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Abstract. We consider the quantum database search problem, where we are
given a function f : [N ] → {0, 1}, and are required to return an x ∈ [N ] (a
target address) such that f(x) = 1. Recently, Grover [G05] showed that there
is an algorithm that after making one quantum query to the database, returns an
X ∈ [N ] (a random variable) such that

Pr[f(X) = 0] = ε3,

where ε = |f−1(0)|/N . Using the same idea, Grover derived a t-query quantum
algorithm (for infinitely many t) that errs with probability only ε2t+1. Subse-
quently, Tulsi, Grover and Patel [TGP05] showed, using a different algorithm,
that such a reduction can be achieved for all t. This method can be placed in a
more general framework, where given any algorithm that produces a target state
for some database f with probability of error ε, one can obtain another that makes
t queries to f , and errs with probability ε2t+1. For this method to work, we do
not require prior knowledge of ε. Note that no classical randomized algorithm
can reduce the error probability to significantly below εt+1, even if ε is known. In
this paper, we obtain lower bounds that show that the amplification achieved by
these quantum algorithms is essentially optimal. We also present simple alterna-
tive algorithms that achieve the same bound as those in Grover [G05], and have
some other desirable properties. We then study the best reduction in error that can
be achieved by a t-query quantum algorithm, when the initial error ε is known to
lie in an interval of the form [`, u]. We generalize our basic algorithms and lower
bounds, and obtain nearly tight bounds in this setting.

1 Introduction

In this paper, we consider the problem of reducing the error in quantum search algo-
rithms by making a small number of queries to the database. Error reduction in the
form of amplitude amplification is one of the central tools in the design of efficient
quantum search algorithms [G98a,G98b,BH+02]. In fact, Grover’s database search al-
gorithm [G96,G97] can be thought of as amplitude amplification applied to the trivial
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algorithm that queries the database at a random location and succeeds with probability
at least 1

N . The key feature of quantum amplitude amplification is that it can boost the
success probability from a small quantity δ to a constant in O(1/

√
δ) steps, whereas,

in general a classical algorithm for this would require Ω(1/δ) steps. This basic algo-
rithm has been refined, taking into account the number of solutions and the desired final
success probability 1 − ε. For example, Buhrman, Cleve, de Wolf and Zalka [BC+99]
obtained the following:

Theorem [BC+99]: Fix η ∈ (0, 1), and let N > 0, ε ≥ 2−N , and t ≤ ηN . Let
T be the optimal number of queries a quantum computer needs to search with
error ≤ ε through an unordered list of N items containing at least t solutions.
Then log 1/ε ∈ Θ(T 2/N + T

√
t/N) (Note that the constant implicit in the Θ

notation can depend on η).

Recently, Grover [G05] considered error reduction for algorithms that err with small
probability. The results were subsequently refined and extended by Tulsi, Grover and
Patel [TGP05]. Let us describe their results in the setting of the database search prob-
lem, where, given a database f : [N ] → {0, 1}, we are asked to determine an x ∈
f−1(1). If |f−1(0)| = εN , then choosing x uniformly at random will meet the require-
ments with probability at least 1− ε. This method makes no queries to the database. If
one is allowed one classical query, the error can be reduced to ε2 and, in general, with t
classical queries one can reduce the probability of error to εt+1. It can be shown that no
classical t-query randomized algorithm for the problem can reduce the probability of
error significantly below εt+1, even if the value of ε is known in advance. Grover [G05]
presented an interesting algorithm that makes one quantum query and returns an x that
is in f−1(1) with probability 1 − ε3. Tulsi, Grover and Patel [TGP05] showed an it-
eration where one makes just one query to the database and performs a measurement,
so that after t iterations of this operator the error is reduced to ε2t+1. This algorithm
works for all ε and is not based on knowing ε in advance. Thus this iteration can be said
to exhibit a “fixed point” behavior [G05,TGP05], in that the state approaches the target
state (or subspace) closer with each iteration, just as it does in randomized classical
search. The iteration used in the usual Grover search algorithm [G98a,G98b] does not
have this property. Note, however, that if the initial success probability is 1

N , these new
algorithms make Ω(N) queries to the database, whereas the original algorithm makes
just O(

√
N) queries.

In [G05], the database is assumed to be presented by means of an oracle of the form
|x〉 → exp(f(x)πi/3))|x〉. The standard oracle for a function f used in earlier works
on quantum search is |x〉|b〉 7→ |x〉|b ⊕ f(x)〉, where ⊕ is addition modulo two. It can
be shown that the oracle assumed in [G05] cannot be implemented by using just one
query to the standard oracle. In Tulsi, Grover and Patel [TGP05] the basic iteration uses
the controlled version of the oracle, namely |x〉|b〉|c〉 7→ |x〉|b⊕ c · f(x)〉|c〉.

In this paper, we present a version of the algorithm that achieves the same reduction
in error as in [G05], but uses the standard oracle. In fact, our basic one-query algorithm
has the following natural interpretation. First, we note that for δ ≤ 3

4 , there is a one-
query quantum algorithmAδ that makes no error if |f−1(0)| = δN . Then, using a sim-
ple computation, one can show that the one-query algorithm corresponding to δ = 1

N
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errs with probability less than ε3 when |f−1(0)| = εN . One can place these algorithms
in a more general framework, just as later works due to Grover [G98a,G98b] and Bras-
sard, Hoyer, Mosca and Tapp [BH+02] placed Grover’s original database search algo-
rithm [G96,G97] in the general amplitude amplification framework. The framework is
as follows: Suppose there is an algorithm G that guesses a solution to a problem along
with a witness, which can be checked by another algorithm T . If the guess returned by
G is correct with probability 1 − ε, then there is another algorithm that uses G, G−1,
makes t queries to T , and guesses correctly with probability 1− ε2t+1.

These algorithms show that, in general, a t-query quantum algorithm can match
the error reduction obtainable by any 2t-query randomized algorithm. Can one do even
better? The main contribution of this paper are the lower bounds on the error probabil-
ity of t-query algorithms. We show that the amplification achieved by these algorithms
is essentially optimal (see Section 2.1 for the precise statement). Our result does not
follow immediately from the result of Buhrman, Cleve, de Wolf and Zalka [BC+99]
cited above because of the constants implicit in the θ notation, but with a slight mod-
ification of their proofs one can derive a result similar to ours (see Section 2.1). Our
lower bound result uses the polynomial method of Beals, Cleve, Buhrman, Mosca and
de Wolf [BB+95] combined with an elementary analysis based on the roots of low de-
gree polynomials, but unlike previous proofs using this method, we do not rely on any
special tools for bounding the rate of growth of low degree polynomials.

2 Background, definitions and results

We first review the standard framework for quantum search. We assume that the reader
is familiar with the basics of quantum circuits, especially the quantum database search
algorithm of Grover [G96,G97] (see, for example, Nielsen and Chuang [NC, Chapter
6]). The database is modelled as a function f : [N ]→ S, where [N ] ∆= {0, 1, 2, . . . , N−
1} is the set of addresses and S is the set of possible items to be stored in the database.
For our purposes, we can take S to be {0, 1}. When thinking of bits we identify [N ]
with {0, 1}n. Elements of [N ] will be called addresses, and addresses in f−1(1) will be
referred to as targets. In the quantum model, the database is provided to us by means of
an oracle unitary transformation Tf , which acts on an (n + 1)-qubit space by sending
the basis vector |x〉|b〉 to |x〉|b⊕ f(x)〉. For a quantum circuitA that makes queries to a
database oracle in order to determine a target, we denote by A(f) the random variable
(taking values in [N ]) returned by A when the database oracle is Tf .

Definition 1. Let A be a quantum circuit for searching databases of size N . For a
database f of size N , let errA(f) = Pr[A(f) is not a target state]. When εN is an
integer in {0, 1, 2, . . . , N}, let errA(ε) = max

f :|f−1(0)|=εN
errA(f).

Using this notation, we can state Grover’s result as follows.

Theorem 1 (Grover [G05]). For all N , there is a one-query algorithm A, such that
for all ε (assuming εN is an integer), errA(ε) = ε3.
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This error reduction works in a more general setting. Let [N ] represent the set of
possible solutions to some problem, and let f : [N ]→ {0, 1} be the function that checks
that the solution is correct; as before we will assume that we are provided access to this
function via the oracle Tf . Let G be a unitary transform that guesses a solution in [N ]
that is correct with probability 1 − ε. Our goal is to devise another guessing algorithm
B that using Tf , G and G−1 produces a guess that is correct with significantly better
probability. Let B(Tf , G) be the answer returned by B when the checker is Tf and the
guesser is G.

Theorem 2 (Grover [G05]). There is an algorithm B that uses Tf once, G twice and
G−1 once, such that Pr[f(B(Tf , G)) = 0] = ε3, where ε is the probability of error of
the guessing algorithm G.

Note that Theorem 1 follows from Theorem 2 by taking G to be the Hadamard trans-
formation, which produces the uniform superposition on all N states when applied to
the state |0〉.

Theorem 3 ([G05,?]). For all t ≥ 0 and all N , there is a t-query quantum database
search algorithm such that, for all ε (εN is an integer), errA(ε) = ε2t+1.

In Grover [G05], this result was obtained by recursive application of Theorem 2, and
worked only for infinitely many t. Tulsi, Grover and Patel [TGP05] rederived Theo-
rems 1 and 2 using a different one-query algorithm, which could be applied iteratively
to get Theorem 3.

From now on when we consider error reduction for searching a database f and use
the notation errA(ε), ε will refer to |f−1(0)|/N ; in particular, we assume that εN ∈
{0, 1, . . . , N − 1}. However, for the general framework, ε can be any real number in
[0, 1].

2.1 Our contributions

As stated earlier, in order to derive the above results, Grover [G05] and Tulsi, Grover
and Patel [TGP05] assume that access to the database is available using certain special
types of oracles. In the next section, we describe alternative algorithms that establish
Theorem 1 while using only the standard oracle Tf : |x〉|b〉 → |x〉|b⊕ f(x)〉. The same
idea can be used to obtain results analogous to Theorems 2. By recursively applying
this algorithm we can derive a version of Theorem 3 for t of the form 3i−1

2 where i
is the number of recursive applications. Our algorithms and those in Tulsi, Grover and
Patel [TGP05] use similar ideas, but were obtained independently of each other.

We also consider error reduction when we are given a lower bound on the error
probability ε, and obtain analogs of Theorems 1 and 2 in this setting.

Theorem 4 (Upper bound result).

(a) For all N and δ ∈ [0, 3
4 ], there is a one-query algorithm Aδ such that for all ε ≥ δ,

errAδ(f) ≤ ε
[
ε− δ
1− δ

]2
.
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(b) For all δ ∈ [0, 3
4 ], there is an algorithm Bδ that uses Tf once and G twice and G−1

once, such that

errBδ(Tf , G) ≤ ε
[
ε− δ
1− δ

]2
.

The case ε = δ corresponds to the fact that one can determine the target state with
certainty if |f−1(0)| is known exactly and is at most 3N

4 . Furthermore, Theorems 1
and 2 can be thought of as special cases of the above Proposition corresponding to
δ = 0. In fact, by taking δ = 1

N in the above proposition, we obtain the following slight
improvement over Theorem 1.

Corollary 1. For all N , there is a one-query database search algorithm A such that

for all ε (where εN ∈ {0, 1, . . . , N}), we have errA(ε) ≤ ε
[
ε− 1

N

1− 1
N

]2
.

Lower bounds: The main contribution of this work is our lower bound results. We show
that the reduction in error obtained in Theorem 1 and 2 are essentially optimal.

Theorem 5 (Lower bound result). Let 0 < ` ≤ u < 1 be such that `N and uN are
integers.

(a) For all one-query database search algorithms A, for either ε = ` or ε = u,

errA(ε) ≥ ε3
(

u− `
u+ `− 2`u

)2

.

(b) For all t-query database search algorithmsA, there is an ε ∈ [`, u] such that εN is
an integer, and

errA(ε) ≥ ε2t+1

(
b− 1
b+ 1

− 1
N`(b+ 1)

)2t

,

where b = (u` )
1
t+1 , and we assume that N`(b− 1) > 1.

In particular, this result shows that to achieve the same reduction in error, a quantum
algorithm needs to make roughly at least half as many queries as a classical randomized
algorithm. A similar result can be obtained by modifying the proof in Buhrman, Cleve,
de Wolf and Zaka [BC+99]: there is a constant c > 0, such that for all u > 0, all large
enough N and all t-query quantum search algorithms for databases of size N , there is
an ε ∈ (0, u] (εN is an integer) such that errA(ε) ≥ (cu)2t+1.

3 Upper bounds: quantum algorithms

In this section, we present algorithms that justify Theorems 1, 2 and 3, but by using the
standard database oracle. We then modify these algorithms to generalize and slightly
improve these theorems.



6 Chakraborty, Radhakrishnan, Raghunathan

3.1 Alternative algorithms using the standard oracle

We first describe an alternative algorithm A0 to justify Theorem 1. This simple algo-
rithm (see Figure 1) illustrates the main idea used in all our upper bounds. We will work
with n qubits corresponding to addresses in [N ] and one ancilla qubit. Although we do
not simulate Grover’s oracle directly, using the ancilla, we can reproduce the effect the
complex amplitude used there by real amplitudes. As we will see, the resulting algo-
rithm has an intuitive explanation and also some additional properties not enjoyed by
the original algorithm.

6 6 6 6

66

6 6 6
6 6 6

6 6 66 6 6

6 6

6

Target Non-target

Target Non-target

Non-target

Non-target

Target

Target

Step 1

Step 2

Step 3

1+ε
2
√
N

1√
N

(
1
2 + ε

)

1√
N

1
2
√
N

ε

√
3

4N

√
3

4N

States of the form |x〉|0〉

States of the form |x〉|0〉 States of the form |x〉|1〉

States of the form |x〉|1〉

Target Non-target

Fig. 1. The one-query algorithm

Step 1: We start with the uniform superposition on [N ] with the ancilla bit in the state
|0〉.

Step 2: For targets x, transform |x〉|0〉 to 1
2 |x〉|0〉+

√
3
4 |x〉|1〉. The basis states |x〉|0〉

for x ∈ f−1(0), are not affected by this transformation.
Step 3: Perform an inversion about the average controlled on the ancilla bit being |0〉,

and then measure the address registers.
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Step 1 is straightforward to implement using the n-qubit Hadamard transform Hn. For
Step 2, using one-query to Tf , we implement a unitary transformation Uf , which maps

|x〉|0〉 to |x〉|0〉 if f(x) = 0 and to |x〉
(

1
2 |0〉+

√
3
4 |1〉

)
, if f(x) = 1. One such trans-

formation is Uf = (In ⊗ R−1)Tf (In ⊗ R), where In is the n-qubit identity operator

and R is the one-qubit gate for rotation by π
12 (that is, |0〉 R7→ cos( π12 )|0〉 + sin( π12 )|1〉

and |1〉 R7→ cos( π12 )|1〉 − sin( π12 )|0〉). The inversion about the average is usually imple-
mented as An = −Hn(In − 2|0〉〈0|)Hn. The controlled version we need is then given
by

An,0 = An ⊗ |0〉〈0|+ In ⊗ |1〉〈1|.
Let H ′ = Hn ⊗ I . The final state is |φf 〉 = An,0UfH

′|0〉|0〉.
To see that the algorithm works as claimed, consider the state just before the opera-

tor An,0 is applied. This state is

1√
N

 ∑
x∈f−1(1)

1
2
|x〉|0〉

∑
x∈f−1(0)

|x〉|0〉

+
1√
N

∑
x∈f−1(1)

√
3
4
|x〉|1〉.

Suppose |f−1(0)| = εN . The “inversion about the average” is performed only on the
first term, so the non-target states receive no amplitude from the second term. The aver-
age amplitude of the states in the first term is 1

2
√
N

(1+ε) and the amplitude of the states
|x〉|0〉 for x ∈ f−1(0) is 1√

N
. Thus, after the inversion about the average the amplitude

of |x〉|0〉 for x ∈ f−1(0) is ε√
N

. It follows that if we measure the address registers in
the state |φf 〉, the probability of observing a non-target state is exactly

|f−1(0)| · ε
2

N
= ε3.

Remark: Note that this algorithm actually achieves more. Suppose we measure the
ancilla bit in |φf 〉, and find a 1. Then, we are assured that we will find a target on mea-
suring the address registers. Furthermore, the probability of the ancilla bit being 1 is
exactly 3

4 (1 − ε). One should compare this with the randomized one-query algorithm
that with probability 1−ε provides a guarantee that the solution it returns is correct. The
algorithm in [G05] has no such guarantee associated with its solution. However, the al-
gorithm obtained by Tulsi, Grover and Patel [TGP05] gives a guarantee with probability
1
2 (1− ε).

The general algorithm B0 needed to justify Theorem 2 is similar. We use G instead
of Hn; that is, we let H ′ = G⊗ I , An = G(2|0〉〈0| − In)G−1, and, as before,

An,0 = An ⊗ |0〉〈0|+ In ⊗ |1〉〈1|.

The final state is obtained in the same way as before |φf 〉 = An,0UfH
′|0〉|0〉.

Remark: As stated, we require the controlled version of G and G−1 to implement
An,0. However, we can implement G with the uncontrolled versions themselves from
the following alternative expression for An,0:

An,0 = (G⊗ I)[(2|0〉〈0| − In)⊗ |0〉〈0|+ In ⊗ |1〉〈1|](G−1 ⊗ I).
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We can estimate the error probability of this algorithm using the following standard
calculation. Suppose the probability of obtaining a non-target state on measuring the
address registers in the state G|0〉 is ε. Let us formally verify that the probability of
obtaining a non-target state on measuring the address registers in the state |φf 〉 is ε3.
This follows using the following routine calculation. We write

G|0〉 = α|t〉+ β|t′〉,

where |t〉 is a unit vector in the “target space” spanned by {|x〉 : f(x) = 1}, and |t′〉 is
a unit vector in the orthogonal complement of the target space. By scaling |t〉 and |t′〉
by suitable phase factors, we can assume that α and β are real numbers. Furthermore
β2 = ε. The state after the application of Uf is then given by

(α
2
|t〉+ β|t′〉

)
|0〉+

√
3
4
α|t〉|1〉. (1)

Now, the second term is not affected by An,0, so the amplitude of states in the subspace
of non-target states is derived entirely from the first term, which we denote by |u〉. To
analyze this contribution we write |u〉, using the basis

|v〉 = α|t〉+ β|t′〉; (2)
|v′〉 = β|t〉 − α|t′〉. (3)

That is, |u〉 =
(
α2

2
+ β2

)
|v〉|0〉 − αβ

2
|v′〉|0〉.

Since An,0|v〉 = |v〉 and An,0|v′〉 = −|v′〉, we have

An,0|u〉 =
(
α2

2
+ β2

)
|v〉|0〉+ αβ

2
|v′〉|0〉.

Returning to the basis |t〉 and |t′〉 (using (2) and (3)), we see that the amplitude associ-
ated with |t′〉 in this state is β3. Thus, the probability that the final measurement fails to
deliver a target address is exactly β6 = ε3.

Remark: The algorithm B0 can be used recursively to get a t-query algorithm that
achieves the bound Theorem 3. Just as in the one-query algorithm, by measuring the
ancilla bits we can obtain a guarantee; this time the solution is accompanied with guar-
antee with probability at least (1 − 1

t −
6 log t

t(log 1
ε )

log3 4 ). The t-query algorithm obtained
by Tulsi, Grover and Patel [TGP05] has significantly better guarantees: it certifies that
its answer is correct with probability at least 1− ε2t.

3.2 Algorithms with restrictions on ε

As stated above, for each δ ∈ [0, 1], there is a one-query quantum algorithm Aδ that
makes no error if the |f−1(0)| = δN (or, in the general setting, if G is known to err
with probability at most 3

4 ). Let us explicitly obtain such an algorithm Aδ by slightly
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modifying the algorithm above. The idea is to ensure that the inversion about the aver-
age performed in Step 3 reduces the amplitude of the non-target states to zero. For this,
we only need to replace Uf by Uf,δ , which maps |x〉|0〉 to |x〉|0〉 if f(x) = 0 and to

|x〉 (α|0〉+ β|1〉), if f(x) = 1, where α =
1− 2δ

2(1− δ)
and β =

√
1− α2.

Also, one can modify the implementation of Uf above, replacing π
12 by sin−1(α)

2
(note that δ ≤ 3

4 implies that |α| ≤ 1), and implement Uf,δ using just one-query to Tf .

Proposition 1. Let |f−1(0)| = δ ≤ 3
4 . Then, errAδ(f) = 0.

An analogous modification for the general search gives us an algorithm Bδ(T,G)
that has no error when G produces a target state for T with probability exactly 1 − δ.
We next observe that the algorithmsAδ and Bδ perform well not only when the original
probability is known to be δ but also if the original probability is ε ≥ δ. This justifies
Theorem 4 claimed above.
Proof of Theorem 4: We will only sketch the calculations for part (a). The average
amplitude of all the states of the form |x〉|0〉 is ( 1√

N
)(1−2δ+ ε)/(2(1− δ)). From this

it follows that the amplitude of a non-target state after the inversion about the average
is ( 1√

N
)(ε− δ)/(1− δ). Our claim follows from this by observing that there are exactly

εN non-target states. ut

4 Lower bounds

In this section, we show that the algorithms in the previous section are essentially opti-
mal. For the rest of this section, we fix a t-query quantum search algorithm to search a
database of size N . Using the polynomial method we will show that no such algorithm
can have error probability significantly less than εt+1, for a large range of ε.

The proof has two parts. First, using standard arguments we observe that errA(ε) is
a polynomial of degree at most 2t+ 1 in ε.

Lemma 1. LetA be a t-query quantum search algorithm for databases of sizeN . Then,
there is a univariate polynomial r(Z) with real coefficients and degree at most 2t + 1,
such that for all ε

errA(ε) ≥ r(ε).
Furthermore, r(x) ≥ 0 for all x ∈ [0, 1].

In the second part, we analyze such low degree polynomials to obtain our lower
bounds. We present this analysis first, and return to the proof of Lemma 1 after that.

4.1 Analysis of low degree polynomials

Definition 2 (Error polynomial). We say that a univariate polynomial r(Z) is an error
polynomial if (a) r(z) ≥ 0 for all z ∈ [0, 1], (b) r(0) = 0, and (c) r(1) = 1.

Our goal is to show that an error polynomial of degree at most 2t+1 cannot evaluate
to significantly less than ε2t+1 for many values of ε. For our calculations, it will be
convenient to ensure that all the roots of such a polynomial are in the interval [0, 1).
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Lemma 2. Let r(Z) an error polynomial of degree 2t+ 1 with k < 2t+ 1 roots in the
interval [0, 1). Then, there is another error polynomial q(Z) of degree at most 2t + 1
such that q(z) ≤ r(z) for all z ∈ [0, 1], and q(Z) has at least k+1 roots in the interval
[0, 1).

Proof. Let α1, α2, . . . , αk be the roots of r(x) in the interval [0, 1). Hence we can write

r(Z) =
k∏
i=1

(Z − αi)r′(Z),

where r′(Z) does not have any roots in [0, 1). Now, by substituting Z = 1, we conclude
that r′(1) ≥ 1. Since r′(Z) does not have any roots in [0, 1), it follows that r′(z) > 0
for all z ∈ [0, 1).

The idea now, is to subtract a suitable multiple of the polynomial 1−Z from r′(Z)
and obtain another polynomial r′′(Z) which has a root in [0, 1). Since 1−Z is positive
in [0, 1), r′′(Z) is at most r′(Z) in this interval. The polynomial q(Z) will be defined by
q(Z) =

∏
α∈R(Z − α)r′′(Z). To determine the multiple of 1− Z we need to subtract,

consider λ(c) = minz∈[0,1) r
′(Z)− c(1− Z). Since λ(c) is continuous, λ(0) > 0 and

λ(c) < 0 for large enough c, it follows that λ(c0) = 0 for some c0 > 0. Now, let
r′′(Z) = r(Z)− c0(1− Z). ut

By repeatedly applying Lemma 2 we obtain the following.

Lemma 3. Let r(Z) be an error polynomial of degree at most 2t+ 1. Then, there is an
error polynomial q(Z) of degree exactly 2t+ 1 such that q(z) ≤ r(z) for all z ∈ [0, 1],
and q(Z) has 2t+ 1 roots in the interval [0, 1).

We can now present the proof of Theorem 5, our main lower bound result.
Proof of Theorem 5: Consider the case t = 1. By Lemma 1, it is enough to show
that an error polynomial r(Z) of degree at most three is bounded below as claimed. By
Lemma 3, we may assume that all three roots of r(Z) lie in [0, 1). Since r(0) = 0 and
r(z) ≥ 0 in [0, 1), we may write r(Z) = aZ(Z − α)2 for some α ∈ [0, 1) and some
positive a; since r(1) = 1, we conclude that a = 1

(1−α)2 . Thus, we need to determine

the value of α so that t(α) = maxx∈{`,u}
r(x)
x3 is as small as possible. Consider the

function tx(α) = r(x)
x3 =

(
x−α

(1−α)x

)2

. Note that for all x, tx(α) is monotonically in-
creasing in |x − α|. It follows that t(α) is minimum for some α ∈ [`, u]. For α in this
interval t`(α) is an increasing function of α and tu(α) is a decreasing function of α.
So t(α) is minimum when t`(α) = tu(α). It can be checked by direct computation that
when α = 2`u

`+u ,

t`(α) = tu(α) =
(

u− `
u+ `− 2`u

)2

.

This establishes part (a) of Theorem 5.
To establish part (b), we show that an error polynomial of degree at most 2t + 1

satisfies the claim. As before, by Lemma 3, we may assume that r(Z) has all its roots
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in [0, 1). Furthermore, since r(Z) ≥ 0, we conclude that all roots in (0, 1) have even
multiplicity. Thus we may write

r(Z) =
Z(Z − α1)2(Z − α2)2 · · · (Z − αt)2

(1− α1)2(1− α2)2 · · · (1− αt)2
.

Now, let b = (u` )
1
t+1 . Consider subintervals {(`bj , `bj+1] : j = 0, 1, . . . , t}. One of

these intervals say `bj0 , `bj0+1 has no roots at all. Let ε be the mid point of the interval,

that is, ε = (`bj0 + `bj0+1)/2. Then, we have (ε − αj)2 ≥
(
`bj0+1−`bj0

2

)2

, and since

(1− αj)2 ≤ 1, we have
r(ε)
ε2t+1

≥
(
b− 1
b+ 1

)2t

.

This establishes part (b). The term− 1
N`(b+1) appears in the statement of Theorem 5

because we need to ensure that εN is an integer. ut

4.2 Proof of Lemma 1

We will use the following notation. Let p(X1, X2, . . . , XN ) be a polynomial in N vari-
ables X1, X2, . . . , XN with real coefficients. For a database f : {0, 1}N → {0, 1},
let

p(f) ∆= p(f(1), f(2), . . . , f(N)).

Also, in the following X denotes the sequence of variables X1, X2, . . . , XN .
The key fact we need is the following.

Theorem 6 ([BB+95]). Let A be a t-query quantum database search algorithm. Then,
for i = 1, 2, . . . , N , there is a multilinear polynomial pi(X) of degree at most 2t, such
that for all f .

Pr[A(f) = i] = pi(f).

Furthermore, pi(x) ≥ 0 for all x ∈ [0, 1]N .

Lemma 4. Let A be a t-query quantum database search algorithm. Then, there is a
multilinear polynomial p(X) of degree at most 2t+ 1 such that for all f ,

errA(f) = pA(f).

Proof. Using the polynomials pi(X) from Theorem 6, define

pA(X) =
n∑
i=1

(1−Xi)pi(X).

Clearly, p(f) =
n∑
i=1

(1− f(i))pi(f) =
∑

i∈f−1(0)

Pr[A(f) = i] = errA(f). ut

We can now prove Lemma 1. For a permutation σ of N and f : [N ] → {0, 1}, let
σf be the function defined by σf(i) = f(σ(i)).
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Note that |f−1(0)| = |(σf)−1(0)|. Now,

1
N !

∑
σ

pA(σf) = E
σ
[errA(σf)] ≤ max

σ
errA(σf) ≤ errA(ε), (4)

where |f−1(0)| = εN .
Let σX be the sequence Xσ(1), Xσ(2), . . . , Xσ(N), and let

psym
A (X) =

1
N !

∑
σ

pA(σX).

Then, by (4), we have psym
A (f) =

1
N !

∑
σ

pA(σf) ≤ errA(ε).

Now, psym
A (X) is a symmetric multilinear polynomial in N variables of degree at

most 2t+ 1. For any such polynomial, there is a univariate polynomial q(Z) of degree
at most 2t+ 1 such that if we let p̂(X) = q(

∑N
i=1Xi)/N), then for all f ,

p̂(f) = psym
A (f) ≤ errA(ε).

(See Minsky and Papert [MP].) Now, p̂(f) = q((f(1) + f(2) + . . . + f(N))/N) =
q(1− ε). To complete the proof, we take r(Z) = q(1− Z). ut
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