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Abstract

We provide proofs of the following theorems by considering the entropy of random walks.

Theorem 1.(Alon, Hoory and Linial) Let G be an undirected simple graph with n vertices, girth
g, minimum degree at least 2 and average degree d̄.

Odd girth: If g = 2r + 1, then n ≥ 1 + d̄

r−1∑

i=0

(d̄− 1)i.

Even girth: If g = 2r, then n ≥ 2

r−1∑

i=0

(d̄− 1)i.

Theorem 2.(Hoory) Let G = (VL, VR, E) be a bipartite graph of girth g = 2r, with nL = |VL| and
nR = |VR|, minimum degree at least 2 and the left and right average degrees dL and dR. Then,

nL ≥

r−1∑

i=0

(dR − 1)⌈
i
2
⌉(dL − 1)⌊

i
2
⌋
,

nR ≥
r−1∑

i=0

(dL − 1)⌈
i
2
⌉(dR − 1)⌊

i
2
⌋
.

1 Introduction

The Moore bound (see Theorem 3.1) gives a lower bound on the order of any simple undirected graph,
based on its minimum degree and girth. Alon, Hoory and Linial [1] showed that the same bound holds with
the minimum degree replaced by the average degree. Later, Hoory [3] obtained a better bound for simple
bipartite graphs. We reprove the results of Alon, Hoory and Linial [1] and Hoory [3] using information
theoretic arguments based on non-returning random walks on the graph.

The paper has three sections: In Section 2 we introduce the relevant notation and terminology. In Section
3, we present the information theoretic proof of the result of Alon, Hoory and Linial [1]; in Section 4, we
present a similar proof of the result of Hoory [3] for bipartite graphs.

∗This work was done while the author was at the School of Technology and Computer Science, Tata Institute of Fundamental

Research, Homi Bhabha Road, Mumbai 400005, India.
†School of Technology and Computer Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005,

India.
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2 Notation

For an undirected simple graph G = (V,E), let ~G = (V, ~E), be the directed version of G, where for each

undirected edge of the form {u, v} in E, we place two directed edges in ~E, one of the form (u, v) and another

of the form (v, u). Similarly, for an undirected bipartite graph G = (VL, VR, E), let ~G = (VL, VR, ~ELR∪ ~ERL)
be the directed version of G, where for each undirected edge of the form {u, v} in E, with u ∈ VL and v ∈ VR,

we place one directed edge of the form (u, v) in ~ELR, and another of the form (v, u) in ~ERL.

We will consider non-returning walks on ~G, that is, walks where the edges corresponding to the same
undirected edge of G do not appear in succession. For a vertex v, let ni(v) denote the number of non-

returning walks in ~G starting at v and consisting of i edges. For an edge ~e, let ni(~e) denote the number of

non-returning walks in ~G starting with ~e and consisting of exactly i+ 1 edges (including ~e).

3 Moore bound for irregular graphs

In Section 3.1, we recall the proof of the Moore bound; in Section 3.2, we review and reprove the theorem of
Alon, Hoory and Linial [1] assuming the Lemma 3.4. In Section 3.3, we prove this lemma using an entropy
based argument.

3.1 Proof of the Moore bound

The Moore bound provides a lower bound for the order of a graph in terms of its minimum degree and girth.

Theorem 3.1 (The Moore bound [2, p. 180]). Let G be a simple undirected graph with n vertices, minimum

degree δ and girth g.

Odd girth: If g = 2r + 1, then n ≥ 1 + δ

r−1
∑

i=0

(δ − 1)i.

Even girth: If g = 2r, then n ≥ 2

r−1
∑

i=0

(δ − 1)i.

The key observation in the proof of the Moore bound is the following. If the girth is 2r + 1, then two
distinct non-returning walks of length at most r starting at a vertex v lead to distinct vertices. Similarly,
if the girth is 2r, then non-returning walks of length at most r starting with (some directed version of) an
edge e lead to distinct vertices. We will need this observation again later, so we record it formally.

Observation 3.2. Let G be an undirected simple graph with n vertices and girth g.

Odd girth: Let g = 2r + 1. Then, for all vertices v, n ≥ n0(v) + n1(v) + · · ·+ nr(v).

Even girth: Let g = 2r. Let e be an edge of G and suppose ~e1 and ~e2 are its directed versions in ~G. Then,

n ≥
r−1
∑

i=0

[ni(~e1) + ni(~e2)].

Proof of Theorem 3.1. The claim follows immediately from Observation 3.2 by noting that for such a graph
G, for all vertices v ∈ V and edges ~e ∈ ~E,

ni(v) ≥ δ(δ − 1)i−1 (for i ≥ 1), n0(v) = 1; (1)

ni(~e) ≥ (δ − 1)i (for i ≥ 0). (2)
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3.2 The Alon-Hoory-Linial bound

Alon, Hoory and Linial showed that the bound in Theorem 3.1 holds for any undirected graph even when
the minimum degree δ is replaced by the average degree d̄.

Theorem 3.3 (Alon, Hoory and Linial [1]). Let G be an undirected simple graph with n vertices, girth g,
minimum degree at least 2 and average degree d̄.

Odd girth: If g = 2r + 1, then n ≥ 1 + d̄

r−1
∑

i=0

(d̄− 1)i.

Even girth: If g = 2r, then n ≥ 2
r−1
∑

i=0

(d̄− 1)i.

We will first prove this theorem assuming the following lemma, which is the main technical part of Alon,
Hoory and Linial [1]. This lemma shows that the bounds (1) and (2) holds with δ replaced by d̄. In Section
3.3, we will present an information theoretic proof of this lemma.

Lemma 3.4. Let G be an undirected simple graph with n vertices, girth g, minimum degree at least two and

average degree d̄.

(a) If v ∈ V (G) is chosen with distribution π, where π(v) = dv/(2|E(G)|) = dv/(d̄n), then E[ni(v)] ≥
d̄(d̄− 1)i−1 (i ≥ 1).

(b) If ~e is a uniformly chosen random edge in ~E, then E[ni(~e)] ≥ (d̄− 1)i (i ≥ 0).

Proof of Theorem 3.3. First, consider graphs with odd girth. From Observation 3.2, Lemma 3.4 (a) and
linearity of expectation we obtain

n ≥ E[n0(v) + n1(v) + · · ·+ nr(v)] ≥ 1 + d̄

r−1
∑

i=0

(d̄− 1)i,

where v ∈ V (G) is chosen with distribution π (defined in Lemma 3.4 (a)).

Now, consider graphs with even girth. Let ~e1 be chosen uniformly at random from ~E and let ~e2 be its
companion edge (going in the opposite direction). Note that ~e2 is also uniformly distributed in ~E. Then,
from Observation 3.2, Lemma 3.4 (b) and linearity of expectation we obtain

n ≥ E

[

r
∑

i=0

[ni(~e1) + ni(~e2)]

]

≥ 2

r−1
∑

i=0

(d̄− 1)i.

3.3 The entropy based proof of Lemma 3.4

The proof of Lemma 3.4 below is essentially the same as the one originally proposed by Alon, Hoory and
Linial, but is stated in the language of entropy where some of the arguments based on concavity are explained
directly in information theoretic terms.

Proof of Lemma 3.4. (a) Consider the Markov process v, ~e1 ,~e2, . . . , ~ei, where v is a random vertex of G

chosen with distribution π, ~e1 is a random edge of ~G leaving v (chosen uniformly from the dv choices),
and for 1 ≤ j < i, ~ej+1 is a random successor edge for ~ej chosen uniformly from among the non-
returning possibilities. (If ~ej has the form (x, y), then there are dy − 1 possibilities for ~ej+1.) Let

3



v0 = v, v1, v2, . . . , vi be the vertices visited by this non-returning walk. We observe that each ~ej is

distributed uniformly in the set E(~G) and each vj has distribution π. Then,

logE[ni(v)] ≥ E[log ni(v)]

≥ H [~e1~e2 . . . ~ei | v]

= H [~e1|v] +

i−1
∑

j=1

H [~ej+1 | ~e1~e2 · · ·~ejv]

= E[log dv] +
i−1
∑

j=1

E[log(dvj − 1)]

= E[log dv(dv − 1)i−1]

=
1

d̄n

∑

v

dv log dv(dv − 1)i−1

≥ log d̄(d̄− 1)i−1,

where to justify the first inequality we use Jensen’s inequality for the concave function log, to justify
the second we use the fact that the entropy of a random variable is at most the log of the size of its
support, and to justify the last we use Jensen’s inequality for the convex function x log x(x − 1)i−1

(x ≥ 2). The claim follows by exponentiating both sides.

(b) This time we consider the Markov process ~e0 = ~e, ~e1, . . . , ~ei, where ~e is chosen uniformly at random

from ~E, and for 0 ≤ j < i, ~ej+1 is a random successor edge for ~ej chosen uniformly from among the
non-returning possibilities. Let v0, v1, v2, . . . , vi+1 be the vertices visited by this non-returning walk.
As before observe that each vj has distribution π. Then,

logE[ni(e)] ≥ E[logni(e)]

≥ H [~e1~e2 . . . ~ei | ~e0]

=

i
∑

j=1

E[log(dvj − 1)]

= E[log(dv0 − 1)i]

=
1

d̄n

∑

v

dv log(dv − 1)i

≥ log(d̄− 1)i,

where we justify the first two inequalities as before, and the last using Jensen’s inequality applied to
the convex function x log(x − 1)i (x ≥ 2). The claim follows by exponentiating both sides.

Remark 3.5. Theorem 3.3 holds for any graph with average degree is at least 2. For details, see the proof of
Theorem 1 in [1].

4 Moore bound for bipartite graphs

Following the proof technique of [1], Hoory [3] obtained an improved Moore bound for bipartite graphs. In
this section, we provide an information theoretic proof of the same.

4



4.1 The Hoory bound

Theorem 4.1 (Hoory [3]). Let G = (VL, VR, E) be a bipartite graph of girth g = 2r, with nL = |VL| and
nR = |VR|, minimum degree at least 2 and the left and right average degrees dL and dR. Then,

nL ≥

r−1
∑

i=0

(dR − 1)⌈
i
2
⌉(dL − 1)⌊

i
2
⌋,

nR ≥

r−1
∑

i=0

(dL − 1)⌈
i
2
⌉(dR − 1)⌊

i
2
⌋.

For bipartite graphs the girth is always even. We have the following then have the following variant of
Observation 3.2.

Observation 4.2. Let G = (VL, VR, E) be an undirected bipartite graph with |VL| = nL and |VR| = nR and

girth g = 2r. Let e be an edge of G and suppose ~e1 and ~e2 be its directed versions in ~G, such that ~e1 ∈ ~ELR

and ~e2 ∈ ~ERL. Then,

nL ≥

⌊ r−2

2
⌋

∑

i=0

n2i+1(~e1) +

⌈ r−2

2
⌉

∑

i=0

n2i(~e2).

We will prove the Theorem 4.1, assuming the following lemma, which is the main technical part of
Hoory [3]. In Section 4.2, we will present the proof of this lemma using the language of entropy.

Lemma 4.3. Let G = (VL, VR, E) be an undirected simple bipartite graph with nL vertices on the left and

nR vertices on the right, girth g, minimum degree at least two and average left and right degrees respectively

dL and dR.

(a) If ~e is a uniformly chosen random edge in ~ELR, then E[n2i+1(~e)] ≥ (dR − 1)i+1(dL − 1)i (i ≥ 1).

(b) If ~e is a uniformly chosen random edge in ~ERL, then E[n2i(~e)] ≥ (dR − 1)i(dL − 1)i (i ≥ 1).

Proof of Theorem 4.1. We will prove the bound for nL. The proof for nR case is similar. Let ~e1 be chosen
uniformly at random from ~ELR and let ~e2 be its companion edge (going in the opposite direction). Note that

~e2 is also uniformly distributed in ~ERL. Then, from Observation 4.3, Lemma 4.3 and linearity of expectation
we obtain

nL ≥ E





⌊ r−2

2
⌋

∑

i=0

n2i+1(~e1) +

⌈ r−2

2
⌉

∑

i=0

n2i(~e2)



 ≥
r−1
∑

i=0

(dR − 1)⌈
i
2
⌉(dL − 1)⌊

i
2
⌋.

4.2 The entropy based proof of Lemma 4.3

The proof of Lemma 4.3 below is essentially the same as the one originally proposed by Hoory, but is
stated in the language of entropy where some of the arguments based on concavity are explained directly in
information theoretic terms.

Proof of Lemma 4.3. (a) Consider a Markov process ~e0, ~e1, ~e2, · · · , ~e2i+1, where ~e0 is a uniformly chosen

random edge from ~ELR, and for 0 ≤ j < 2i + 1, ~ej+1 is a random successor edge for ~ej chosen
uniformly from among the non-returning possibilities. Let v0, v1, v2, . . . , v2i+2 be the vertices visited
by this non-returning walk. We observe that for 0 ≤ j ≤ i each ~e2j and ~e2j+1 is respectively distributed
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uniformly in the set ~ELR and ~ERL. Furthermore, for j even, Pr[vj = v] = dv/|E(G)| for all v ∈ VL,
and for j odd, Pr[vj = v] = dv/|E(G)| for all v ∈ VR. Then,

logE[n2i+1(e)] ≥ E[log n2i+1(e)]

≥ H [~e0~e1 . . . ~e2i+1 | ~e0]

=
i

∑

j=0

H [~e2j+1|~e2j] +
i

∑

j=1

H [~e2j|~e2j−1]

=

i
∑

j=0

E[log(dv2j+1
− 1)] +

i
∑

j=1

E[log(dv2j − 1)]

≥ (i + 1) log(dR − 1) + i log(dL − 1)

= log(dR − 1)i+1(dL − 1)i.

where to justify the first inequality we use Jensen’s inequality for the concave function log, to justify
the second we use the fact that the entropy of a random variable is at most the log of the size of its
support, and to justify the last we use Jensen’s inequality for the convex function x log(x− 1) (x ≥ 2).
The claim follows by exponentiating both sides.

(b) Similarly,
logE[n2i(e)] ≥ log(dL − 1)i(dR − 1)i.
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