression theorem and a direct sum theorem for two party multiple round
private coin protocols. Our proofs use the notion of information cost of a protocol. The main technical in-
gredient in our compression proof is a connection between relative entropy and sampling. It is an interesting
open problem to strengthen this connection, so as to obtain better lower bounds for the direct sum problem
for multiple round protocols. In particular, can one improve the dependence on the number of rounds in the
compression result (by information cost based methods or otherwise)?

We have also shown a strong negative result about the compressibility of quantum information. Our
result seems to suggest that to tackle the direct sum problemin quantum communication, techniques other
than information cost based message compression may be necessary. Buhrman et al. [BCWdW01] have
shown that the bounded error simultaneous quantum complexity of EQn is θ(log n), as opposed toθ(

√
n)

in the classical setting [NS96, BK97]. An interesting open problem is whether the direct sum property holds
for simultaneous quantum protocols for equality.
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