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Abstract

We study the problem of constructing universal Steinerstfee undirected graphs. Given a graph
G and a root node, we seek a single spanning tréeof minimum stretch, where the stretch Bfis
defined to be the maximum ratio, over all subsets of termifglef the ratio of the cost of the sub-tree
T'x that connects to X to the cost of an optimal Steiner tree connectii¢p ». Universal Steiner trees
(USTs) are important for data aggregation problems whengoeing the Steiner tree from scratch for
every input instance of terminals is costly, as for examplew energy sensor network applications.

We provide a polynomial time UST construction for generalgirs with2@(v1os ) _stretch. We also
give a polynomial time polylogarithmic-stretch constiaantfor minor-free graphs. One basic building
block in our algorithm is a hierarchy of graph partitionsgleaf which guarantees small strong cluster
diameter and bounded local neighbourhood intersections p@rtition hierarchy for minor-free graphs
is based on the solution to a cluster aggregation probletmtiag be of independent interest. To our
knowledge, this is the first sub-linear UST result for gehgraphs, and the first polylogarithmic con-
struction for minor-free graphs.
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1 Introduction

In this paper, we study universal approximations for theérnsteTree problem on undirected graphs. In
the universal Steiner Tree (UST) problem for graphs, we sengan undirected grapfi and a designated
root vertexr in G, and the task is to find single spanning tre& of G such that for any seX of terminal
vertices, the minimal subtréEx of 7" that connectsX to r is a good approximation to the optimal Steiner
tree connectingX to r in G. The quality of the solutiofi” is measured by itstretchwhich is the maximum
ratio of the cost ofl'y to the cost of the optimal Steiner tree connectiido » in GG over all terminal sets
X.

The universal Steiner tree problem has been studied exébpndor the case of metrics where one is
allowed to output an “overlay tree”, whose edges corresgongiths in the given graph [21, 19,9,/ 30].
Equivalently, the case of metrics can be viewed as a compteigh in which all edge weights satisfy the
triangle inequality. In fact, for the case of metrics, thbawe been several important results on extensions
of the UST problem and variants seeking sparse networktateg that simultaneously approximates the
optimal solution for a range of input instances|[15,(17,/ 1], 1

The focus of this paper is on the UST problem on arbitrary lggaphere we require that the solution
being sought is a spanning tree, i.e., a subgraph of the gragh. The Minimum Steiner tree problem on a
graph can be well-approximated by solving the same problet® metric induced by the graph and then
computing the minimum subtree connecting the terminalchun approach, however, does not apply to
the UST problem owing to the requirement that the gieeultaneoushapproximate the optimal Steiner tree
for all terminal sets. Note that this is a much stronger requirentemt asking for a probability distribution
over spanning trees where for every terminal set, the egfdesttetch is small. In the latter case, there might
not be any single tree in the distribution that is good fotalininal sets, i.e., for every tree there is a set of
terminals for which the induced tree has a cost much larger the optimal steiner tree.

Motivation. Our problem formulation is primarily motivated by inforn@ai aggregation and data dissemi-
nation in sensor and ad-hoc wireless networks[[25, 26, 24.densor network, data is often collected by a
central processing agent that periodically queries a sulbsensors for their sensed information. In many
applications, the queries seek aggregate information wtdm be transmitted using a low cost tree that
aggregates data at intermediate nodes. This reduces theenoirtransmissions which is crucial as sensors
have limited battery life and wireless transmissions akegrantensive. It is not realistic, however, to expect
the sensors to compute and store a low cost tree for eachtipbsibset of sensors being aggregated as the
sensors have limited memory and computational power. thditing, a universal tree provides a practical
solution where the nodes just need to realize a single tréeghvaipproximates optimal aggregation trees for
all subsets of sensors. One approach for the above aggnegabblem is to employ a universaverlay
tree. There are several disadvantages of this approactevieawFirst, aggregation over the overlay tree
requires a physical routing infrastructure that suppodistpto-point communication among distant nodes
in the network. Second, even if such an infrastructure gxistmay not route packets along minimum-cost
paths as required by the overlay tree. Furthermore, aggpegaver the overlay tree requires synchroniza-
tion among distant nodes in the network and incurs overheéetins of delays and storage. Thus, in some
resource-constrained applications, we would ideally viagbnstruct a universal spanning tree as opposed
to an overlay tree.

Another motivation to study universal approximation aitfons comes from their relation with differ-
ential privacy which was recently established by Bhalgdiakeabarty and Khannal[9]. They showed that
universal solutions such as USTs are differentially payaind argued that a kind of “strong” lower bounds
for universal algorithms implies lower bounds for diffetiafly private ones as well.

From a theoretical standpoint, our motivation is to find otether the results known for UST and re-
lated problems in the metric case can, in fact, be achieved) spanning trees of the underlying graph.
The analogous question for the problem of approximatingiogeby tree metrics has been answered affir-



matively by [13/ 1] who showed that nearly logarithmic-g&trespanning trees exist for all graphs, almost
matching the best bound achievable by tree metrics [14]. dioparable results are known for the UST
problem.

1.1 Our results and techniques

We present UST algorithms for general graphs and for theiapeass of minor-free graphs. Our main
results are the following.

e UST for general graphs: We present a polynomial-time algorithm for computing 2#fvosn)-
stretch spanning tree for any undirected graph.

e UST for minor-free graphs: We present a polynomial-time algorithm for computing a pamyrithmic-
stretch spanning tree for any graph thatisminor free for any finite grapli.

While the specific techniques used in the two algorithms abstantially different, both are grounded in a
general framework that draws close connections betweersld8d certain graph partitions based on strong
diameter. We define afa, 3, v)-partition of a graphG as a partition of the vertices ¢f into clusters such
that each cluster has strong diameter at rogstaind for every vertex the ball of radiusin G intersects at
mostg clusters. An(a, 3, v)-partition hierarchy is a sequence of partitions startiogfthe trivial partition

in which each vertex forms its own cluster, and ftfe partition is an(«, 8,~*)-partition and coarsens the
(i — 1)th partition. (See Sectidd 2 for formal definitions.) Thensigance of our framework stems from the
following result.

e From partition hierarchies to USTs: For any graphG, given an(«, 3, v)-partition hierarchy foiG,
anO(a?B%vlogn)-stretch UST forG; can be constructed in polynomial time. (Secfiod 3.1)

A major consequence of the above result is thgtaylog(n ), polylog(n), polylog(n))-partition hierarchy
implies a polylogn)-stretch UST. At a high-level, our approach of using pantithierarchies to derive
USTs is similar to that of [21]. There is a critical differendiowever, since the natural divide-and-conquer
approach of constructing the UST by connecting togetheiraseb recursively computed for lower levels of
the hierarchy does not work. In fact, it can be shown thaktlesist graphs and hierarchies such that any tree
that completely obeys the connectivity structure of thedrshy in the sense that the subgraph of the tree
induced by every cluster of the hierarchy is connected vallehpoor stretch. We show, however, that we
can get the desired bound on stretch by guaranteeing thanjorluster in the given hierarchy, even though
the tree may be split within the cluster it is joined extelynab as to approximately respect the distances
within the cluster.

A natural question to ask is whethéw, 3, v)-partitions or the corresponding hierarchies, with low
values ofx, 3, and~, arenecessaryo achieve low-stretch USTs. We provide a partial affirmeatinswer to
this question with the following result.

e From USTs to partitions: If every graph has a-stretch UST, then for any real > 0, every graph
has anO(0?), 0(o),~)-partition. (Sectiof 3]2)

We next obtain our main results for general graphs and nimeergraphs by constructing suitable partition
hierarchies.

o Partition hierarchies for general graphs: Every graphG has a polynomial-time computable
(20Wlogn) 90(Vlegn) 90(Viogn))_nartition hierarchy. (Sectidd 4)

e Partition hierarchies for minor-free graphs: Every minor-free graplG has a polynomial-time
computablgO(log® n), O(log* n), O(log® n))-partition hierarchy. (Sectidd 6)
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The partition hierarchy for general graphs is obtained bigeaative procedure in which clusters are contin-
ually merged by identifying vertices for which the numbeirtiérsecting clusters within a specified distance
exceeds the desired bound. The particular order in whiclvéhices are processed is carefully chosen; a
natural greedy approach fails.

Our construction of the partition hierarchy for minor-frgl@phs is much more complicated. It is based
on a separator theorem due to_|[31, 2] which builds on the infiakwork of [22] and shows that any
minor-free graph can be decomposed into connected comimreach of which contains at most half the
number of nodes, by removing a sequence of a constant nurhbbeorest paths. A key ingredient of our
hierarchical construction for minor-free graphs is a resnlcluster aggregation in general graphs, which is
of independent interest.

e Cluster aggregation: We show that given any partition @f into disjoint clusters each with strong
diameter at mosb, and a sef of portal vertices, we can aggregate the clusters intoidisponnected
components, each component with a distinguished portat 6o such that for any vertex, the
distance, within the component of from v to the distinguished portal in the component is at most
O(log? n)D more than the distance ofto S in G. (Sectiori5)

1.2 Related work

Research in network design over the past decade has retiealdtds often possible to derive sparse network
structures (e.g., routes, multicast trees) that yield gagmtoximations simultaneously for a range of input
instances. One of the earliest examples of such a resuleisadGoel and Estriri [15] who introduced the
problem ofsimultaneous single sink buy-at-budkd gave arO(log D) bound on the simulataneous ratio
whereD is the total demand. The simultaneous guarantee means#iasolution works simultaneously
for all fusion cost functionf which are concave and monotonically non-deceasing With = 0. In a
related papel [16], Goel and Post constructed a distribudiger trees such that the expected cost of a tree
for any f is within an O(1)-factor of the optimum cost for thaf. A recent improvement by Goel and
Post [17] provides the first constant guarantee on the simexdius ratio achievable by a tree. This result is
incomparable to our results since the set of terminals tfeabaing aggregated in the buy-at-bulk problem
are fixed.

Jia et al. [[21] introduced the notion of universal approxiora algorithms for optimization problems
and provided approximation algorithms for TSP, SteinereTaad set cover problems. For the universal
Steiner tree problem, they presented polynomial-timerélgus that construct overlay trees with a stretch
of O(log* n/loglog(n)) for arbitrary metrics and logarithmic stretch for doubliriuclidean, or growth-
restricted metrics. They also provided a lower boun@@bg n/ loglogn) for UST that holds even when
all the vertices are on a plane; for general metrics, thisoeaimproved td2(log n) [19,/9]. Note that these
lower bounds extend to the UST problem on graphs. Lower ®torduniversal TSP are given in [20,/18].
For earlier work on universal TSP, seel[28, 8].

Gupta, Hajiaghayi and Racke [19] developed an elegantdwnaork to modebblivious network design
problems and gave algorithms with poly-logarithmic appration ratios. They give network structures
that are simultaneously oblivious to both the link cost tiors (subject to them being drawn from a suit-
able class) and traffic demand. Their algorithms are baseithecelebrated tree metric embeddings of
Fakcharoenphol et al. [14] and hierarchical cut-basedrdgostions of Racke [29]. For the UST problem
on metrics, the algorithm of [19] builds a UST as follows:gFiobtainO(log n) trees from the distribution
of [14]; next assign each non-root vertex to a tree that apfiroximates its distances to all other nodes;
finally, take the union, over each of tli&log n) overlay trees, the subtree of the tree induced by the root
and the vertices assigned to the tree. The resulting overgayis anO (log? n)-stretch UST.

A potential approach to solving the UST problem on graph® iadapt the techniques af [19] with



O(log n) spanning trees drawn from the distributions|ofl[13] instehthe overlay trees of [14]. A major
challenge here is that the paths or subtrees chosen fromiffeeedt O(logn) trees may share several
vertices and hence create unavoidable cycles when combiiednly prior work on constructing universal
Steiner trees for graphs is due to Busch ef al. [30] who aehiestretch of) (log® n) for the restricted class
of graphs with bounded doubling dimension by showing howaarecontinually refine a®(log n)-stretch
overlay tree by removing cycles to obtain @flog® n)-stretch UST. Their techniques, however, are closely
tied to the particular class of graphs and seem difficult tregalize.

The aforementioned problem of approximating a graph méiria tree metric has a rich history. Alon
et al. [4] showed an upper bound®f'eslogloen for approximating an arbitrary graph metric by a distribu-
tion over spanning trees. Bartal [6] showed that an impravéidg® ) approximation is achievable using
tree metrics if one drops the requirement that the treesligraphs of the underlying graph. Konjevod et al.
[23] improved Bartal’s result t®(log n) for planar graphs while Charikar et &l. [12] improved it fow di-
mensional normed spaces. Subsequently, Bartal [7] imprbigeearlier result td)(log n log log n) and also
showed a lower bound 6i(log n) on the distortion for probabilistically embedding an exg@ngraph into a
tree. Fakcharoenphol, Rao and Talwari [14] closed the gapeaet the lower and the upper bound by show-
ing that arbitrary metrics can be approximated by a distidbuover tree metrics with distortio@ (log n).
More recently, Elkin, Emek, Spielman, and Tehg![13] showedipper bound 0P (log? n loglogn) for
approximating an arbitrary graph metric using a distritsutof spanning trees, thus significantly improving
the result of Alon et al[[4]. This result was subsequently rioved by Abraham, Bartal, and Neiman [1]
who achieved a® (log n log log n(log log log n)?) bound.

As mentioned in Sectidn 1.1, our universal Steiner treedased on certain partitions of graphs where
we would like to bound the strong diameter of the clusterdenhiintaining some sparsity constraints. Such
partitions have been extensively studied| [27, 5]. Whilerlyeaptimal partitions based on weak diameter
bounds are known in many cases, strong-diameter based gestiions are less understoad [27]. There
have been recent results on strong-diameter decompa{lio®]; while our partitions share some of the
ideas (e.qg., of stitching together judiciously chosen @wbrpaths), there are significant differences in the
details and the particular partitions being sought. Funtioee, while we seek partition hierarchies with
deterministic guarantees, these previous results coeddrierarchies with either probabilistic guarantees
or covers where clusters are allowed to overlap.

2 Definitions and notations

Let G = (V, E,w) denote a weighted undirected graph, whérand E' are the sets of vertices and edges,
respectively, andv : £ — R is a weight function on edges. We assume, without loss ofrgétye that the
weight of a minimum-weight edge is since otherwise we can scale all the edge weights apptelytidhe
weight of a path is simply the sum of the weights of the edges iRor anyu andv in V, let the distance
betweenu andv, denoted byi(u, v), be the weight of a shortest path (i.e. smallest weight gaghyeenu
andv, according taw. Forv € V and real numbep, let B(v, p) denote the ball of radius centered av,
i.e., B(v, p) is the set of all vertices that are at distance at mdsbm v, includingv. For any graphG, let
diameterDIAM (G) denote the maximum distance between any two verticés &for any grapitz and any
subsetX of vertices inG, let G[X] denote the subgraph 6f induced byX. For any subsekX of vertices
and vertices; andv in X, letdx (u, v) denote the distance betweemndv in G[X].

Universal Steiner trees. We now introduce some notations that help formalize thearsal Steiner tree
problem. Given a specifieot vertexr € V' and a set oferminal verticesX C V, a Steiner tred” for

X is a minimal subgraph off that connects the vertices &f to the root. Thecostof treeT', denoted by
CosT(T), is the sum of the weights of edges in it. AssuGandr to be fixed. We let ®T(X') denote the
cost of the minimum weight steiner tree connectiXigo r. Given a spanning tré€ of G and terminal set



X, we define its projection on the terminal s€f denoted byl'x, as the minimal subtree @f rooted atr
that containsX.

Definition 1 (Universal Steiner tree (UST))Let G be an undirected weighted graph, andbe a specified
root vertex inV. We define thstretchof a spanning tred” of G' to bemax xcy %%Tg);). Theuniversal
Steiner tree problem is to find a spanning tree with minimum stretch.

Partitions. A partition P of V is a collection of disjoint subsets & whose union equal®’. We refer to
any subset of vertices, and hence each elemeft ek aclusterof the graphGG. There are two notions for
the diameter of a cluster. This paper focuses orsttengdiameter, which is the diameter of the subgraph
induced by the cluster. In contrast, tweakdiameter of a cluster is simply the maximum distance between
any two verices of the cluster id.

Definition 2 ((«, 3, ~)-partition). For any realy > 0, an («a, 3, y)-partition P of G is a partition of V
satisfying the following properties.

1. Strong diameter: The strong diameter of every clustéiin P is at mostvy; i.e., DIAM (G[C]) < avy.

2. Cluster-valence: For every vertex in V, B(v, ) has a nonempty intersection with at mgstlusters
in P. We refer to3 as the cluster-valence @t.

A notion of partition similar to ouf«, 3, v)-partition appeared in Jia et al. [21], which required a lwbun
on the weak diameter of clusters.

Definition 3 (Partition hierarchy) For a given realy > 1, an(«, 3, ~)-partition hierarchy of a graptG is

asequencé{ = (Py,P1,...,Py) of partitions ofl, whered = [log,y(wn satisfying the following
properties.

1. Partition: For 0 <i < d, P; is an(«, 3,~")-partition of G. Furthermore,P, is the collection{V'}.
For convenience, we sg¢t_; to the collection{{v} | v € V}.

2. Hierarchy: For 0 <1 < d, every cluster inP; is contained in some cluster #;, 1.

3. Root Padding: For 0 < i < d, the ball B(r,~*) of radius~’ around rootr is contained in some
cluster inP;.

For a partitionP, let P(v) denote the cluster oP that contains the vertex and MaxDiAM (P) denote
maxcep DIAM (C). For a subseK of vertices, letP[X] denote the partition restricted 19; i.e., P[X] is
the collection{ X N C' | C' € P}. For a partition hierarch§{ and a cluste€ that is an element of a partition
P; in H, we letH[C] denote the partition hierarchy projectediothat is,

HICT = (PolC], -, Pi[C).

3 Strong partitions and Universal Steiner trees

In this section, we present close connections between tbegspartitions of Definitioi 12 and universal
Steiner trees. We first show in Sectfon|3.1 how partitiondrighies yield USTs. Given g, 3, v)-partition
hierarchy for any grapli?, Sectior 3.1J1 shows how to get @xi(«/3)18~ "~ 52 log,, n)-stretch UST forG,
and then Section 3.1.2 presents an improved constructiding a stretch 0O (a?%y log., n). We next
show, in a somewhat weaker sense, that partitions with lowngtdiameter and low cluster-valence are
necessary for deriving low-stretch trees. In particulact®n[3.2 shows that if every graph has-atretch
UST, then every graph also has @\(a?), O(c), v)-partition for ally > 0.
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3.1 From a partition hierarchy to a universal Steiner tree

Assume graplZ and root vertex to be fixed throughout this subsection. The main result reamialgo-
rithm to construct ad (o 3%y log n)-stretch UST from arfa, 3, v)-partition hierarchy which is presented
in Section 3.1.2. We say that a spanning tfeef G u-respectsan («, 5, v)-partition hierarchyP;) if for
anyi, any clusteiC of P;, and any vertices, v € C, dr(u,v) is at mostuay®.

Lemma 4. A spanning tre€” that u-respects afic, 3, v)-partition hierarchy has a stretch 6¥ (a8 logn).

Proof. Let (P;) denote the giveli«, 5, )-partition hierarchy. Fix a non-empty s&t of vertices. Note that
X is assumed to not contain the root~or each clustef’ in the partition hierarchy such thatn (X u{r})
is nonempty, let(C') denote an arbitrary vertex i N (X U {r}).

We place an upper bound on the cosflaf, the subgraph af’ connecting the vertices i to the root
r, as follows. Letn; denote the number of clusters’®) that X U {r} intersects. Since we have defined
P_1 to be the trivial clustering consisting of a singleton setdach vertexn_ is simply | X U {r}|. Letj
be the smallest integer such thétis a subset of the cluster i; that containg'. In other wordsy; equals
landn; > 1forall -1 <i < j. Fixani, —1 < i < j. LetC be any cluster of; that intersectsX U {r},
and letC” denote the cluster oP;,, that containg”'. SinceT u-respects the partition hierarchy, it follows
that the length of the path from(C) to v(C’) in T is at mostuay***. Therefore, the cost df is at most
> 1<icy nipay o Letl = {i: (i=7) V(-1 <i<jATp:n; > 2P An;q < 2P)}. Forl € I, let
Ii={i:(-1<i<lA-3Fel:i<l <{)}. Wehave,

D nipoy™ <> 2ngpony™t <> 2ngpoy™ = O(nepary ™)
i€ly i€ly —1<i<t

We next place a lower bound onP@®X). Fix ani, 0 < i < j. By the cluster-valence property of
the hierarchy, any ball of radiug’ intersects at mos# clusters inP;. Thus, there are at least; /3]
vertices inX that are at pairwise distance at leasfrom one another. This implies thatr®( X) is at least
(Tn;/B] — 1)~ If [n;/B] = 1, we invoke the padding property which says there is at leastertex inX
that is at distance at least from the root, implying a lower bound of on OPT(X). Combining the two
bounds, we obtain a lower bound @fn;v*/3). Fori = —1, we also have a lower bound of ; since the
minimum edge-weight is 1. Noting that| = O(log n), we get the stretch &f (G) to be

‘ : i+1 41
; (Z S e ) _o (Z %) e (Z MafyeJrlﬂ/’yf) = Oy logn).

lel el el

3.1.1 A bottom-up divide-and-conquer algorithm

We first present a bottom-up divide-and-conquer algoritbncbnstructing a spanning trédé Though the
stretch achieved by the spanning tree is much weaker thahwehabtain by a different algorithm, it helps
develop our improved algorithm.

Theorem 5. For any graphG, given an(a, 3,~)-partition hierarchy, anO((a3)18 "2 log n)-stretch
USTis computed by Algorithinh 1 in polynomial time.

Proof. Given a graphG, the algorithm builds a spanning tré&€G) by iteratively building spanning trees
for each cluster in &, 3, )-partition hierarchy of7, in a bottom-up manner. We first show by induction
oni that for any cluster” € P;, the strong diameter &f(C) is at most{a3v)"*! — 1. The induction basis
directly follows from the strong diameter property of @n /3, 1)-partition.
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Algorithm 1 A basic divide-and-conquer algorithm
Require: Undirected grapli7, strong(a, 3, ~)-partition hierarchy{?; : 0 < i < k} for G
Ensure: A spanning tred’ of G
1: for leveli from 0 to k& do
2:  for clusterC in P; do
3: For an edge = (C, Cs) in G[P;_1[C]], let mg(e) denote the edge betwe€h to Cs in G that
has minimum weight. (Recall tha@,;_, [C] is the partitionP;_1, restricted to the sef'.)

4: Compute a shortest path trééfrom an arbitrary source vertex (Hg.
5: SetT'(C) to be the union ol sT(C') and{mg(e) : e € T'}.

6: end for

7: end for

8

. SetT' to beT' (V) (note thatl” is the lone cluster itPy).

We now establish the induction step. létbe a cluster inP; and letu andwv be two vertices irC. By
the hierarchy property;,' is the union of a set, say, of clusters inP;_;. SinceP; is an(«, 3, ~")-partition,
it follows that the strong diameter @f is at mostny?. Hence, there exists a pathbetweenu andv in C
of length at mostvy?. By the intersection property, any ball of radit's™! intersects at most clusters in
‘P:—1, and hence at mogt clusters inS. Therefore, the patl® intersects at most3~ clusters inS. Thus,
the diameter ofs is at mostuS~y. By the induction hypothesis, it follows that the strongméter of7'(C')
is at mosta3y — 1 + aBy((aBy)’ — 1), which equalgaBy)+t — 1.

Since (a87)"™ /(av') is at mosta* s+ 1y for k = log, n, it follows thatT (a*~!F+1)-respects
the strong partition hierarchy. By Lemrih 4, we obtain thdias stretch at mogd((«,3)!°%+ "y 5% log n),
completing the proof of the theorem.

O

3.1.2 Split and join: An improved top-down algorithm

The tree returned by Algorithinl 1 completely obeys the givartifion hierarchy in the sense that for any
clusterC' of the hierarchy,I’[C] is, in fact, a tree; that iS]" completely respects the connectivity of each
cluster of the hierarchy. In doing so, however, it pays a huaggt in the distances within the cluster. And,
in fact, this is unavoidable; one can construct examplegrohg partition hierarchies where obeying the
connectivity of each cluster in the tree will result in a sigant blow-up of stretch.

We now present a much more careful construction of a univ&tdner tree which does not enforce
the connectivity constraint within clusters; that is, we asgiven partition hierarch¥( to build a tre€l” in
which T'[C] may be disconnected. By allowing this disconnectivity witblusters, however, we show that
we can build a tree that-respects the given hierarchy for a much smallesissumingy is sufficiently large.
The pseudocode is given in AlgoritHmh 2. We have presentedlgwithm in a more general context where
the goal is to compute a forest rooted at a given set of porfawbtain a UST, we invoke the algorithm
with the portal set being the singleton set consisting ofdiue.

Before presenting our algorithm, we introduce some usedtdtion. For a partitior? of a graphH,, let
H[P] denote a graph in which the vertex sefftsand there is an edge’, C’) from clusterC to C’ if H
has an edge between a vertex(iinand a vertex irC’; the weight of the edgéC, C”) is the weight of the
minimum-weight edge betweeti andC’ in H.

Lemma 6. The outputf’ of the algorithm is a spanning forest, each tree of which amstexactly one vertex
in Sg.

Proof. The proof is by induction on the number of recursive calld®WST algorithm. For the induction
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Algorithm 2 UST: The split and join algorithm
Require: Undirected graplG = (V, E), a nonempty sef; C V of portals, a partition hierarch§f =
{Po,P1,-..,Pe}.
Ensure: A forest F' that connects every vertex Into Sg.
1. If the graph consists of a single vertex, then simply rethmvertex as the forest.

2: Foran edge = (C1, () in G[Py], letm(e) denote the minimum-weight edge fraf to Cy in G.

3: Let S denote the set of clusters that have a nonempty intersesttnSg.

4: for clusterC in S do

5. SetSctobeCnNnS.

6: end for

7: Compute a shortest path fordsiin G[P,] rooted atS.

8: for clusterC'in P, in order of decreasing distance frostin F do

o: if Cisaleafnode irF then

10: SetRANK (C') to be0, S¢ to be{tail of m(e)} wheree is the edge connecting to its parent inF.

11: else

12: Let MAXC bemax{RANK(C”) | C"is child of C'}. Setrav(C) to be a child ofC with rankMAXC.
SetHIGHWAY (C') to be a shortest path il from the head ofn(e) to the tail ofm(e’) wheree and
¢’ are the edges connectifgv (C) to C andC to its parent, respectively, iA. SetS¢ to be the
set of nodes iHIGHWAY (C).

13: if there exist at least two children 6fin F whose rank equalgAxc then

14: SetRANK (C') to beMAXC + 1

15: else

16: SetRANK (C') to beMAXC

17: end if

18:  endif

19: end for

20: for each clustet” in P, do

21:  ComputeF' (C) = UST(G[C], Sc, H[C])

22: end for

23: ReturnF to be the union ofJocp, HIGHWAY (C), Ucep, F(C), and{m(e) : e € F}.

base, we consider the case where the graph consists of a gartgx; in this case, the algorithm returns the
vertex as the forest, which satisfies the desired claim.

For the induction step, we note that the foréstreturned is the union of three sets: (a) union of
HIGHWAY (C) over all C in Py; (b) union of F(C) over all C in Py; and (c){m(e) : e € F}. By the
induction hypothesis, eachi(C) is a forest spanning’, each tree of which contains exactly one vertex of
Sc. We distinguish between two kinds of clusters.Clfis in §, then F(C) is a forest, each tree of which
contains exactly one vertex 8¢, N C. Otherwise F'(C) is a forest, each tree of which contains exactly one
vertex of HIGHWAY (C'). It thus follows that the union of (a) and (b) above gives &$bifor each cluster
C satisfying the following condition: it”' is in S, the forest contains a spanning forestCgfeach tree of
which contains exactly one vertex 8¢ N C; otherwise, the forest contains a spanning tre€ of

Finally, the edges of (c) connect the clusters nofito the clusters irS via a forest. Consequently,
adding these edges to the forest formed by (a) and (b) yietgmaning forest ove®, each tree of which
contains exactly one vertex iy;. O

Lemma 7. Let F' be the final forest returned by the algorithm. For any clusterwhen UST is called on
clusterC, either S¢ is a subset o or for any two vertices, andv in S¢, dp(u, v) is at mostde (u, v).



Proof. We first prove that for any clustér, the setS¢ is exactly one of the following: (ipg, if C'is G; or
(i) a subset ofS for the parent clustef” of C'; or (iii) a subset of nodes onr@GHWAY (C') constructed
when processing parent clustéf. The proof is by induction on the level of the hierarchy. Thsdcase is
trivial for C' being the whole graph. For the induction step, considet keye/ of the hierarchy, and let’
be a cluster inP;.

We consider two cases. In the first caSeintersectsS- whereC’ is the parent cluster faf'. In this
case,S¢ is set to the intersection @ and.S¢r as desired. In the second caégis disjoint from Sqr. In
this caseS¢ is simply the set of vertices iRIGHWAY (C'), again completing the induction step.

To complete the proof of the lemma, consider a cluétén P;, for somei. If S¢ is a subset ob, the
lemma trivially follows. If S¢ is not a subset of, then by the above claini- equals the set of nodes in
HIGHWAY (C). By our constructionHIGHWAY (C) is a shortest path 6. SinceHIGHWAY (C') is part of F,
it follows that for any two vertices andv in S¢, dr(u,v) equalsdc (u, v). O

Lemma 8. The rank of any clustef’ in partition P, is at mostog(|P|).

Proof. Let F' denote the shortest path forest@lﬁpg]. We show that for any cluste?, the rank ofC is at
mostlog(m¢ ), wheremc is the number of nodes in the subtreefofooted atC'.

The proof is by induction on the height 6f. The induction basis is immediate for the leavesFof
We now consider the induction step. For clustérlet r» denote the rank of the child with highest rank
among all children of”. Let Z denote the set of children @f that have rank:. We note thatn¢ is at
leastl + > .., mcr. Furthermore, by the induction hypothesis- is at leas®”, for eachC” in Z. We
consider two cases. |¢] is 1, then the rank of”' equalsr, which is at mostog(m¢) by the induction
hypothesis. I1Z| > 2, then the rank of” equals- + 1; sincem is at leastl +2-2" > 2"+1, the induction
step follows, completing the proof. O

Lemma 9. Let F' be the final forest returned by the algorithm.~If> logn, then for any clustet” in P;
and vertexu in C, dr(u, Sc) is at mosBa? 34"

Proof. We prove by induction on levélthatdy(u, S¢) is at most3a? 3+¢, with the base case beirig= 0.

In this case, the cluster and its portal set are the sameesimglertex set, trivially yielding the desired
claim. For the induction step, we consider- 0. Let C be a cluster of?;. For any vertex: in C, let C,,
denoteP;_;(u), that is, the cluster in partitio®;_; that containsu.

As in the algorithm, letS denote the set of clusters in the partition@fthat intersectSc. Let C,, =
Co,C1,...,CL, whereC), € S, denote the sequence of clusters in the unique path &Qrto S in Pg[]
which we refer to as the supergraph in the following argumétdte thatC; is the parent of”;_; in the
supergraph. By our argument in the proof of Theofém 5, we kiawk is at mosta/3y. We now argue
that there are at mogig n element; in the sequence such th@f is notrFav(C;;). To see this, we note
that if C; is notFAV(Ci41), thenRANK(Cj41) strictly exceedRANK (C;). Since the rank of any cluster is
at mostlog n by Lemmd_8, the desired claim holds.

This sequence of clusters induces a path fiota S, which consists of (a) the connecting edges in the
supergraph, (b) the highway in each clust&in the sequence, (c) for each clustérsuch thaiC;_; is not
a favorite ofC;, the unique path itF'(C;) (and, hence, irF") that connects the head of the edge connecting
Ci—1 andC; to S¢,. Since the number of clusters in the sequence is at m@st and the highway in each
cluster is a shortest path, the total length of the paths)iar(d (b) is at mos2a?3+*. The number of clusters
in (c) is at mostog n, and by the induction hypothesis, the length of each path)iis(at mosBa?5y 1.

We thus have,
i—1

dp(u,Sc) < 20°8 +2logna®sy

3By



for v > 2log n, thus completing the proof of the lemma. O
Lemma 10. For any clusterC in P;, and vertices:, v in C, dr(u, v) is at most7a? 3.

Proof. By Lemmd9dr(u, S¢) anddr (v, Sc) are both at mosia?3+¢. By LemmdY, for any two nodes
andy in Sc, dr(z,y) is at most the strong diameter@f which is at mosty?. Putting these three distances
together, we obtain thaty (u,v) is at mostra?5y". O

Theorem 11. Given an undirected grap&y, portal setS¢ = {r}, wherer is an arbitrary vertex of=, and
(o, B,7)-partition H of G' as input, Algorithni 2 returns a® (a2 3%~ log n)-stretch UST.

Proof. By Lemmal®, the outpuf’ is a spanning forest, each tree of which contains exactlyvenex of
Sa. SinceSg has only one vertex, the foreBtreturned is a tree. By Lemmal10, for any clugtém any
partition at leveli of #, and any two vertices andv in C, we havedr(u,v) is at most7a?3+". It thus
follows thatF (7a3)-respectsi. By Lemmd4, we obtain that has stretchD(a? 3%y log n). O

3.2 From universal Steiner trees to strong partitions

We show how to construct partitions with low strong diameted low cluster-valence for all graphs given
an algorithm to construct low-stretch USTsfor all graphs.

Theorem 12. Given an algorithmA to construct as-stretch UST for all graphs in polynomial time, we can
obtain a polynomial-time algorithrd’ to construct an(O(c2), O(o), ~)-partition for all graphs and all
~ > 0 which uses4 as a black box.

Proof. Assume we have algorithmd that finds as-stretch UST for all graphs in polynomial time. The
algorithm A" works as follows. Given grapt’ = (V, E, w), it constructs grapliz’ = (V’, E',w') where
V' =Vu{r}, E' = EU{(r,v) : v € V} andw’ extendsw to E’ by simply assigningv((r,v)) = 2o+ for

all v € V. Herer is an additional vertex not ifr. A" invokes.A with graphG’ and root vertex as inputs.
Let T be the tree rooted atoutput by.4 andTy, ..., T, be the subtrees af connected directly to the root
r by single edgesA’ simply outputs the partitio® = {C1, ..., Cy}, whereC; is the set of vertices iff;.
We now argue thaP is a(0(c?), O(a), y)-partition of G.

Lemma 13. The strong diameter of eacl} is at mostdo (o — 1)~.

Proof. Fix a C;. It is enough for us to prove that the height of the t#gds at most2o(o — 1)y as we
can reach any vertex i6; from any other while remaining withi; by going through the root of;.

Assume not. Then there is a vertexn treeT; whose distance in this tree from the rootlfis more than
20 (0 —1)v. Consider the grap” with the root vertex: for which A returnedl’. CosT(TY,,) is more than

207 + 20 (0 — 1)y = 2027, while OPT({v}) is 20+y. Thus COPSTT((%’)}) > o, which contradicts the fact that
T is ac-stretch UST foi&’. O

Lemma 14. For any vertexv € V, B(v, ) intersects at moslo clusters ofP.

Proof. The proof is by contradiction. Suppose there is a vettesuch thatB(v,~) intersectsd > 20
clusters ofP. We select one vertex from each of thesdifferent clusters such that the selected vertices lie
in B(v,~), and call this sef. Now consider the grap&’ with the root vertex- for which A returnedT".
Since each vertex i lies in a differentT; in 7', CosT(Ts) is at leasoyd. On the other hand, €x(S) is

at most2oy + dy = (20 + d)~y asv is at a distanc@s+y from r and each of the vertices inS are at most a

COST(T(wy) _ 204

distancey away fromv. Thus OPT(v)) — Zotd > ¢ by our choice ofi, which again contradicts the fact

thatT is ac-stretch USTfoiGG’. O
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The theorem follows from the above two lemmas. O

4 Partition hierarchy for general graphs

In this section we present our algorithm for obtaining aipart hierarchy for general graphs. As mentioned
in sectior 2, we start the hierarchy at level by defining?_; as the trivial partition where every vertex is
in its own cluster. Our main result is the following.

Theorem 15. For any graphG and any integet > 0, a hierarchical((% + )4k — %, kn%,fy)—partition
can be constructed in polynomial time for> 1((3 + €)4*~! — 2). In paricular, settingk = [/logn] , we
obtain a hierarchical(20(vleen) 20(vlogn) 90(Vieen))_partition for any graph in polynomial time.

Algorithm.  Fori = 0,..., [log, WL we build theith level of the hierarchyp;, after building

the previous levels. Assuming that the lewel 1 partition ?;_; has been constructed, we constrixtas
follows.

Clusters ofP; are formed in successive stages starting from sag&/e assign a rank to each cluster
based on the stage in which it is created: a cluster formethigeg gets the rankj. (All the clusters of
level —1 are assigned the raik) We will denote the set of clusters of rajkof level:) by SJ’ A cluster of
a higher rank is formed by merging clusters of lower ranksalhtimes, we maintain a partitioning of the
graph, i.e., we guarantee that each vertex of the graph taioewl in exactly one cluster of level

In stage0, we simply add all the clusters @%;_; to Si. Forj > 1, stagej works in two phases as
follows. In the first phase, we repeatedly look for a vertertained in a cluster of rank at mogt— 1 such
that the ball of radiug/’ around it, B(v,~*), intersects more than* clusters of rank precisely — 1. If
we find such a vertex, we merge the cluster containingwith all the clusters of rank — 1 that B(v, v*)
intersects. This newly created cluster is assigned the jamid added tcS;i while all the clusters that were
merged to form it are deleted from their respectﬁgefs. The first phase ends when we can no longer find
any such vertex.

In the second phase, we repeat a simlar procedure for v@&ciicgained in clusters of rank As long
as we can find a vertexin a cluster of rankj such thatB(v, 7*) intersects more than* clusters of rank
4 — 1, we merge all these clusters of rafik- 1 with the cluster containing to form a new cluster of rank
We include this new cluster |ﬁ]Z and delete all the clusters that were merged to form it fragir tiespective
S;l,’s. The second phase, and also the stagends when we cannot find any such vertexand the next
stage begins.

If no new cluster gets formed in the first phase of a stage, dhstouction of level of the hierarchy
finishes andP; is defined as simply the union of all the non emﬁ‘;&e.

Remark. Although the two phases of a stage are quite similar and ogatrbe tempted to do away with
this particular ordering of mergings, the naive approacthevit the ordering does not work. Having a
careful order in which mergings are carried out enables usmirol the growth of the strong diameter of
the clusters. To see this, consider a cluster formed in thenskphase of some stagelt contains a unique
cluster that was formed in the first phase of stageall it the core). Our ordering ensures that only the
vertices in the core can lead to mergings in the second pHestage;. This is because for any vertex
outside the coreB(v, ") intersects at mosi* clusters of rankj — 1, otherwise the first phase would not
have ended. Thus the mergings of the second phase canredsadhe diameter much as the new vertices
are always “close” to the core.

We now analyze the algorithm, which is presented in psewmaoAlgorithm3. We have the following
claims that bound the size and diameter of the clusters ef lev
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Algorithm 3 Algorithm to obtain a partition hierarchy for general graph
Require: A weighted graptG = (V, E, w), integerk, v > %((% + )4k — %)
Ensure: A hierarchical(a = (3 +€)4*~! — 2,8 = kn’ , ~)-partition of G
1: Define’P_; to be the trivial partition where each vertexofis in its own cluster,
ie,Po1={{v}:veV}
2: for leveli from 0 to [logw(mﬂ do

«

3 S(Z) =Pi_1.

4 Si=0foralll <j<k-—1.

5 g+ 1

6: while j < kandS! ; # () do

7: while there exists a such that € C, for someC, € SJZ andj, < j,
andB(v,+') intersects more than* clusters fromsS’_, do

8: DeleteC, from 5% ,i.e.,S; =S \ {C,}.

o: Delete all the clusters cﬂ’;_l that B(v,~") intersects from it i.e.,

=8 \{C:CeS8_ABv,")NC#0}.
10: MergeC’, and all the clusters deleted frofj_, and add to5%, i.e.,

St = StUC, U (Upex C), whereX equals{C € S}_, : B(v,7") N C # 0},
11: end while

12: while there exists a such that € C, for someC,, S;
andB(v,+') intersects more than* clusters fromsS’_, do
13: DeleteC,, from 5%, i.e., S7 = S5\ {Cy}.
14: Delete all the clusters cﬂ’;_l that B(v,~") intersects from it i.e.,
=8 \{C:CeS8_ABv,7)NC #0}.
15: MergeC’, and all the clusters deleted frofj_, and add to5%, i.e.,

Si = 5100, U (UpeyC), whereY equals{C € Si_, : B(v,7") N C # 0}.
16: end while
17: j=Jj+L
18: end while
19: P =UZhtS.
20: end for

21: Output(Pg, ..., P .
put(Po [logw(DlA(ll/l(G)ﬂ)

Lemma 16. The size (number of vertices) of a cluster of rgri any level is at least?.

Proof. We prove the claim using induction gn Forj = 0, the claim follows trivially as each cluster of
any rank has size at least For the induction step, observe that a cluster of rackntains more thank

. . j—1 . . .
clusters of rankj — 1 which all have size at least’ = by the induction hypothesis. O

Corollary 17. The rank of any cluster of any level can be at niost 1.

Proof. From the previous lemma it follows that at any level there barat most—2+ = n* clusters of
n k

rankk — 1 which immediately implies that no cluster of rahlgets formed. O

Lemma 18. The strong diameter of every cluster of levahd rank; is at mosty’((3 +¢)47 — 3), provided
TS E N T )
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Proof. We prove the claim by induction ahandj. The case foi = —1 is trivially true. For the case of
1 > 0, assume the claim to be true for every cluster of lével. Since a cluster of levéland ranl0 is simply
one of these clusters, its diameter is boundedW((% +e)4k1 — %) by the induction hypothesis and the
above corollary. This is at most((3 + €)4° — ) = 'e by our assumption that > 1((3 + ¢)4%~1 — 3)
which proves the claim for levéland ranko.

Now assume that the claim is true for levelnd all rank at most — 1, and consider a clustér at level
¢ and rankj. There are two cases to consider depending upon whétheas formed in the first or second
phase of stagg.

If C' was formed in the first phase, it is the union of the clustetaiamg v and all the clusters of rank
j — 1 that the ballB(v,~) intersects, where is contained in a cluster of rank at mgst- 1. By the
induction hypothesis, the strong diameters of all thessteis which were merged to for@i are bounded
by 7'((3 + €)4/~! — ). This implies that any vertex i@ is at most a distance’((4 + €)47 =1 — 3) + 4
from v. Thus the strong diameter 6fis at mos2y'((3 +€)47 1 — 3 +1) < 4'((3 + €)4/ — %) asj > 1.

If C was formed in the second phase, it implies that there wassgec{ll’ of rank j which was formed in
the first phase of stageand got merged with other clusters to fo€frin the second phase. By the argument
above, the strong diameter 6f was at mostzfy"((é + )47t — %) + 1). Furthermore, we know that any
vertex inC either comes fron€” or from some cluster of rank — 1 which intersects the balB(v, ") for
a vertexv contained inC’. From the above facts and the induction hypothesis, we adedhat the strong
diameter ofC is bounded bRy ((5+€)47 1 —2)+1)+27' + 27 ((3+€)47 1 —2) =~ ((3+e)4/—2). O

Now we are in a position to prove Theorén] 15 which gives thétjmar hierarchy for general graphs.
Proof of T: he bound on cluster diameter is given by Lenimia 18. For thesettion bound, observe that for
any leveli of the hierarchy and any vertex the ball B(v,~*) can intersect at most* clusters of a given
rank. This implies thaB(v,~") can intersect at mogtn® clusters in total from level as every cluster has
rank betweer) andk — 1. O

Corollary 19. A 20(Vlegn)_stretch universal Steiner tree can be computed in polyabtinie for any undi-
rected graph.

5 The Cluster Aggregation Problem

In this section, we define the Cluster Aggregation problerncivarises when building partition hierarchies
for minor-free graphs (see Sectioh 6). Our problem fornta&nd algorithm, however, apply to arbitrary
graphs and may be of independent interest. Indeed, oueclaggregation algorithm is useful for building
other strong-diameter based hierarchical partitions ajiplications to distributed computing [10].

Definition 20 (Cluster Aggregation)Given a graphGG = (V, E), partition P of G, setS C V of portals a
cluster aggregatiors a functionDEST: P — S. The functiorDEST naturally induces a new partitio® =
{Uc.pEST()=s C | s € S} that coarseng. For each vertex in V', we define theletourdTRpesT(v) for v
underpesTto be the difference between the distance framsS in G and the distance fromto DEST(P(v))

in subgraph of induced by the cluster i@ that containsy; i.e., DTRpesT(v) = (dg|gu) (v, DEST(C)) —
d(v,S)). We define the detour ofESTto bemax,cy DTRg(v). The goal of the cluster merging problem is
to find a cluster aggregation with minimum detour.

Our algorithm for the Cluster Aggregation problem proceed® (logn) phases. Each phase has a
number of iterations. Each iteration aggregates a substieotlusters irfP and assigns the sanbEST
value for each of them. The selection of clusters in a pddiciteration is based on how shortest paths
from these clusters t6 proceed through the graph. The interaction of these shqgréths is captured by
means of auxiliary directed graph. For any directed grApand setA of vertices ink, let ing (A) (resp.,
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outx (A)) denote the set of vertices that have an edge into (resm) fiay vertex inA. The pseudocode for
our algorithm appears in Algorithnd 4.

Algorithm 4 The Cluster Aggregation algorithm
Require: An undirected grapld-, partitionP, setS of portals.
Ensure: A cluster aggregatioDeST
1: For each seiX in P, let px denote a shortest path froii to .S, and letPx denote the sequence of
clusters visited i x .
2: For a clusterY” that appears irPx, define thepositionof a clusterY in Px to be/ if the number of
distinct clusters thaPx visits before first visitingy” is £ — 1.
3: Construct an auxiliary directed graghwhose vertices are the clustersff For verticesX andY, D
has an edge fronlX to Y if Px containsY’; furthermore, we label the edd&’, Y) with the position of
Y in Px.
4: Seti to be0 andVj to be the set of vertices ib.
5: repeat {Begin Phaseé}

6: Let D; denote the subgraph @f induced byV;. Let E; denote the set of edges ip;. SetV;,; to ()
andD to D;.
7:  repeat
8: Let v be an arbitrary vertex iD.
9 if i = 0then
10: SetDEST(v) to be the vertex it nearest ta;
11 else
12: SetDEST(v) to beDEST(z) wherex is a vertex inV;_; — V; and the label ofv, z) is the least
among all edges fromto V;_; — V;.
13: end if
14: Let T denote{v} U outs({v}).
15: repeat {iteration}
16: For eachu in D — T, and each edgéu, w) in D, remove(u, w) from D if there exists an edge
(u,z)in D with z € T such that the label dfu, z) is smaller than the label @i, w).
17: For eachu ininz(T') U outs (T Uing(T)), setbEsT(u) to be equal tdEST(v). SetT equal to
T Uing(T) Uouts(T Uing(T)).
18: until [ing(T)| < |T7.
19: SetViy1 to Viyq Uing(T) and removel” Uin5(T') from D.

20: until D is empty
21:  Increment; {End Phasé}
22: until V;is0

We now show that Algorithm]4 solves the Cluster Aggregatioobfem for a given partition? with
a detour ofO(log?(|P|)MAXDIAM (P)). We first establish the following simple lemma that bounds th
number of phases.

Lemma 21. If V; andV;; are the set of vertices i; and D, ;| at the start of phaséandi—+1, respectively,
then|Vii4| < [Vi]/2.

Proof. We first note thal;; C V;. Furthermore, in each iteration of tligh phase, when we addzgrQT)
to Viy1, [ing(T)] is less tharT'|, whereT' is a subset oV; — V1. Thus,|V;| — [Viy1| > [Vii1], yielding
the desired claim. O

For eachr; in S, let C(r;) denote the union of the clustels such thaDEST(X) = r;. Note thatC'(r;)
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may vary as the algorithm progresses.

Theorem 22. The detour for any vertex in G in the cluster merger returned by Algorithim 4 is at most
log?(|P|)MAXDIAM (P).

Proof. Let m equal|P|, the number of clusters iR. Fix a portalr in S. We will show that at the end of
iterationj of phase, the following holds:

e ForanyZ in P, if DEST(Z) equalsr, then for each vertexin Z, there is a path i&z[C(r)] from v to
DEST(Z) of weight at mos®((i — 1) log(|P|) + j)MAXDIAM (P) more thard(Z, S).

Before we establish the above claim, we show how the statieofi#ime theorem follows. By LemmaP1, the
number of phases is at mdsg m. Furthermore, the number of iterations of the inner repagp in each
phase is at modbg m since the size of at least doubles in each iteration. Therefore, at ternunathe
detour for each cluster iR is at most(log® m)MAXDIAM (P), yielding the desired claim.

Consider an iteratiop of phase. In the following, T andD refer to the variables in the above algorithm
at the start of the iteration. The set of clusters for whichseetheDeST values in the iteration is given by
ins(T") Uouts (T Uing(T)), whereT' corresponds to the value of the variable at the start of #ration.
Every cluster inl’ shares the sameeST value, sayr. By the induction hypothesis, at the start of iteration
j of phasei, each clustel” in the set of clusters witbesT equal tox has a pattyy in G[C(z)] from Y to
x of weight at mosR((: — 1) logm + (j — 1))MAXDIAM (P) more thard(Y, S).

Consider a verteZ in in5 (7). SinceZ is in in5(T'), its pathpz contains a cluste¥” in T'. Let p'
denote the prefix of the pathy that connectsZ to the first occurrence df in pz; and letp” denote the
remainder of the pathz. We note that every cluster that appearg/iis in out;({z}), and is, hence, also
in outs (7' U ins(T)). Thus, at the end of iteration p’ is fully contained inG[C(x)] the subgraph of~
induced by the set of vertices wittesT equal tox. The weight ofp; equals the sum of the weights gf
andp”. The weight ofpy is at most the weight gf”. Thus, the path fron¥ to = consisting ofy’, followed
by a shortest path toy in Y, and followed by the pathy is entirely contained id-[C(z)] and has weight
at most2((i — 1) log m + j)MAXDIAM (P) more than the length gfz. (This is because the weight of any
shortest path iy is at most MaxDiaM (P).) This completes the induction step of the proof. O

6 Partition Hierarchy for Minor-free Graphs

A weighed graplt: is H-minor free if zero or more edge contractions@wuaoes not give a graph isomorphic
H. Minor-free graphs are special caseskgbath separable graphs. A graphis k-path separabld2] if
there exists a subgragh called thek-path separatorsuch that: (i)S = S, U Se U --- U .S, where for each
1 <4 <, subgraphs; is the union ofk; paths where each path is shortesGin U1§j<i S; with respect to
its end points; (i), k; < k; (iii) either G \ S is empty, or each connected componentof S is k-path
separable and has at mest2 nodes.

Thorup [31] shows that any planar gra@hs 3-path separable, where all paths in the separgtozlong
in S1, that is, they are shortest pathsGf Abraham and Gavoilleé [2] generalize the result to &wminor
free graph, for fixed sizé7, is k-path separable, for sonie = k(H), and thek-path separator can be
computed in polynomial time. Interesting classegiominor free graphs are: planar graphs, which exclude
K5 and K3 3; outerplanar graphs, which excludeé, and K 3; series-parallel graphs, which excludg;
and trees, which exclud&s. They also show that the path separator can be computedyingrolal time.

6.1 The algorithm

Consider now an arbitrary weightdd-minor free graplG, for fixed sizeH. (You may also takés to be an
arbitrary k-path separable graph.) We will construct a hierarchfeal3, )-partition of G which is based
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on forming clusters around the path separators.of he concept of creating clusters around path separators
has been introduced by Busehal. [11] in the context of sparse coversfnpath separable graphs. Here,
we extend that technique to hierarchical partitions.

We build the hierarchical partition bottom up by coarserihggters. Suppose we are givefva s,y ~!)-
partition;_;. We describe how to build @, 3,~*)-partition P;, such thatP;_; is a refinement oP;.

The first clusters of partitiorP; are formed around &-path separator off by appropriately merging
clusters ofP;_; close to the separator paths. We then remové:tphath separator and repeat the clustering
process recursively to each residual connected compametiitho nodes are left in the graph.

Consider a connected compondntvhich appears during the recursive decompositiorolLet .S =
S1USyU--- U S be the path separator &. We process the paths §fin sequence starting from the paths
in S1, then the paths ii$5, and so on. We maintain the new formed clusters in a\§eivhich is updated
every time we process a new path.

Consider now the path € S . Let ¥ be the connected component®f |, ., ,. Sy in whichp resides.
DenotePi‘Ii1 C P;_; theintegral clusters ofP;_; which are completely contained #. We define the
following subsets4 and B of ;¥ ; such that.A contains all clusters oP;” ; not yet included i\ within
distance2’ from p in ¥; B contains all the clusters of which are adjacent to clusters M (whereN are
the clusters which have been formed so far form paths preddssforep).

Let ¥’ be the sub-graph induced by (note thatl’ may not be connected). Combine the clusterslin
by invoking the cluster aggregation algorithm of Secfibndbeach connected component®f We define
two sets of noded, andU in ¥’ which will serve as portals around which new merged clusiglisbe
formed. Setl contains thdeadersof pathp, which is a maximal set of nodes inn ¥’, such for any pair
u,v € L, dy(u,v) > +*, andu andv cannot belong to the same cluster4f SetU contains one arbitrary
node from each cluster iB. Combine the clusters iil by invoking the algorithm of Sectidn 5. to each
connected component & for the induced clusters frotd and the induced portal nodesinU U.

Let R contain all resulting clusters from invoking Algoritim 4.eWéan writeR = Z,, U K, whereZ,
consists of clusters that contain a nodeLgfand C,, consists of clusters that contain a nodelof Each
clusterX € K, \ Z, merges further with at most one arbitrary adjacent cluster ), for which there is
an edge(u,v) € E(V) such thaw € X, v € Y, andv ¢ ¥'. We insert the merged cluster frod andY
back to/V. The returned set of clusters from processing pagW = N UZ,.

The algorithm is initially invoked withb = G and NV = (). The resulting partitiorP; is the final\ that
we obtain after we recursively process all the path separaid-.

6.2 The analysis

Consider a minor-free grapfl with n nodes. The recursive process of removing path separatbresia
decomposition tred” of G. Each node € T corresponds to a connected component;pfvhich we will
denoteGG(t). The rootr of T' corresponds t67, namely,G(r) = G. DenoteS(¢) the path separator for the
respective grapli(¢). If G(¢) \ S(t) = 0, thent is a leaf ofT". Otherwise, for each connected component
® € G(t) \ S(t) there is anodev € T such thatw is a child oft andG(w) = ®.

Consider a node € T'. Each patlp € S(t) has a respective processing ordef§|i), denotecrder(p),
which is an integer between 1 akd The set ofpreviouspaths ofp, denoted@(p), is defined to include
those paths i (¢) which have smaller order, or the paths in the ancestots of

Q(p) = {q € S(t) : order(q) < order(p)} U{q € S(w) : wis ancestor of}.

According to the algorithm, after a new cluster is createtigwa path is processed) it may get larger
when new clusters merge into it (when subsequent paths acegsed). Once a cluster is created it can
never shrink or be removed. Consider a pata S(t), for somet € T. We say that &luster belonggo
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Algorithm 5 Component clustering in minor-free graph

Require: Connected componext of minor-free graph, strong(a, 3,v'~1)-partition P;_; of G, set\/
with coarsen clusters @®;_.
Ensure: Coarsening thé;_; clusters in®, which are then inserted iN’.
1. LetS =5, US,U---US; be ak-path separator cb.
2: for x from1toldo
3: for each pattp € S, do
4: Let ¥ be the connected component®f, (J, ;. Sy in whichp resides.
5 LetPY, = {X € P;,_; : X C V(¥)} be theintegral clusters ofP;_; which are completely
contained within¥;
6: LetA = {X € PY, : (du(X,p) < 29)) A (X NV(N) = 0)} be the all integral clusters of
which have not yet been coarsen (do not belonydand are within distanc2y’ from p in .
7: LetB={X € A:3(u,v) € E(V),u € X Ave VN)U(V(¥)\V(PY,)}, contains all the
clusters of4 which are adjacent to clusters.\ or adjacent to non-integral clustersidn
8: Let ¥ = ¥ NV (A) be the sub-graph of induced by (A) (note thatl’ may not be connected).

9 Let L be theleadersof pathp, which is a maximal set of nodes#m¥’, such for any pait, v € L,

dp(u,v) > ~*, andu andv cannot belong to the same clusterf

10: Let U be the set that contains one arbitrary node from each clumstgr

11: Combine the clusters il by invoking Algorithm[4 to each connected componentffor the
induced clusters from and the induced portal nodesinu U.

12: Let R be the union of the resulting set of clusters from Algorifim 4

13: Write R = 17, U K, whereZ, consists of clusters that contain a nodelofand kC,, consists of
clusters that contain a node ©ft

14: for each clusteX € K, \ Z,, do

15: X merges with at most one arbitrary adjacent cluster N such that there is an edge, v) €

E(V),ue X,veY,andv ¢ V.

16: We insert the merged cluster from andY back toN.

17: end for

18: UpdateN' = N U Z,.

19: end for

20: end for

21: for each connected componéfte ¥ \ S do

22:  Invoke (recursively) Algorithnal5 with parametéels P;_1, and .
23:  UpdateN to be the result of the recursive invocation.

24: end for

25: Return/\V.

p if it contains a leader op. It is easy to verify that a cluster iR; does not belong to more than one path
(we will actually show in Lemmp 28 that each clustefinbelongs to exactly one path). L&f denote the
clusters that belong toimmediately aftep is processed. Lefp denote the final clusters ofin P;.

In the analysis below, assume that «, and definex’ = c¢; \k log n, for a constant;. The parameter
A denotes the impact of the detour of Algorithin 4, on the rafithe cluster diameter before and after the
merger merger. From Theordm 22= O(log? n).

Lemma 23. In ¥’ every cluster of4 is within distance at mosty’ to a node inL U U.
Proof. Consider a clusteK € A. Letu € X be the closest to a nodec p in graphW. From definition of

A, dy(u,v) < 27", Letq be a shortest path i connectingu to v.

17



If ¢ uses a cluster outsidé, then that cluster must be either a cluster\inor a non-integral cluster
of P;_;. Therefore,q has to cross a cluster i. Let/ ¢ V(B) N U. Sinceay’™! < ~¢, dyr(u, ) <
29! + ayi ! < 340,

Consider now the case wheyaises only clusters id. Let p’ be the subpath aof which consists of the
nodes within distance® from u, with respect tol.

Suppose thap’ uses only clusters inl. Suppose, for the sake of contradiction, that none of thesiod
in p’ is a leader inL. LetY € A be the cluster that contains We have that the closest leader:utdif it
exists), must be at distance greater tharirom v. Since the diameter df is at mostay’~! < ~¢, then
L is not maximal because is a valid possible leader. Thereforg, must contain a leader € L. Thus,
dyr(u, l) < 298+~ < 377,

If p’ doesn’t use a cluster id, then it has to use a cluster h By selecting a nodé € V(B) N U, we
getdy: (u, ) < 29 + ay' =1 < 34% O

Lemma 24. Every cluster oﬁp has diameter at most'~".

Proof. From Lemmd_ 23, each cluster j# is within distances = 3+’ from a node inL U U. Since, the
diameter of each cluster id is bounded byxy~! < 4% < o, Algorithm[4 produces new clusters around
the nodes inL. U U, so that each new cluster has diameter at mesk 3\y*. Thus the cluster i@, have
diameter most = 3\y'. Similarly, the clusters iiiC,, have also diameter at mast

The clusters irZ(p) may increase in diameter, when they merge withclusters from some pait
processed after. This pathg may belong ta5(t), or it may belong te5(w), wherew is a descendant in the
sub-treel” rooted int.

Each pathy € S(t) with order afterp, increases the diameter Bf by at most2¢, since newly merged
clusters from/C, add at most one layer of clusters irifp, and any two clusters in the layer can reach each
other through the previous instanceZf Thus, when we process the last pattsift), we have added at
mostk layers, and the increase in the diameter of the Agwill be at most2¢k.

Similarly, any node in the sub-tré€, contributes at most new layers tdZ,,. However, all the nodes of
T’ in the same level contribute in totallayers, since clusters in them are formed independent of ether.
Since the sub-tre€ has at most + log n levels (includingt), we have in totak(1+log n) additional layers
in Z,, contributing increase at ma&{k(1 + logn) to the diameter of (p). Therefore, the diameter @‘(p)
is at mos¢k(1 +logn) + ¢ < c1Akv* log n, for some constant;. O

For a pathy € Q(p), letZ; be the clusters of just before processing path andZ; be the clusters of
a pathg just after processing path Let Z'(p) = U,cq(p) Zg @andZ"(p) = Uyeq(p) Zo- DefineZ(p) =
Z, U Z"(p). For any set of node¥ let I'(Y") denote the set of clusters #_; which are within distance
2+ from p, namely,l'(Y) = {X € P;_1 : da(X,Y) < 2v'}.

Lemma 25. I'(p) C Z(p).

Proof. We prove the claim by induction ojd)(p)|. For the basis casép(p)| = 0, pathp is the first to be
processed by the algorithm with(p) = 0. ThereforeI'(p) = A(p) = Z, = Z(p).

Assume now that the claim holds f6R(p)| < o. Consider now the cas€)(p)| = o + 1. From
induction hypothesis, for each pathe Q(p), I'(q) € Z(q). Let NV be the new formed clusters of the
algorithm just before we procegs SinceZ(q) C N, we have that'(¢) C V.

First, we show that just before we process pathe cluster of\/ that intersect can only be those in
Z'(p)NN. Suppose, for the sake of contradiction, that there is aerliés € '\ Z’(p) which intersectsp.
ClusterX must contain a nodg ¢ V (), since any integral cluster i can only have been built by a path
in Q(p) NSy, wherep € S. Take anode: € X NV (¥). Any path fromu to y must cross one of the paths
in Q(p) whose removal frondz contributed to the formation of. However, from induction hypothesis all
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the nodes in the paths @@(p) belong to clusters it£’(p). Consequentlyy cannot exist, and hence neither
doesX.

Next, we show that any non-integral clusiére P;_;,Y ¢ P ,, which intersects is used in a cluster
of Z'(p). Note thatY” must have be crossed by at least a pathQ(p) whose removal frond: contributed
to the creation of?. Since the diameter df is bounded by~ < +%, we have that” € T'(q) C Z(q).
ThereforeY € Z/(p).

We continue now with the main claim. L&f € I'(p). There are the following possibilities:

e X € PY : we examine the following sub-cases.

— X € N: Since before processingonly clusters inZ’(p) intersect¥, X € Z'(p). Therefore,
after processing, X will remain in the same cluster as & (p). Thus,X € Z(p).

— X € A: from the algorithm, after processingthere are two possibilities. First possibility is
X € I,and henceX € Z(p). Second possibility is{ € K, \ Z,, and X is either (i) adjacent to
some node inV, or (ii) adjacent to some non integral clusterdin In case (i)X merges with a
cluster inA\/, and since only clusters &’ (p) can be in¥, we immediately have& € Z(p). In
case (ii), as we have shown above any non-integral cluseemiember of2’(p) C A/, and thus
X merges with a cluster a&’(p), which implies thatX € Z(p).

e X ¢ PY,: Then,X must contain a node ¢ . If X intersects¥, then we have shown above that
X € Z'(p), and thusX € Z(p). If X does not intersect, any path fronp to X must intersect a
pathg € Q(p), since otherwiseX wouldn’t reside in a different component. Sinée(p, X) < 2+¢,
we have thatl; (¢, X) < 2+'. Therefore,X € I'(q) C Z(q). ConsequentlyX € Z(p).

O
Lemma 26. Any ball of radiusy’ in G intersects with at moga/ + 3 clusters offp.

Proof. We start by showing that we only need to consider balls ofusgli in ¥. Let G’ = G\ V. LetY
denote the set of nodes @1 such that each € Y is adjacent to a node . It must be thal” C V(Q(p)),
whereV (Q(p)) denotes the nodes of all the pathsiiip). Let F be all the clusters i’ ; which are at
distance at mosty’ from Y, namely,F = {X € P, : dy(X,Y) < 24}. Clearly, F = P¥ N T(Y).

From Lemmd 25, each cluster INY") has been used in the clusters of some patty @f) that goes
throughY". Therefore, the clusters ifif are all used in clusters of paths@p). Consequently, the clusters
of p, Z,,, cannot possibly belong ifF, namelyZ, N 7 = (. When we further process pathsinin node
t (paths ordered after in S(t)), and then descendants mfwe have that each of the clusterslingrows,
however they will never intersedt. Thus,fp NF=0.

Consequently, any cluster ﬁ; is at distance at leagty’ from G’. Therefore, any ball of radiug’ that
intersects clusters d?p has to be a sub-graph @f. Thus, in order to prove the main claim, we only need to
focus on graphb.

Consider a ballB = B(u,~%) within ¥. Suppose tha¢ > 2 clusters offp intersectp. Pathp is a
shortest path i, Each cluster irfp has a distinct leader ip. The leaders are at distance at legsapart
in p. Therefore, there are two clusters intersectifiigvhose respective leaders,and/,, are at distance at
leastdy (¢1,¢2) > (¢ — 1)~*. Ball B provides an alternative path betwegnand/, throughu, with total
length is bounded byiy (¢1,¢2) < dg(¢1,u) + dy(u,f3). Since the cluster of; intersectsB, we obtain
from Lemmd2# thatly (¢1,u) < o’y + 4 = (/ + 1)5*. Similarly, dy (u, 2) < (/ 4+ 1)+*. Therefore,
dy(l1,0) < 2(a’ + 1)4%. Therefore, it hasto be¢ — 1 < 2(a’ + 1), or equivalentlyg < 2o’ + 3. O

Lemma 27. Any ball of radiusy’ in G intersects with at mosta’k log n clusters ofP;, for a constant.
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Proof. Consider a node € G and the ballB = B(v,~*). Each nodey € G belongs to a patp € S(w),
of some path separatéi(w), w € T, in the recursive decomposition 6f. Clearly, B(v,~") C T'(p). From
Lemmal2Zb, we have tha® C Z(p). SinceZ(p) consists only of clusters that belong@® = p U Q(p).
All the paths inQ)" appear in path separators/Bfbetween the root and. Since the depth df’ is at most
1+ log n, the total number of path separators involvedjinis at mostl + log n, each contributing: paths.
Therefore|Q'| < k(1 + logn).

From Lemmd26B intersects with at most2a’ + 3) clusters of each path € Q'. Thus, the total
number of clusters oP; intersectingB is at most(2a’ + 3)k(1 + logn) < cea/klogn, for a constants,,
as needed. O

Lemma 28. P; is a(a’, caa’klog n, v*)-partition.

Proof. Every node inGG belongs to a path in some path separator used by the algorittom Lemma 25,
each node in a path must be a member of some cluster which either belongsaoto a pathy € Q(p).
Consequently, each node= G will appear in some cluster @f, of some patly. ThereforeP; is a partition
of G.

From Lemmag 24, the diameter of aﬁyis bounded by//~¢. Therefore, the diameter of each cluster in
P; is at most’~*. From Lemma 27, each ball of radigéintersects at most o’k log n clusters ofP;. [

Theorem 29. We can obtain a hierarchicdlO (log® n), O(log” n), ©(log® n))-partition of minor-free graph
G in polynomial time.

Proof. From Lemmd_28, sincé = O(1), we can build a hierarchy of clusters by choosing= o =
O(log® n). Further, for each level we can create the necessary padding around a rootnedg of radius

~¢, by creating a cluster that contains the bAllr, v*). We can do this by using either of two methods. In
the first method, we can explicitly addo the first separator it¥, as an artificial path (with one node) that
needs to be processed first. This causes the size of the fiesaser to be of sizé + 1, and in the analysis
we replacek with k + 1. In the second method, we can merge all the clusteid(in~*) created by the
algorithm, giving a new cluster whose diameter is no more theee times the diameter of the old cluster.
Either way, the impact to the parameters of the clusterirgcisnstant factor, giving the desired hierarchical
partition. It is easy to verify that all the steps of the altfon can be performed in polynomial time with
respect to the size @f and the parameters of the problem. O

Corollary 30. A polylogn)-stretch universal Steiner tree can be computed in polyabtime for any
minor-free graph.
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