
ar
X

iv
:1

11
1.

47
66

v3
 [

cs
.D

S
]

7
D

ec
 2

01
1

Split and Join: Strong Partitions and Universal Steiner Trees for
Graphs

Costas Busch∗ Chinmoy Dutta† Jaikumar Radhakrishnan‡ Rajmohan Rajaraman†

Srivathsan Srinivasagopalan∗

December 8, 2011

Abstract

We study the problem of constructing universal Steiner trees for undirected graphs. Given a graph
G and a root noder, we seek a single spanning treeT of minimum stretch, where the stretch ofT is
defined to be the maximum ratio, over all subsets of terminalsX , of the ratio of the cost of the sub-tree
TX that connectsr toX to the cost of an optimal Steiner tree connectingX to r. Universal Steiner trees
(USTs) are important for data aggregation problems where computing the Steiner tree from scratch for
every input instance of terminals is costly, as for example in low energy sensor network applications.

We provide a polynomial time UST construction for general graphs with2O(
√

logn)-stretch. We also
give a polynomial time polylogarithmic-stretch construction for minor-free graphs. One basic building
block in our algorithm is a hierarchy of graph partitions, each of which guarantees small strong cluster
diameter and bounded local neighbourhood intersections. Our partition hierarchy for minor-free graphs
is based on the solution to a cluster aggregation problem that may be of independent interest. To our
knowledge, this is the first sub-linear UST result for general graphs, and the first polylogarithmic con-
struction for minor-free graphs.

∗Department of Computer Science, Louisiana State University, Baton Rouge LA 70803, USA. E-mail:
{busch,ssrini1}@csc.lsu.edu

†College of Computer and Information Science, NortheasternUniversity, Boston MA 02115, USA. E-mail:
{chinmoy,rraj}@ccs.neu.edu. Chinmoy Dutta is supported in part by NSF grant CCF-0845003and a Microsoft grant
to Ravi Sundaram; Rajmohan Rajaraman is supported in part byNSF grant CNS-0915985.

‡School of Technology and Computer Science, Tata Institute of Fundamental Research, Mumbai 400005, India. E-mail:
jaikumar@tifr.res.in

http://arxiv.org/abs/1111.4766v3

1 Introduction

In this paper, we study universal approximations for the Steiner Tree problem on undirected graphs. In
the universal Steiner Tree (UST) problem for graphs, we are given an undirected graphG and a designated
root vertexr in G, and the task is to find asingle spanning treeT of G such that for any setX of terminal
vertices, the minimal subtreeTX of T that connectsX to r is a good approximation to the optimal Steiner
tree connectingX to r in G. The quality of the solutionT is measured by itsstretchwhich is the maximum
ratio of the cost ofTX to the cost of the optimal Steiner tree connectingX to r in G over all terminal sets
X.

The universal Steiner tree problem has been studied extensively for the case of metrics where one is
allowed to output an “overlay tree”, whose edges correspondto paths in the given graph [21, 19, 9, 30].
Equivalently, the case of metrics can be viewed as a completegraph in which all edge weights satisfy the
triangle inequality. In fact, for the case of metrics, therehave been several important results on extensions
of the UST problem and variants seeking sparse network structures that simultaneously approximates the
optimal solution for a range of input instances [15, 17, 16, 19].

The focus of this paper is on the UST problem on arbitrary graphs where we require that the solution
being sought is a spanning tree, i.e., a subgraph of the givengraph. The Minimum Steiner tree problem on a
graph can be well-approximated by solving the same problem on the metric induced by the graph and then
computing the minimum subtree connecting the terminals. Such an approach, however, does not apply to
the UST problem owing to the requirement that the treesimultaneouslyapproximate the optimal Steiner tree
for all terminal sets. Note that this is a much stronger requirementthan asking for a probability distribution
over spanning trees where for every terminal set, the expected stretch is small. In the latter case, there might
not be any single tree in the distribution that is good for allterminal sets, i.e., for every tree there is a set of
terminals for which the induced tree has a cost much larger than the optimal steiner tree.

Motivation. Our problem formulation is primarily motivated by information aggregation and data dissemi-
nation in sensor and ad-hoc wireless networks [25, 26, 24]. In a sensor network, data is often collected by a
central processing agent that periodically queries a subset of sensors for their sensed information. In many
applications, the queries seek aggregate information which can be transmitted using a low cost tree that
aggregates data at intermediate nodes. This reduces the number of transmissions which is crucial as sensors
have limited battery life and wireless transmissions are power intensive. It is not realistic, however, to expect
the sensors to compute and store a low cost tree for each potential subset of sensors being aggregated as the
sensors have limited memory and computational power. In this setting, a universal tree provides a practical
solution where the nodes just need to realize a single tree which approximates optimal aggregation trees for
all subsets of sensors. One approach for the above aggregation problem is to employ a universaloverlay
tree. There are several disadvantages of this approach, however. First, aggregation over the overlay tree
requires a physical routing infrastructure that supports point-to-point communication among distant nodes
in the network. Second, even if such an infrastructure exists, it may not route packets along minimum-cost
paths as required by the overlay tree. Furthermore, aggregation over the overlay tree requires synchroniza-
tion among distant nodes in the network and incurs overhead in terms of delays and storage. Thus, in some
resource-constrained applications, we would ideally wantto construct a universal spanning tree as opposed
to an overlay tree.

Another motivation to study universal approximation algorithms comes from their relation with differ-
ential privacy which was recently established by Bhalgat, Chakrabarty and Khanna [9]. They showed that
universal solutions such as USTs are differentially private, and argued that a kind of “strong” lower bounds
for universal algorithms implies lower bounds for differentially private ones as well.

From a theoretical standpoint, our motivation is to find out whether the results known for UST and re-
lated problems in the metric case can, in fact, be achieved using spanning trees of the underlying graph.
The analogous question for the problem of approximating metrics by tree metrics has been answered affir-

1

matively by [13, 1] who showed that nearly logarithmic-stretch spanning trees exist for all graphs, almost
matching the best bound achievable by tree metrics [14]. No comparable results are known for the UST
problem.

1.1 Our results and techniques

We present UST algorithms for general graphs and for the special class of minor-free graphs. Our main
results are the following.

• UST for general graphs: We present a polynomial-time algorithm for computing an2O(
√
logn)-

stretch spanning tree for any undirected graph.

• UST for minor-free graphs: We present a polynomial-time algorithm for computing a polylogarithmic-
stretch spanning tree for any graph that isH-minor free for any finite graphH.

While the specific techniques used in the two algorithms are substantially different, both are grounded in a
general framework that draws close connections between USTs and certain graph partitions based on strong
diameter. We define an(α, β, γ)-partition of a graphG as a partition of the vertices ofG into clusters such
that each cluster has strong diameter at mostαγ and for every vertex the ball of radiusγ in G intersects at
mostβ clusters. An(α, β, γ)-partition hierarchy is a sequence of partitions starting from the trivial partition
in which each vertex forms its own cluster, and theith partition is an(α, β, γi)-partition and coarsens the
(i−1)th partition. (See Section 2 for formal definitions.) The significance of our framework stems from the
following result.

• From partition hierarchies to USTs: For any graphG, given an(α, β, γ)-partition hierarchy forG,
anO(α2β2γ log n)-stretch UST forG can be constructed in polynomial time. (Section 3.1)

A major consequence of the above result is that a(polylog(n),polylog(n),polylog(n))-partition hierarchy
implies a polylog(n)-stretch UST. At a high-level, our approach of using partition hierarchies to derive
USTs is similar to that of [21]. There is a critical difference, however, since the natural divide-and-conquer
approach of constructing the UST by connecting together subtrees recursively computed for lower levels of
the hierarchy does not work. In fact, it can be shown that there exist graphs and hierarchies such that any tree
that completely obeys the connectivity structure of the hierarchy in the sense that the subgraph of the tree
induced by every cluster of the hierarchy is connected will have poor stretch. We show, however, that we
can get the desired bound on stretch by guaranteeing that forany cluster in the given hierarchy, even though
the tree may be split within the cluster it is joined externally so as to approximately respect the distances
within the cluster.

A natural question to ask is whether(α, β, γ)-partitions or the corresponding hierarchies, with low
values ofα, β, andγ, arenecessaryto achieve low-stretch USTs. We provide a partial affirmative answer to
this question with the following result.

• From USTs to partitions: If every graph has aσ-stretch UST, then for any realγ > 0, every graph
has an(O(σ2), O(σ), γ)-partition. (Section 3.2)

We next obtain our main results for general graphs and minor-free graphs by constructing suitable partition
hierarchies.

• Partition hierarchies for general graphs: Every graphG has a polynomial-time computable
(2O(

√
logn), 2O(

√
logn), 2O(

√
logn))-partition hierarchy. (Section 4)

• Partition hierarchies for minor-free graphs: Every minor-free graphG has a polynomial-time
computable(O(log3 n), O(log4 n), O(log3 n))-partition hierarchy. (Section 6)

2

The partition hierarchy for general graphs is obtained by aniterative procedure in which clusters are contin-
ually merged by identifying vertices for which the number ofintersecting clusters within a specified distance
exceeds the desired bound. The particular order in which thevertices are processed is carefully chosen; a
natural greedy approach fails.

Our construction of the partition hierarchy for minor-freegraphs is much more complicated. It is based
on a separator theorem due to [31, 2] which builds on the influential work of [22] and shows that any
minor-free graph can be decomposed into connected components, each of which contains at most half the
number of nodes, by removing a sequence of a constant number of shortest paths. A key ingredient of our
hierarchical construction for minor-free graphs is a result on cluster aggregation in general graphs, which is
of independent interest.

• Cluster aggregation: We show that given any partition ofG into disjoint clusters each with strong
diameter at mostD, and a setS of portal vertices, we can aggregate the clusters into disjoint connected
components, each component with a distinguished portal from S, such that for any vertexv, the
distance, within the component ofv, from v to the distinguished portal in the component is at most
O(log2 n)D more than the distance ofv to S in G. (Section 5)

1.2 Related work

Research in network design over the past decade has revealedthat it is often possible to derive sparse network
structures (e.g., routes, multicast trees) that yield goodapproximations simultaneously for a range of input
instances. One of the earliest examples of such a result is due to Goel and Estrin [15] who introduced the
problem ofsimultaneous single sink buy-at-bulkand gave anO(logD) bound on the simulataneous ratio
whereD is the total demand. The simultaneous guarantee means that their solution works simultaneously
for all fusion cost functionf which are concave and monotonically non-deceasing withf(0) = 0. In a
related paper [16], Goel and Post constructed a distribution over trees such that the expected cost of a tree
for any f is within anO(1)-factor of the optimum cost for thatf . A recent improvement by Goel and
Post [17] provides the first constant guarantee on the simultaneous ratio achievable by a tree. This result is
incomparable to our results since the set of terminals that are being aggregated in the buy-at-bulk problem
are fixed.

Jia et al. [21] introduced the notion of universal approximation algorithms for optimization problems
and provided approximation algorithms for TSP, Steiner Tree and set cover problems. For the universal
Steiner tree problem, they presented polynomial-time algorithms that construct overlay trees with a stretch
of O(log4 n/ log log(n)) for arbitrary metrics and logarithmic stretch for doubling, Euclidean, or growth-
restricted metrics. They also provided a lower bound ofΩ(log n/ log log n) for UST that holds even when
all the vertices are on a plane; for general metrics, this canbe improved toΩ(log n) [19, 9]. Note that these
lower bounds extend to the UST problem on graphs. Lower bounds for universal TSP are given in [20, 18].
For earlier work on universal TSP, see [28, 8].

Gupta, Hajiaghayi and Räcke [19] developed an elegant framework to modeloblivious network design
problems and gave algorithms with poly-logarithmic approximation ratios. They give network structures
that are simultaneously oblivious to both the link cost functions (subject to them being drawn from a suit-
able class) and traffic demand. Their algorithms are based onthe celebrated tree metric embeddings of
Fakcharoenphol et al. [14] and hierarchical cut-based decompostions of Räcke [29]. For the UST problem
on metrics, the algorithm of [19] builds a UST as follows: First obtainO(log n) trees from the distribution
of [14]; next assign each non-root vertex to a tree that well-approximates its distances to all other nodes;
finally, take the union, over each of theO(log n) overlay trees, the subtree of the tree induced by the root
and the vertices assigned to the tree. The resulting overlaytree is anO(log2 n)-stretch UST.

A potential approach to solving the UST problem on graphs is to adapt the techniques of [19] with

3

O(log n) spanning trees drawn from the distributions of [13] insteadof the overlay trees of [14]. A major
challenge here is that the paths or subtrees chosen from the different O(log n) trees may share several
vertices and hence create unavoidable cycles when combined. The only prior work on constructing universal
Steiner trees for graphs is due to Busch et al. [30] who achieved a stretch ofO(log3 n) for the restricted class
of graphs with bounded doubling dimension by showing how onecan continually refine anO(log n)-stretch
overlay tree by removing cycles to obtain anO(log3 n)-stretch UST. Their techniques, however, are closely
tied to the particular class of graphs and seem difficult to generalize.

The aforementioned problem of approximating a graph metricby a tree metric has a rich history. Alon
et al. [4] showed an upper bound of2

√
logn log logn for approximating an arbitrary graph metric by a distribu-

tion over spanning trees. Bartal [6] showed that an improvedO(log2 n) approximation is achievable using
tree metrics if one drops the requirement that the trees be subgraphs of the underlying graph. Konjevod et al.
[23] improved Bartal’s result toO(log n) for planar graphs while Charikar et al. [12] improved it for low di-
mensional normed spaces. Subsequently, Bartal [7] improved his earlier result toO(log n log log n) and also
showed a lower bound ofΩ(log n) on the distortion for probabilistically embedding an expander graph into a
tree. Fakcharoenphol, Rao and Talwar [14] closed the gap between the lower and the upper bound by show-
ing that arbitrary metrics can be approximated by a distribution over tree metrics with distortionO(log n).
More recently, Elkin, Emek, Spielman, and Teng [13] showed an upper bound ofO(log2 n log log n) for
approximating an arbitrary graph metric using a distribution of spanning trees, thus significantly improving
the result of Alon et al [4]. This result was subsequently improved by Abraham, Bartal, and Neiman [1]
who achieved anO(log n log log n(log log log n)3) bound.

As mentioned in Section 1.1, our universal Steiner trees arebased on certain partitions of graphs where
we would like to bound the strong diameter of the clusters while maintaining some sparsity constraints. Such
partitions have been extensively studied [27, 5]. While nearly optimal partitions based on weak diameter
bounds are known in many cases, strong-diameter based decompositions are less understood [27]. There
have been recent results on strong-diameter decompositions[1, 3]; while our partitions share some of the
ideas (e.g., of stitching together judiciously chosen shortest paths), there are significant differences in the
details and the particular partitions being sought. Furthermore, while we seek partition hierarchies with
deterministic guarantees, these previous results concerned hierarchies with either probabilistic guarantees
or covers where clusters are allowed to overlap.

2 Definitions and notations

Let G = (V,E,w) denote a weighted undirected graph, whereV andE are the sets of vertices and edges,
respectively, andw : E → R is a weight function on edges. We assume, without loss of generality, that the
weight of a minimum-weight edge is1, since otherwise we can scale all the edge weights appropriately. The
weight of a path is simply the sum of the weights of the edges init. For anyu andv in V , let the distance
betweenu andv, denoted byd(u, v), be the weight of a shortest path (i.e. smallest weight path)betweenu
andv, according tow. Forv ∈ V and real numberρ, let B(v, ρ) denote the ball of radiusρ centered atv,
i.e.,B(v, ρ) is the set of all vertices that are at distance at mostρ from v, includingv. For any graphG, let
diameterDIAM (G) denote the maximum distance between any two vertices ofG. For any graphG and any
subsetX of vertices inG, let G[X] denote the subgraph ofG induced byX. For any subsetX of vertices
and verticesu andv in X, let dX(u, v) denote the distance betweenu andv in G[X].

Universal Steiner trees. We now introduce some notations that help formalize the universal Steiner tree
problem. Given a specifiedroot vertexr ∈ V and a set ofterminal verticesX ⊆ V , a Steiner treeT for
X is a minimal subgraph ofG that connects the vertices ofX to the root. Thecostof treeT , denoted by
COST(T), is the sum of the weights of edges in it. AssumeG andr to be fixed. We let OPT(X) denote the
cost of the minimum weight steiner tree connectingX to r. Given a spanning treeT of G and terminal set

4

X, we define its projection on the terminal setX, denoted byTX , as the minimal subtree ofT rooted atr
that containsX.

Definition 1 (Universal Steiner tree (UST)). LetG be an undirected weighted graph, andr be a specified

root vertex inV . We define thestretchof a spanning treeT of G to bemaxX⊆V
COST(TX)

OPT(X)
. Theuniversal

Steiner treeproblem is to find a spanning tree with minimum stretch.

Partitions. A partition P of V is a collection of disjoint subsets ofV whose union equalsV . We refer to
any subset of vertices, and hence each element ofP, as aclusterof the graphG. There are two notions for
the diameter of a cluster. This paper focuses on thestrongdiameter, which is the diameter of the subgraph
induced by the cluster. In contrast, theweakdiameter of a cluster is simply the maximum distance between
any two verices of the cluster inG.

Definition 2 ((α, β, γ)-partition). For any realγ > 0, an (α, β, γ)-partition P of G is a partition ofV
satisfying the following properties.

1. Strong diameter: The strong diameter of every clusterC inP is at mostαγ; i.e.,DIAM (G[C]) ≤ αγ.

2. Cluster-valence:For every vertexv in V , B(v, γ) has a nonempty intersection with at mostβ clusters
in P. We refer toβ as the cluster-valence ofP.

A notion of partition similar to our(α, β, γ)-partition appeared in Jia et al. [21], which required a bound
on the weak diameter of clusters.

Definition 3 (Partition hierarchy). For a given realγ > 1, an (α, β, γ)-partition hierarchy of a graphG is

a sequenceH = 〈P0,P1, . . . ,Pd〉 of partitions ofV , whered = ⌈logγ(DIAM (G)
α

)⌉, satisfying the following
properties.

1. Partition: For 0 ≤ i ≤ d, Pi is an(α, β, γi)-partition ofG. Furthermore,Pd is the collection{V }.
For convenience, we setP−1 to the collection{{v} | v ∈ V }.

2. Hierarchy: For 0 ≤ i < d, every cluster inPi is contained in some cluster inPi+1.

3. Root Padding: For 0 ≤ i ≤ d, the ballB(r, γi) of radiusγi around rootr is contained in some
cluster inPi.

For a partitionP, let P(v) denote the cluster ofP that contains the vertexv and MAX DIAM (P) denote
maxC∈P DIAM (C). For a subsetX of vertices, letP[X] denote the partition restricted toX; i.e.,P[X] is
the collection{X ∩C | C ∈ P}. For a partition hierarchyH and a clusterC that is an element of a partition
Pi in H, we letH[C] denote the partition hierarchy projected toC; that is,

H[C] = 〈P0[C], . . . ,Pi[C]〉.

3 Strong partitions and Universal Steiner trees

In this section, we present close connections between the strong partitions of Definition 2 and universal
Steiner trees. We first show in Section 3.1 how partition hierarchies yield USTs. Given an(α, β, γ)-partition
hierarchy for any graphG, Section 3.1.1 shows how to get anO((αβ)logγ nγβ2 logγ n)-stretch UST forG,
and then Section 3.1.2 presents an improved construction yielding a stretch ofO(α2β2γ logγ n). We next
show, in a somewhat weaker sense, that partitions with low strong diameter and low cluster-valence are
necessary for deriving low-stretch trees. In particular, Section 3.2 shows that if every graph has aσ-stretch
UST, then every graph also has an(O(σ2), O(σ), γ)-partition for allγ > 0.

5

3.1 From a partition hierarchy to a universal Steiner tree

Assume graphG and root vertexr to be fixed throughout this subsection. The main result here is an algo-
rithm to construct anO(α2β2γ log n)-stretch UST from an(α, β, γ)-partition hierarchy which is presented
in Section 3.1.2. We say that a spanning treeT of G µ-respectsan(α, β, γ)-partition hierarchy〈Pi〉 if for
anyi, any clusterC of Pi, and any verticesu, v ∈ C, dT (u, v) is at mostµαγi.

Lemma 4. A spanning treeT thatµ-respects an(α, β, γ)-partition hierarchy has a stretch ofO(µαβγ log n).

Proof. Let 〈Pi〉 denote the given(α, β, γ)-partition hierarchy. Fix a non-empty setX of vertices. Note that
X is assumed to not contain the rootr. For each clusterC in the partition hierarchy such thatC∩ (X ∪{r})
is nonempty, letv(C) denote an arbitrary vertex inC ∩ (X ∪ {r}).

We place an upper bound on the cost ofTX , the subgraph ofT connecting the vertices inX to the root
r, as follows. Letni denote the number of clusters inPi thatX ∪ {r} intersects. Since we have defined
P−1 to be the trivial clustering consisting of a singleton set for each vertex,n−1 is simply |X ∪ {r}|. Let j
be the smallest integer such thatX is a subset of the cluster inPj that containsr. In other words,nj equals
1 andni > 1 for all −1 ≤ i < j. Fix ani,−1 ≤ i < j. LetC be any cluster ofPi that intersectsX ∪ {r},
and letC ′ denote the cluster ofPi+1 that containsC. SinceT µ-respects the partition hierarchy, it follows
that the length of the path fromv(C) to v(C ′) in T is at mostµαγi+1. Therefore, the cost ofTX is at most∑

−1≤i<j niµαγ
i+1. Let I = {i : (i = j) ∨ (−1 ≤ i < j ∧ ∃p : ni ≥ 2p ∧ ni+1 < 2p)}. For ℓ ∈ I, let

Iℓ = {i : (−1 ≤ i ≤ ℓ) ∧ ¬(∃ℓ′ ∈ I : i ≤ ℓ′ < ℓ)}. We have,
∑

i∈Iℓ
niµαγ

i+1 ≤
∑

i∈Iℓ
2nℓµαγ

i+1 ≤
∑

−1≤i≤ℓ

2nℓµαγ
i+1 = O(nℓµαγ

ℓ+1)

We next place a lower bound on OPT(X). Fix an i, 0 ≤ i < j. By the cluster-valence property of
the hierarchy, any ball of radiusγi intersects at mostβ clusters inPi. Thus, there are at least⌈ni/β⌉
vertices inX that are at pairwise distance at leastγi from one another. This implies that OPT(X) is at least
(⌈ni/β⌉− 1)γi. If ⌈ni/β⌉ = 1, we invoke the padding property which says there is at least one vertex inX
that is at distance at leastγi from the root, implying a lower bound ofγi on OPT(X). Combining the two
bounds, we obtain a lower bound ofΩ(niγ

i/β). For i = −1, we also have a lower bound ofn−1 since the
minimum edge-weight is 1. Noting that|I| = O(log n), we get the stretch ofT (G) to be

O

(∑

ℓ∈I

∑
i∈Iℓ niµαγ

i+1

OPT(X)

)
= O

(∑

ℓ∈I

nℓµαγ
ℓ+1

nℓγℓ/β

)
= O

(∑

ℓ∈I
µαγℓ+1β/γℓ

)
= O(µαβγ log n).

3.1.1 A bottom-up divide-and-conquer algorithm

We first present a bottom-up divide-and-conquer algorithm for constructing a spanning treeT . Though the
stretch achieved by the spanning tree is much weaker than what we obtain by a different algorithm, it helps
develop our improved algorithm.

Theorem 5. For any graphG, given an(α, β, γ)-partition hierarchy, anO((αβ)logγ nγβ2 log n)-stretch
USTis computed by Algorithm 1 in polynomial time.

Proof. Given a graphG, the algorithm builds a spanning treeT (G) by iteratively building spanning trees
for each cluster in a(α, β, γ)-partition hierarchy ofG, in a bottom-up manner. We first show by induction
on i that for any clusterC ∈ Pi, the strong diameter ofT (C) is at most(αβγ)i+1 − 1. The induction basis
directly follows from the strong diameter property of an(α, β, 1)-partition.

6

Algorithm 1 A basic divide-and-conquer algorithm
Require: Undirected graphG, strong(α, β, γ)-partition hierarchy{Pi : 0 ≤ i ≤ k} for G
Ensure: A spanning treeT of G

1: for level i from 0 to k do
2: for clusterC in Pi do
3: For an edgee = (C1, C2) in Ĝ[Pi−1[C]], let mS(e) denote the edge betweenC1 to C2 in G that

has minimum weight. (Recall thatPi−1[C] is the partitionPi−1, restricted to the setC.)
4: Compute a shortest path treeT ′ from an arbitrary source vertex inGS .
5: SetT (C) to be the union of∪C′∈ST (C ′) and{mS(e) : e ∈ T ′}.
6: end for
7: end for
8: SetT to beT (V) (note thatV is the lone cluster inPk).

We now establish the induction step. LetC be a cluster inPi and letu andv be two vertices inC. By
the hierarchy property,C is the union of a set, sayS, of clusters inPi−1. SincePi is an(α, β, γi)-partition,
it follows that the strong diameter ofC is at mostαγi. Hence, there exists a pathP betweenu andv in C
of length at mostαγi. By the intersection property, any ball of radiusγi−1 intersects at mostβ clusters in
Pi−1, and hence at mostβ clusters inS. Therefore, the pathP intersects at mostαβγ clusters inS. Thus,
the diameter ofGS is at mostαβγ. By the induction hypothesis, it follows that the strong diameter ofT (C)
is at mostαβγ − 1 + αβγ((αβγ)i − 1), which equals(αβγ)i+1 − 1.

Since(αβγ)i+1/(αγi) is at mostαkβk+1γ for k = logγ n, it follows thatT (αk−1βk+1γ)-respects
the strong partition hierarchy. By Lemma 4, we obtain thatT has stretch at mostO((αβ)logγ nγβ2 log n),
completing the proof of the theorem.

3.1.2 Split and join: An improved top-down algorithm

The tree returned by Algorithm 1 completely obeys the given partition hierarchy in the sense that for any
clusterC of the hierarchy,T [C] is, in fact, a tree; that is,T completely respects the connectivity of each
cluster of the hierarchy. In doing so, however, it pays a hugecost in the distances within the cluster. And,
in fact, this is unavoidable; one can construct examples of strong partition hierarchies where obeying the
connectivity of each cluster in the tree will result in a significant blow-up of stretch.

We now present a much more careful construction of a universal Steiner tree which does not enforce
the connectivity constraint within clusters; that is, we use a given partition hierarchyH to build a treeT in
whichT [C] may be disconnected. By allowing this disconnectivity within clusters, however, we show that
we can build a tree thatµ-respects the given hierarchy for a much smallerµ, assumingγ is sufficiently large.
The pseudocode is given in Algorithm 2. We have presented thealgorithm in a more general context where
the goal is to compute a forest rooted at a given set of portals. To obtain a UST, we invoke the algorithm
with the portal set being the singleton set consisting of theroot.

Before presenting our algorithm, we introduce some useful notation. For a partitionP of a graphH, let
Ĥ[P] denote a graph in which the vertex set isP, and there is an edge(C,C ′) from clusterC to C ′ if H
has an edge between a vertex inC and a vertex inC ′; the weight of the edge(C,C ′) is the weight of the
minimum-weight edge betweenC andC ′ in H.

Lemma 6. The outputF of the algorithm is a spanning forest, each tree of which contains exactly one vertex
in SG.

Proof. The proof is by induction on the number of recursive calls to the UST algorithm. For the induction

7

Algorithm 2 UST: The split and join algorithm
Require: Undirected graphG = (V,E), a nonempty setSG ⊆ V of portals, a partition hierarchyH =
{P0,P1, . . . ,Pℓ}.

Ensure: A forestF that connects every vertex inV to SG.
1: If the graph consists of a single vertex, then simply return the vertex as the forest.
2: For an edgee = (C1, C2) in Ĝ[Pℓ], letm(e) denote the minimum-weight edge fromC1 toC2 in G.
3: Let Ŝ denote the set of clusters that have a nonempty intersectionwith SG.
4: for clusterC in Ŝ do
5: SetSC to beC ∩ S.
6: end for
7: Compute a shortest path forestF̂ in Ĝ[Pℓ] rooted atŜ.
8: for clusterC in Pℓ in order of decreasing distance from̂S in F̂ do
9: if C is a leaf node in̂F then

10: SetRANK(C) to be0, SC to be{tail of m(e)} wheree is the edge connectingC to its parent inF̂ .
11: else
12: Let MAXC bemax{RANK(C ′) | C ′ is child ofC}. SetFAV(C) to be a child ofC with rankMAXC .

SetHIGHWAY (C) to be a shortest path inC from the head ofm(e) to the tail ofm(e′) wheree and
e′ are the edges connectingFAV(C) to C andC to its parent, respectively, in̂F . SetSC to be the
set of nodes inHIGHWAY (C).

13: if there exist at least two children ofC in F̂ whose rank equalsMAXC then
14: SetRANK(C) to beMAXC + 1
15: else
16: SetRANK(C) to beMAXC

17: end if
18: end if
19: end for
20: for each clusterC in Pℓ do
21: ComputeF (C) = UST(G[C], SC ,H[C])
22: end for
23: ReturnF to be the union of

⋃
C∈Pℓ

HIGHWAY (C),
⋃

C∈Pℓ
F (C), and{m(e) : e ∈ F̂}.

base, we consider the case where the graph consists of a single vertex; in this case, the algorithm returns the
vertex as the forest, which satisfies the desired claim.

For the induction step, we note that the forestF returned is the union of three sets: (a) union of
HIGHWAY (C) over allC in Pℓ; (b) union ofF (C) over allC in Pℓ; and (c){m(e) : e ∈ F̂}. By the
induction hypothesis, eachF (C) is a forest spanningC, each tree of which contains exactly one vertex of
SC . We distinguish between two kinds of clusters. IfC is in Ŝ, thenF (C) is a forest, each tree of which
contains exactly one vertex ofSG ∩C. Otherwise,F (C) is a forest, each tree of which contains exactly one
vertex ofHIGHWAY (C). It thus follows that the union of (a) and (b) above gives a forest for each cluster
C satisfying the following condition: ifC is in Ŝ, the forest contains a spanning forest ofC, each tree of
which contains exactly one vertex ofSG ∩ C; otherwise, the forest contains a spanning tree ofC.

Finally, the edges of (c) connect the clusters not inŜ to the clusters in̂S via a forest. Consequently,
adding these edges to the forest formed by (a) and (b) yields aspanning forest overG, each tree of which
contains exactly one vertex inSG.

Lemma 7. LetF be the final forest returned by the algorithm. For any clusterC, when UST is called on
clusterC, eitherSC is a subset ofSG or for any two verticesu andv in SC , dF (u, v) is at mostdC(u, v).

8

Proof. We first prove that for any clusterC, the setSC is exactly one of the following: (i)SG, if C is G; or
(ii) a subset ofSC′ for the parent clusterC ′ of C; or (iii) a subset of nodes on aHIGHWAY (C) constructed
when processing parent clusterC ′. The proof is by induction on the level of the hierarchy. The base case is
trivial for C being the whole graph. For the induction step, consider level i ≤ ℓ of the hierarchy, and letC
be a cluster inPi.

We consider two cases. In the first case,C intersectsSC′ whereC ′ is the parent cluster forC. In this
case,SC is set to the intersection ofC andSC′ as desired. In the second case,C is disjoint fromSC′ . In
this case,SC is simply the set of vertices inHIGHWAY (C), again completing the induction step.

To complete the proof of the lemma, consider a clusterC in Pi, for somei. If SC is a subset ofSG, the
lemma trivially follows. IfSC is not a subset ofSG, then by the above claim,SC equals the set of nodes in
HIGHWAY (C). By our construction,HIGHWAY (C) is a shortest path inC. SinceHIGHWAY (C) is part ofF ,
it follows that for any two verticesu andv in SC , dF (u, v) equalsdC(u, v).

Lemma 8. The rank of any clusterC in partition Pℓ is at mostlog(|Pℓ|).

Proof. Let F̂ denote the shortest path forest in̂G[Pℓ]. We show that for any clusterC, the rank ofC is at
mostlog(mC), wheremC is the number of nodes in the subtree ofF̂ rooted atC.

The proof is by induction on the height ofC. The induction basis is immediate for the leaves ofF̂ .
We now consider the induction step. For clusterC, let r denote the rank of the child with highest rank
among all children ofC. Let Z denote the set of children ofC that have rankr. We note thatmC is at
least1 +

∑
C′∈Z mC′ . Furthermore, by the induction hypothesis,mC′ is at least2r, for eachC ′ in Z. We

consider two cases. If|Z| is 1, then the rank ofC equalsr, which is at mostlog(mC) by the induction
hypothesis. In|Z| ≥ 2, then the rank ofC equalsr+1; sincemC is at least1+2 · 2r > 2r+1, the induction
step follows, completing the proof.

Lemma 9. LetF be the final forest returned by the algorithm. Ifγ ≥ log n, then for any clusterC in Pi
and vertexu in C, dF (u, SC) is at most3α2βγi.

Proof. We prove by induction on leveli thatdF (u, SC) is at most3α2βγi, with the base case beingi = 0.
In this case, the cluster and its portal set are the same singleton vertex set, trivially yielding the desired
claim. For the induction step, we consideri > 0. Let C be a cluster ofPi. For any vertexu in C, let Cu

denotePi−1(u), that is, the cluster in partitionPi−1 that containsu.
As in the algorithm, let̂S denote the set of clusters in the partition ofC that intersectSC . Let Cu =

C0, C1, . . . , Ck, whereCk ∈ Ŝ, denote the sequence of clusters in the unique path fromCu to Ŝ in P̂ℓ[],
which we refer to as the supergraph in the following argument. Note thatCi is the parent ofCi−1 in the
supergraph. By our argument in the proof of Theorem 5, we knowthatk is at mostαβγ. We now argue
that there are at mostlog n elementsCi in the sequence such thatCi is not FAV(Ci+1). To see this, we note
that if Ci is not FAV(Ci+1), thenRANK(Ci+1) strictly exceedsRANK(Ci). Since the rank of any cluster is
at mostlog n by Lemma 8, the desired claim holds.

This sequence of clusters induces a path fromu to SC , which consists of (a) the connecting edges in the
supergraph, (b) the highway in each clusterCi in the sequence, (c) for each clusterCi such thatCi−1 is not
a favorite ofCi, the unique path inF (Ci) (and, hence, inF) that connects the head of the edge connecting
Ci−1 andCi to SCi

. Since the number of clusters in the sequence is at mostαβγ, and the highway in each
cluster is a shortest path, the total length of the paths in (a) and (b) is at most2α2βγi. The number of clusters
in (c) is at mostlog n, and by the induction hypothesis, the length of each path in (c) is at most3α2βγi−1.
We thus have,

dF (u, SC) ≤ 2α2βγi + 2 log nα2βγi−1

≤ 3α2βγi

9

for γ ≥ 2 log n, thus completing the proof of the lemma.

Lemma 10. For any clusterC in Pi, and verticesu, v in C, dF (u, v) is at most7α2βγi.

Proof. By Lemma 9,dF (u, SC) anddF (v, SC) are both at most3α2βγi. By Lemma 7, for any two nodesx
andy in SC , dF (x, y) is at most the strong diameter ofC, which is at mostαγi. Putting these three distances
together, we obtain thatdF (u, v) is at most7α2βγi.

Theorem 11. Given an undirected graphG, portal setSG = {r}, wherer is an arbitrary vertex ofG, and
(α, β, γ)-partition H ofG as input, Algorithm 2 returns anO(α2β2γ log n)-stretch UST.

Proof. By Lemma 6, the outputF is a spanning forest, each tree of which contains exactly onevertex of
SG. SinceSG has only one vertex, the forestF returned is a tree. By Lemma 10, for any clusterC in any
partition at leveli of H, and any two verticesu andv in C, we havedF (u, v) is at most7α2βγi. It thus
follows thatF (7αβ)-respectsH. By Lemma 4, we obtain thatF has stretchO(α2β2γ log n).

3.2 From universal Steiner trees to strong partitions

We show how to construct partitions with low strong diameterand low cluster-valence for all graphs given
an algorithm to construct low-stretch USTsfor all graphs.

Theorem 12. Given an algorithmA to construct aσ-stretch UST for all graphs in polynomial time, we can
obtain a polynomial-time algorithmA′ to construct an(O(σ2), O(σ), γ)-partition for all graphs and all
γ > 0 which usesA as a black box.

Proof. Assume we have algorithmA that finds aσ-stretch UST for all graphs in polynomial time. The
algorithmA′ works as follows. Given graphG = (V,E,w), it constructs graphG′ = (V ′, E′, w′) where
V ′ = V ∪{r}, E′ = E ∪{(r, v) : v ∈ V } andw′ extendsw toE′ by simply assigningw((r, v)) = 2σγ for
all v ∈ V . Herer is an additional vertex not inV . A′ invokesA with graphG′ and root vertexr as inputs.
Let T be the tree rooted atr output byA andT1, . . . , Tk be the subtrees ofT connected directly to the root
r by single edges.A′ simply outputs the partitionP = {C1, . . . , Ck}, whereCi is the set of vertices inTi.
We now argue thatP is a(O(σ2), O(σ), γ)-partition ofG.

Lemma 13. The strong diameter of eachCi is at most4σ(σ − 1)γ.

Proof. Fix a Ci. It is enough for us to prove that the height of the treeTi is at most2σ(σ − 1)γ as we
can reach any vertex inCi from any other while remaining withinCi by going through the root ofTi.
Assume not. Then there is a vertexv in treeTi whose distance in this tree from the root ofTi is more than
2σ(σ−1)γ. Consider the graphG′ with the root vertexr for whichA returnedT . COST(T{v}) is more than

2σγ +2σ(σ − 1)γ = 2σ2γ, while OPT({v}) is 2σγ. Thus
COST(T{v})

OPT({v}) > σ, which contradicts the fact that

T is aσ-stretch UST forG′.

Lemma 14. For any vertexv ∈ V , B(v, γ) intersects at most2σ clusters ofP.

Proof. The proof is by contradiction. Suppose there is a vertexv such thatB(v, γ) intersectsd > 2σ
clusters ofP. We select one vertex from each of thesed different clusters such that the selected vertices lie
in B(v, γ), and call this setS. Now consider the graphG′ with the root vertexr for whichA returnedT .
Since each vertex inS lies in a differentTi in T , COST(TS) is at least2σγd. On the other hand, OPT(S) is
at most2σγ + dγ = (2σ+ d)γ asv is at a distance2σγ from r and each of thed vertices inS are at most a

distanceγ away fromv. Thus
COST(T{v})

OPT({v}) = 2σd
2σ+d

> σ by our choice ofd, which again contradicts the fact

thatT is aσ-stretch USTforG′.

10

The theorem follows from the above two lemmas.

4 Partition hierarchy for general graphs

In this section we present our algorithm for obtaining a partition hierarchy for general graphs. As mentioned
in section 2, we start the hierarchy at level−1 by definingP−1 as the trivial partition where every vertex is
in its own cluster. Our main result is the following.

Theorem 15. For any graphG and any integerk ≥ 0, a hierarchical((43 + ǫ)4k−1 − 4
3 , kn

1
k , γ)-partition

can be constructed in polynomial time forγ ≥ 1
ǫ
((43 + ǫ)4k−1− 4

3). In paricular, settingk = ⌈√log n⌉ , we

obtain a hierarchical(2O(
√
logn), 2O(

√
logn), 2O(

√
logn))-partition for any graph in polynomial time.

Algorithm. For i = 0, . . . , ⌈logγ DIAM (G)
α

⌉, we build theith level of the hierarchy,Pi, after building
the previous levels. Assuming that the leveli − 1 partitionPi−1 has been constructed, we constructPi as
follows.

Clusters ofPi are formed in successive stages starting from stage0. We assign a rank to each cluster
based on the stage in which it is created: a cluster formed in stagej gets the rankj. (All the clusters of
level−1 are assigned the rank0.) We will denote the set of clusters of rankj (of level i) by Si

j. A cluster of
a higher rank is formed by merging clusters of lower ranks. Atall times, we maintain a partitioning of the
graph, i.e., we guarantee that each vertex of the graph is contained in exactly one cluster of leveli.

In stage0, we simply add all the clusters ofPi−1 to Si
0. For j ≥ 1, stagej works in two phases as

follows. In the first phase, we repeatedly look for a vertexcontained in a cluster of rank at mostj − 1 such
that the ball of radiusγi around it,B(v, γi), intersects more thann

1
k clusters of rank preciselyj − 1. If

we find such a vertexv, we merge the cluster containingv with all the clusters of rankj − 1 thatB(v, γi)
intersects. This newly created cluster is assigned the rankj and added toSi

j while all the clusters that were
merged to form it are deleted from their respectiveSi

j′ ’s. The first phase ends when we can no longer find
any such vertexv.

In the second phase, we repeat a simlar procedure for vertices contained in clusters of rankj. As long
as we can find a vertexv in a cluster of rankj such thatB(v, γi) intersects more thann

1
k clusters of rank

j− 1, we merge all these clusters of rankj− 1 with the cluster containingv to form a new cluster of rankj.
We include this new cluster inSi

j and delete all the clusters that were merged to form it from their respective
Si
j′ ’s. The second phase, and also the stagej, ends when we cannot find any such vertexv, and the next

stage begins.
If no new cluster gets formed in the first phase of a stage, the construction of leveli of the hierarchy

finishes andPi is defined as simply the union of all the non emptySi
j ’s.

Remark. Although the two phases of a stage are quite similar and one might be tempted to do away with
this particular ordering of mergings, the naive approach without the ordering does not work. Having a
careful order in which mergings are carried out enables us tocontrol the growth of the strong diameter of
the clusters. To see this, consider a cluster formed in the second phase of some stagej. It contains a unique
cluster that was formed in the first phase of stagej (call it the core). Our ordering ensures that only the
vertices in the core can lead to mergings in the second phase of stagej. This is because for any vertexv
outside the core,B(v, γi) intersects at mostn

1
k clusters of rankj − 1, otherwise the first phase would not

have ended. Thus the mergings of the second phase cannot increase the diameter much as the new vertices
are always “close” to the core.

We now analyze the algorithm, which is presented in pseudocode in Algorithm 3. We have the following
claims that bound the size and diameter of the clusters of level i.

11

Algorithm 3 Algorithm to obtain a partition hierarchy for general graphs

Require: A weighted graphG = (V,E,w), integerk, γ ≥ 1
ǫ
((43 + ǫ)4k−1 − 4

3)

Ensure: A hierarchical(α = (43 + ǫ)4k−1 − 4
3 , β = kn

1
k , γ)-partition ofG

1: DefineP−1 to be the trivial partition where each vertex ofV is in its own cluster,
i.e.,P−1 = {{v} : v ∈ V }.

2: for level i from 0 to ⌈logγ(DIAM (G)
α

)⌉ do
3: Si

0 = Pi−1.
4: Si

j = ∅ for all 1 ≤ j ≤ k − 1.
5: j ← 1.
6: while j < k andSi

j−1 6= ∅ do
7: while there exists av such thatv ∈ Cv for someCv ∈ Si

jv
andjv < j,

andB(v, γi) intersects more thann
1
k clusters fromSi

j−1 do
8: DeleteCv from Si

jv
, i.e.,Si

jv
= Si

jv
\ {Cv}.

9: Delete all the clusters ofSi
j−1 thatB(v, γi) intersects from it, i.e.,

Si
j−1 = Si

j−1 \ {C : C ∈ Si
j−1 ∧B(v, γi) ∩ C 6= ∅}.

10: MergeCv and all the clusters deleted fromSi
j−1 and add toSi

j , i.e.,
Si
j = Si

j ∪ Cv ∪
(⋃

C∈X C
)
, whereX equals{C ∈ Si

j−1 : B(v, γi) ∩C 6= ∅}.
11: end while
12: while there exists av such thatv ∈ Cv for someCv ∈ Si

j,

andB(v, γi) intersects more thann
1
k clusters fromSi

j−1 do
13: DeleteCv from Si

j , i.e.,Si
j = Si

j \ {Cv}.
14: Delete all the clusters ofSi

j−1 thatB(v, γi) intersects from it, i.e.,
Si
j−1 = Si

j−1 \ {C : C ∈ Si
j−1 ∧B(v, γi) ∩ C 6= ∅}.

15: MergeCv and all the clusters deleted fromSi
j−1 and add toSi

j , i.e.,
Si
j = Si

j ∪ Cv ∪
(⋃

C∈Y C
)
, whereY equals{C ∈ Si

j−1 : B(v, γi) ∩ C 6= ∅}.
16: end while
17: j = j + 1.
18: end while
19: Pi = ∪t=k−1

t=0 Si
t.

20: end for
21: Output(P0, . . . ,P⌈logγ(DIAM (G)

α
)⌉
).

Lemma 16. The size (number of vertices) of a cluster of rankj at any level is at leastn
j
k .

Proof. We prove the claim using induction onj. For j = 0, the claim follows trivially as each cluster of
any rank has size at least1. For the induction step, observe that a cluster of rankj contains more thann

1
k

clusters of rankj − 1 which all have size at leastn
j−1
k by the induction hypothesis.

Corollary 17. The rank of any cluster of any level can be at mostk − 1.

Proof. From the previous lemma it follows that at any level there canbe at most n

n
k−1
k

= n
1
k clusters of

rankk − 1 which immediately implies that no cluster of rankk gets formed.

Lemma 18. The strong diameter of every cluster of leveli and rankj is at mostγi((43 + ǫ)4j− 4
3), provided

γ ≥ 1
ǫ
((43 + ǫ)4k−1 − 4

3).

12

Proof. We prove the claim by induction oni andj. The case fori = −1 is trivially true. For the case of
i ≥ 0, assume the claim to be true for every cluster of leveli−1. Since a cluster of leveli and rank0 is simply
one of these clusters, its diameter is bounded byγi−1((43 + ǫ)4k−1− 4

3) by the induction hypothesis and the
above corollary. This is at mostγi((43 + ǫ)40 − 4

3) = γiǫ by our assumption thatγ ≥ 1
ǫ
((43 + ǫ)4k−1 − 4

3)
which proves the claim for leveli and rank0.

Now assume that the claim is true for leveli and all rank at mostj − 1, and consider a clusterC at level
i and rankj. There are two cases to consider depending upon whetherC was formed in the first or second
phase of stagej.

If C was formed in the first phase, it is the union of the cluster containingv and all the clusters of rank
j − 1 that the ballB(v, γi) intersects, wherev is contained in a cluster of rank at mostj − 1. By the
induction hypothesis, the strong diameters of all these clusters which were merged to formC are bounded
by γi((43 + ǫ)4j−1 − 4

3). This implies that any vertex inC is at most a distanceγi((43 + ǫ)4j−1 − 4
3) + γi

from v. Thus the strong diameter ofC is at most2γi((43 + ǫ)4j−1 − 4
3 + 1) ≤ γi((43 + ǫ)4j − 4

3) asj ≥ 1.
If C was formed in the second phase, it implies that there was a clusterC ′ of rankj which was formed in

the first phase of stagej and got merged with other clusters to formC in the second phase. By the argument
above, the strong diameter ofC ′ was at most2γi((43 + ǫ)4j−1 − 4

3) + 1). Furthermore, we know that any
vertex inC either comes fromC ′ or from some cluster of rankj − 1 which intersects the ballB(v, γi) for
a vertexv contained inC ′. From the above facts and the induction hypothesis, we conclude that the strong
diameter ofC is bounded by2γi((43+ǫ)4j−1− 4

3)+1)+2γi+2γi((43+ǫ)4j−1− 4
3) = γi((43+ǫ)4j− 4

3).

Now we are in a position to prove Theorem 15 which gives the partition hierarchy for general graphs.
Proof of T: he bound on cluster diameter is given by Lemma 18. For the intersection bound, observe that for
any leveli of the hierarchy and any vertexv, the ballB(v, γi) can intersect at mostn

1
k clusters of a given

rank. This implies thatB(v, γi) can intersect at mostkn
1
k clusters in total from leveli as every cluster has

rank between0 andk − 1.

Corollary 19. A 2O(
√
logn)-stretch universal Steiner tree can be computed in polynomial time for any undi-

rected graph.

5 The Cluster Aggregation Problem

In this section, we define the Cluster Aggregation problem which arises when building partition hierarchies
for minor-free graphs (see Section 6). Our problem formulation and algorithm, however, apply to arbitrary
graphs and may be of independent interest. Indeed, our cluster aggregation algorithm is useful for building
other strong-diameter based hierarchical partitions withapplications to distributed computing [10].

Definition 20 (Cluster Aggregation). Given a graphG = (V,E), partitionP of G, setS ⊆ V of portals, a
cluster aggregationis a functionDEST : P → S. The functionDEST naturally induces a new partitionQ =
{⋃C:DEST(C)=sC | s ∈ S} that coarsensP. For each vertexv in V , we define thedetourDTRDEST(v) for v
underDEST to be the difference between the distance fromv toS inG and the distance fromv to DEST(P(v))
in subgraph ofG induced by the cluster inQ that containsv; i.e., DTRDEST(v) = (dG[Qv](v, DEST(C))−
d(v, S)). We define the detour ofDEST to bemaxv∈V DTRQ(v). The goal of the cluster merging problem is
to find a cluster aggregation with minimum detour.

Our algorithm for the Cluster Aggregation problem proceedsin O(log n) phases. Each phase has a
number of iterations. Each iteration aggregates a subset ofthe clusters inP and assigns the sameDEST

value for each of them. The selection of clusters in a particular iteration is based on how shortest paths
from these clusters toS proceed through the graph. The interaction of these shortest paths is captured by
means of auxiliary directed graph. For any directed graphK and setA of vertices inK, let inK(A) (resp.,

13

outK(A)) denote the set of vertices that have an edge into (resp., from) any vertex inA. The pseudocode for
our algorithm appears in Algorithm 4.

Algorithm 4 The Cluster Aggregation algorithm
Require: An undirected graphG, partitionP, setS of portals.
Ensure: A cluster aggregationDEST

1: For each setX in P, let pX denote a shortest path fromX to S, and letPX denote the sequence of
clusters visited inpX .

2: For a clusterY that appears inPX , define thepositionof a clusterY in PX to beℓ if the number of
distinct clusters thatPX visits before first visitingY is ℓ− 1.

3: Construct an auxiliary directed graphD whose vertices are the clusters ofP. For verticesX andY , D
has an edge fromX to Y if PX containsY ; furthermore, we label the edge(X,Y) with the position of
Y in PX .

4: Seti to be0 andV0 to be the set of vertices inD.
5: repeat{Begin Phasei}
6: Let Di denote the subgraph ofD induced byVi. LetEi denote the set of edges inDi. SetVi+1 to ∅

andD̂ toDi.
7: repeat
8: Let v be an arbitrary vertex in̂D.
9: if i = 0 then

10: SetDEST(v) to be the vertex inS nearest tov;
11: else
12: SetDEST(v) to beDEST(x) wherex is a vertex inVi−1 − Vi and the label of(v, x) is the least

among all edges fromv to Vi−1 − Vi.
13: end if
14: Let T denote{v} ∪ out

D̂
({v}).

15: repeat {iteration}
16: For eachu in D̂ − T , and each edge(u,w) in D̂, remove(u,w) from D̂ if there exists an edge

(u, x) in D̂ with x ∈ T such that the label of(u, x) is smaller than the label of(u,w).
17: For eachu in in

D̂
(T) ∪ out

D̂
(T ∪ in

D̂
(T)), setDEST(u) to be equal toDEST(v). SetT equal to

T ∪ in
D̂
(T) ∪ out

D̂
(T ∪ in

D̂
(T)).

18: until |in
D̂
(T)| < |T |.

19: SetVi+1 to Vi+1 ∪ in
D̂
(T) and removeT ∪ in

D̂
(T) from D̂.

20: until D̂ is empty
21: Incrementi {End Phasei}
22: until Vi is ∅

We now show that Algorithm 4 solves the Cluster Aggregation problem for a given partitionP with
a detour ofO(log2(|P|)MAX DIAM (P)). We first establish the following simple lemma that bounds the
number of phases.

Lemma 21. If Vi andVi+1 are the set of vertices inDi andDi+1 at the start of phasei andi+1, respectively,
then|Vi+1| ≤ |Vi|/2.

Proof. We first note thatVi+1 ⊆ Vi. Furthermore, in each iteration of theith phase, when we add in
D̂
(T)

to Vi+1, |inD̂
(T)| is less than|T |, whereT is a subset ofVi − Vi+1. Thus,|Vi| − |Vi+1| ≥ |Vi+1|, yielding

the desired claim.

For eachri in S, letC(ri) denote the union of the clustersX such thatDEST(X) = ri. Note thatC(ri)

14

may vary as the algorithm progresses.

Theorem 22. The detour for any vertexv in G in the cluster merger returned by Algorithm 4 is at most
log2(|P|)MAX DIAM (P).
Proof. Let m equal|P|, the number of clusters inP. Fix a portalr in S. We will show that at the end of
iterationj of phasei, the following holds:

• For anyZ in P, if DEST(Z) equalsr, then for each vertexv in Z, there is a path inG[C(r)] from v to
DEST(Z) of weight at most2((i− 1) log(|P|) + j)MAX DIAM (P) more thand(Z,S).

Before we establish the above claim, we show how the statement of the theorem follows. By Lemma 21, the
number of phases is at mostlogm. Furthermore, the number of iterations of the inner repeat loop in each
phase is at mostlogm since the size ofT at least doubles in each iteration. Therefore, at termination, the
detour for each cluster inP is at most2(log2 m)MAX DIAM (P), yielding the desired claim.

Consider an iterationj of phasei. In the following,T andD̂ refer to the variables in the above algorithm
at the start of the iteration. The set of clusters for which weset theDEST values in the iteration is given by
in

D̂
(T) ∪ out

D̂
(T ∪ in

D̂
(T)), whereT corresponds to the value of the variable at the start of the iteration.

Every cluster inT shares the sameDEST value, sayx. By the induction hypothesis, at the start of iteration
j of phasei, each clusterY in the set of clusters withDEST equal tox has a pathqY in G[C(x)] from Y to
x of weight at most2((i − 1) logm+ (j − 1))MAX DIAM (P) more thand(Y, S).

Consider a vertexZ in in
D̂
(T). SinceZ is in in

D̂
(T), its pathpZ contains a clusterY in T . Let p′

denote the prefix of the pathpZ that connectsZ to the first occurrence ofY in pZ ; and letp′′ denote the
remainder of the pathpZ . We note that every cluster that appears inp′ is in out

D̂
({z}), and is, hence, also

in out
D̂
(T ∪ in

D̂
(T)). Thus, at the end of iterationj, p′ is fully contained inG[C(x)] the subgraph ofG

induced by the set of vertices withDEST equal tox. The weight ofpZ equals the sum of the weights ofp′

andp′′. The weight ofpY is at most the weight ofp′′. Thus, the path fromZ to x consisting ofp′, followed
by a shortest path topY in Y , and followed by the pathqY is entirely contained inG[C(x)] and has weight
at most2((i − 1) logm+ j)MAX DIAM (P) more than the length ofpZ . (This is because the weight of any
shortest path inY is at most MAX DIAM (P).) This completes the induction step of the proof.

6 Partition Hierarchy for Minor-free Graphs

A weighed graphG isH-minor free if zero or more edge contractions onG does not give a graph isomorphic
H. Minor-free graphs are special cases ofk-path separable graphs. A graphG is k-path separable[2] if
there exists a subgraphS, called thek-path separator, such that: (i)S = S1 ∪ S2 ∪ · · · ∪Sl, where for each
1 ≤ i ≤ l, subgraphSi is the union ofki paths where each path is shortest inG \⋃1≤j<i Sj with respect to
its end points; (ii)

∑
i ki ≤ k; (iii) either G \ S is empty, or each connected component ofG \ S is k-path

separable and has at mostn/2 nodes.
Thorup [31] shows that any planar graphG is 3-path separable, where all paths in the separatorS belong

in S1, that is, they are shortest paths inG. Abraham and Gavoille [2] generalize the result to anyH-minor
free graph, for fixed sizeH, is k-path separable, for somek = k(H), and thek-path separator can be
computed in polynomial time. Interesting classes ofH-minor free graphs are: planar graphs, which exclude
K5 andK3,3; outerplanar graphs, which excludeK4 andK2,3; series-parallel graphs, which excludeK4;
and trees, which excludeK3. They also show that the path separator can be computed in polynomial time.

6.1 The algorithm

Consider now an arbitrary weightedH-minor free graphG, for fixed sizeH. (You may also takeG to be an
arbitraryk-path separable graph.) We will construct a hierarchical(α, β, γ)-partition ofG which is based

15

on forming clusters around the path separators ofG. The concept of creating clusters around path separators
has been introduced by Buschet al. [11] in the context of sparse covers ink-path separable graphs. Here,
we extend that technique to hierarchical partitions.

We build the hierarchical partition bottom up by coarseningclusters. Suppose we are given a(α, β, γi−1)-
partitionPi−1. We describe how to build a(α, β, γi)-partitionPi, such thatPi−1 is a refinement ofPi.

The first clusters of partitionPi are formed around ak-path separator ofG by appropriately merging
clusters ofPi−1 close to the separator paths. We then remove thek-path separator and repeat the clustering
process recursively to each residual connected component,until no nodes are left in the graph.

Consider a connected componentΦ which appears during the recursive decomposition ofG. Let S =
S1 ∪ S2 ∪ · · · ∪Sl be the path separator ofΦ. We process the paths ofS in sequence starting from the paths
in S1, then the paths inS2, and so on. We maintain the new formed clusters in a setN , which is updated
every time we process a new path.

Consider now the pathp ∈ Sχ. LetΨ be the connected component ofΦ\⋃1≤j<r Sχ in whichp resides.

DenotePΨ
i−1 ⊆ Pi−1 the integral clusters ofPi−1 which are completely contained inΨ. We define the

following subsetsA andB of PΨ
i−1 such that:A contains all clusters ofPΨ

i−1 not yet included inN within
distance2γi from p in Ψ; B contains all the clusters ofA which are adjacent to clusters inN (whereN are
the clusters which have been formed so far form paths processed beforep).

Let Ψ′ be the sub-graph induced byA (note thatΨ′ may not be connected). Combine the clusters inA
by invoking the cluster aggregation algorithm of Section 5.to each connected component ofΨ′. We define
two sets of nodesL andU in Ψ′ which will serve as portals around which new merged clusterswill be
formed. SetL contains theleadersof pathp, which is a maximal set of nodes inp ∩ Ψ′, such for any pair
u, v ∈ L, dp(u, v) ≥ γi, andu andv cannot belong to the same cluster ofA. SetU contains one arbitrary
node from each cluster inB. Combine the clusters inA by invoking the algorithm of Section 5. to each
connected component ofΨ′ for the induced clusters fromA and the induced portal nodes inL ∪ U .

LetR contain all resulting clusters from invoking Algorithm 4. We can writeR = Ip ∪ Kp whereIp
consists of clusters that contain a node ofL, andKp consists of clusters that contain a node ofU . Each
clusterX ∈ Kp \ Ip merges further with at most one arbitrary adjacent clusterY ∈ N , for which there is
an edge(u, v) ∈ E(Ψ) such thatu ∈ X, v ∈ Y , andv /∈ Ψ′. We insert the merged cluster fromX andY
back toN . The returned set of clusters from processing pathp isN = N ∪ Ip.

The algorithm is initially invoked withΦ = G andN = ∅. The resulting partitionPi is the finalN that
we obtain after we recursively process all the path separators inG.

6.2 The analysis

Consider a minor-free graphG with n nodes. The recursive process of removing path separators defines a
decomposition treeT of G. Each nodet ∈ T corresponds to a connected component ofG, which we will
denoteG(t). The rootπ of T corresponds toG, namely,G(π) = G. DenoteS(t) the path separator for the
respective graphG(t). If G(t) \ S(t) = ∅, thent is a leaf ofT . Otherwise, for each connected component
Φ ∈ G(t) \ S(t) there is a nodew ∈ T such thatw is a child oft andG(w) = Φ.

Consider a nodet ∈ T . Each pathp ∈ S(t) has a respective processing order inS(t), denotedorder(p),
which is an integer between 1 andk. The set ofpreviouspaths ofp, denotedQ(p), is defined to include
those paths inS(t) which have smaller order, or the paths in the ancestors oft:

Q(p) = {q ∈ S(t) : order(q) < order(p)} ∪ {q ∈ S(w) : w is ancestor oft}.

According to the algorithm, after a new cluster is created (when a path is processed) it may get larger
when new clusters merge into it (when subsequent paths are processed). Once a cluster is created it can
never shrink or be removed. Consider a pathp ∈ S(t), for somet ∈ T . We say that acluster belongsto

16

Algorithm 5 Component clustering in minor-free graph

Require: Connected componentΦ of minor-free graphG, strong(α, β, γi−1)-partitionPi−1 of G, setN
with coarsen clusters ofPi−1.

Ensure: Coarsening thePi−1 clusters inΦ, which are then inserted inN .
1: LetS = S1 ∪ S2 ∪ · · · ∪ Sl be ak-path separator ofΦ.
2: for χ from 1 to l do
3: for each pathp ∈ Sχ do
4: LetΨ be the connected component ofΦ \⋃1≤j<r Sχ in whichp resides.

5: Let PΨ
i−1 = {X ∈ Pi−1 : X ⊆ V (Ψ)} be theintegral clusters ofPi−1 which are completely

contained withinΨ;
6: LetA = {X ∈ PΨ

i−1 : (dΨ(X, p) ≤ 2γi) ∧ (X ∩ V (N) = ∅)} be the all integral clusters ofΨ
which have not yet been coarsen (do not belong inN) and are within distance2γi from p in Ψ.

7: Let B = {X ∈ A : ∃(u, v) ∈ E(Ψ), u ∈ X ∧ v ∈ V (N) ∪ (V (Ψ) \ V (PΨ
i−1)}, contains all the

clusters ofA which are adjacent to clusters inN or adjacent to non-integral clusters inΨ.
8: LetΨ′ = Ψ∩ V (A) be the sub-graph ofΨ induced byV (A) (note thatΨ′ may not be connected).
9: LetL be theleadersof pathp, which is a maximal set of nodes inp∩Ψ′, such for any pairu, v ∈ L,

dp(u, v) ≥ γi, andu andv cannot belong to the same cluster ofA.
10: LetU be the set that contains one arbitrary node from each clusterin B.
11: Combine the clusters inA by invoking Algorithm 4 to each connected component ofΨ′ for the

induced clusters fromA and the induced portal nodes inL ∪ U .
12: LetR be the union of the resulting set of clusters from Algorithm 4.
13: Write R = Ip ∪ Kp whereIp consists of clusters that contain a node ofL, andKp consists of

clusters that contain a node ofU .
14: for each clusterX ∈ Kp \ Ip do
15: X merges with at most one arbitrary adjacent clusterY ∈ N such that there is an edge(u, v) ∈

E(Ψ), u ∈ X, v ∈ Y , andv /∈ Ψ′.
16: We insert the merged cluster fromX andY back toN .
17: end for
18: UpdateN = N ∪ Ip.
19: end for
20: end for
21: for each connected componentΥ ∈ Ψ \ S do
22: Invoke (recursively) Algorithm 5 with parametersΥ, Pi−1, andN .
23: UpdateN to be the result of the recursive invocation.
24: end for
25: ReturnN .

p if it contains a leader ofp. It is easy to verify that a cluster inPi does not belong to more than one path
(we will actually show in Lemma 28 that each cluster inPi belongs to exactly one path). LetIp denote the
clusters that belong top immediately afterp is processed. Let̂Ip denote the final clusters ofp in Pi.

In the analysis below, assume thatγ ≥ α, and defineα′ = c1λk log n, for a constantc1. The parameter
λ denotes the impact of the detour of Algorithm 4, on the ratio of the cluster diameter before and after the
merger merger. From Theorem 22,λ = O(log2 n).

Lemma 23. In Ψ′ every cluster ofA is within distance at most3γi to a node inL ∪ U .

Proof. Consider a clusterX ∈ A. Let u ∈ X be the closest to a nodev ∈ p in graphΨ. From definition of
A, dΨ(u, v) ≤ 2γi. Let q be a shortest path inΨ connectingu to v.

17

If q uses a cluster outsideA, then that cluster must be either a cluster inN or a non-integral cluster
of Pi−1. Therefore,q has to cross a cluster inB. Let ℓ ∈ V (B) ∩ U . Sinceαγi−1 ≤ γi, dΨ′(u, ℓ) ≤
2γi + αγi−1 ≤ 3γi.

Consider now the case whereq uses only clusters inA. Let p′ be the subpath ofp which consists of the
nodes within distanceγi from u, with respect toΨ.

Suppose thatp′ uses only clusters inA. Suppose, for the sake of contradiction, that none of the nodes
in p′ is a leader inL. Let Y ∈ A be the cluster that containsv. We have that the closest leader tou (if it
exists), must be at distance greater thanγi from v. Since the diameter ofY is at mostαγi−1 ≤ γi, then
L is not maximal becausev is a valid possible leader. Therefore,p′ must contain a leaderℓ ∈ L. Thus,
dΨ′(u, ℓ) ≤ 2γi + γi ≤ 3γi.

If p′ doesn’t use a cluster inA, then it has to use a cluster inB. By selecting a nodeℓ ∈ V (B) ∩ U , we
getdΨ′(u, ℓ) ≤ 2γi + αγi−1 ≤ 3γi.

Lemma 24. Every cluster of̂Ip has diameter at mostα′γi.

Proof. From Lemma 23, each cluster inA is within distanceσ = 3γi from a node inL ∪ U . Since, the
diameter of each cluster inA is bounded byαγi−1 ≤ γi < σ, Algorithm 4 produces new clusters around
the nodes inL ∪ U , so that each new cluster has diameter at mostλσ ≤ 3λγi. Thus the cluster inIp have
diameter mostζ = 3λγi. Similarly, the clusters inKp have also diameter at mostζ.

The clusters inI(p) may increase in diameter, when they merge withKq clusters from some pathq
processed afterp. This pathq may belong toS(t), or it may belong toS(w), wherew is a descendant in the
sub-treeT ′ rooted int.

Each pathq ∈ S(t) with order afterp, increases the diameter ofIp by at most2ζ, since newly merged
clusters fromKq add at most one layer of clusters intoIp, and any two clusters in the layer can reach each
other through the previous instance ofIp. Thus, when we process the last path inS(t), we have added at
mostk layers, and the increase in the diameter of the newIp will be at most2ζk.

Similarly, any node in the sub-treeT ′, contributes at mostk new layers toIp. However, all the nodes of
T ′ in the same level contribute in totalk layers, since clusters in them are formed independent of each other.
Since the sub-treeT has at most1+log n levels (includingt), we have in totalk(1+log n) additional layers
in Ip, contributing increase at most2ζk(1 + log n) to the diameter ofI(p). Therefore, the diameter of̂I(p)
is at most2ζk(1 + log n) + ζ ≤ c1λkγ

i log n, for some constantc1.

For a pathq ∈ Q(p), let I ′q be the clusters ofq just before processing pathp, andI ′′q be the clusters of
a pathq just after processing pathp. Let Z ′(p) =

⋃
q∈Q(p) I ′q andZ ′′(p) =

⋃
q∈Q(p) I ′q. DefineZ(p) =

Ip ∪ Z ′′(p). For any set of nodesY let Γ(Y) denote the set of clusters inPi−1 which are within distance
2γi from p, namely,Γ(Y) = {X ∈ Pi−1 : dG(X,Y) ≤ 2γi}.

Lemma 25. Γ(p) ⊆ Z(p).

Proof. We prove the claim by induction on|Q(p)|. For the basis case,|Q(p)| = 0, pathp is the first to be
processed by the algorithm withQ(p) = ∅. Therefore,Γ(p) = A(p) = Ip = Z(p).

Assume now that the claim holds for|Q(p)| ≤ σ. Consider now the case|Q(p)| = σ + 1. From
induction hypothesis, for each pathq ∈ Q(p), Γ(q) ⊆ Z(q). Let N be the new formed clusters of the
algorithm just before we processp. SinceZ(q) ⊆ N , we have thatΓ(q) ⊆ N .

First, we show that just before we process pathp the cluster ofN that intersectΨ can only be those in
Z ′(p)∩N . Suppose, for the sake of contradiction, that there is a clusterX ∈ N \Z ′(p) which intersectsΨ.
ClusterX must contain a nodey /∈ V (Ψ), since any integral cluster inΨ can only have been built by a path
in Q(p)∩Sχ, wherep ∈ Sχ. Take a nodeu ∈ X ∩V (Ψ). Any path fromu to y must cross one of the paths
in Q(p) whose removal fromG contributed to the formation ofΨ. However, from induction hypothesis all

18

the nodes in the paths inQ(p) belong to clusters inZ ′(p). Consequently,y cannot exist, and hence neither
doesX.

Next, we show that any non-integral clusterY ∈ Pi−1, Y /∈ PΨ
i−1, which intersectsΨ is used in a cluster

of Z ′(p). Note thatY must have be crossed by at least a pathq ∈ Q(p) whose removal fromG contributed
to the creation ofΨ. Since the diameter ofY is bounded byαγi−1 ≤ γi, we have thatY ∈ Γ(q) ⊆ Z(q).
Therefore,Y ∈ Z ′(p).

We continue now with the main claim. LetX ∈ Γ(p). There are the following possibilities:

• X ∈ PΨ
i−1: we examine the following sub-cases.

– X ∈ N : Since before processingp only clusters inZ ′(p) intersectΨ, X ∈ Z ′(p). Therefore,
after processingp, X will remain in the same cluster as inZ ′(p). Thus,X ∈ Z(p).

– X ∈ A: from the algorithm, after processingp there are two possibilities. First possibility is
X ∈ Ip and hence,X ∈ Z(p). Second possibility isX ∈ Kp \ Ip andX is either (i) adjacent to
some node inN , or (ii) adjacent to some non integral cluster inΨ. In case (i)X merges with a
cluster inN , and since only clusters ofZ ′(p) can be inΨ, we immediately haveX ∈ Z(p). In
case (ii), as we have shown above any non-integral cluster isa member ofZ ′(p) ⊆ N , and thus
X merges with a cluster ofZ ′(p), which implies thatX ∈ Z(p).

• X /∈ PΨ
i−1: Then,X must contain a nodeu /∈ Ψ. If X intersectsΨ, then we have shown above that

X ∈ Z ′(p), and thusX ∈ Z(p). If X does not intersectΨ, any path fromp to X must intersect a
pathq ∈ Q(p), since otherwiseX wouldn’t reside in a different component. SincedG(p,X) ≤ 2γi,
we have thatdG(q,X) ≤ 2γi. Therefore,X ∈ Γ(q) ⊆ Z(q). Consequently,X ∈ Z(p).

Lemma 26. Any ball of radiusγi in G intersects with at most2α′ + 3 clusters of̂Ip.

Proof. We start by showing that we only need to consider balls of radiusγi in Ψ. LetG′ = G \ Ψ. Let Y
denote the set of nodes inG′ such that eachx ∈ Y is adjacent to a node inΨ. It must be thatY ⊆ V (Q(p)),
whereV (Q(p)) denotes the nodes of all the paths inQ(p). LetF be all the clusters inPΨ

i−1 which are at
distance at most2γi from Y , namely,F = {X ∈ PΨ

i−1 : dΨ(X,Y) ≤ 2γi}. Clearly,F = PΨ
i−1 ∩ Γ(Y).

From Lemma 25, each cluster inΓ(Y) has been used in the clusters of some path ofQ(p) that goes
throughY . Therefore, the clusters inF are all used in clusters of paths inQ(p). Consequently, the clusters
of p, Ip, cannot possibly belong inF , namelyIp ∩ F = ∅. When we further process paths inΨ in node
t (paths ordered afterp in S(t)), and then descendants ofp, we have that each of the clusters inIp grows,
however they will never intersectF . Thus,Îp ∩ F = ∅.

Consequently, any cluster of̂Ip is at distance at least2γi from G′. Therefore, any ball of radiusγi that
intersects clusters of̂Ip has to be a sub-graph ofΨ. Thus, in order to prove the main claim, we only need to
focus on graphΨ.

Consider a ballB = B(u, γi) within Ψ. Suppose thatξ ≥ 2 clusters ofÎp intersectp. Pathp is a
shortest path inΨ. Each cluster in̂Ip has a distinct leader inp. The leaders are at distance at leastγi apart
in p. Therefore, there are two clusters intersectingB, whose respective leaders,ℓ1 andℓ2, are at distance at
leastdΨ(ℓ1, ℓ2) ≥ (ξ − 1)γi. Ball B provides an alternative path betweenℓ1 andℓ2 throughu, with total
length is bounded bydΨ(ℓ1, ℓ2) ≤ dΨ(ℓ1, u) + dΨ(u, ℓ2). Since the cluster ofℓ1 intersectsB, we obtain
from Lemma 24 thatdΨ(ℓ1, u) ≤ α′γi + γi = (α′ + 1)γi. Similarly, dΨ(u, ℓ2) ≤ (α′ + 1)γi. Therefore,
dΨ(ℓ1, ℓ2) ≤ 2(α′ + 1)γi. Therefore, it has to beξ − 1 ≤ 2(α′ + 1), or equivalently,ξ ≤ 2α′ + 3.

Lemma 27. Any ball of radiusγi in G intersects with at mostc2α′k log n clusters ofPi, for a constantc2.

19

Proof. Consider a nodev ∈ G and the ballB = B(v, γi). Each nodev ∈ G belongs to a pathp ∈ S(w),
of some path separatorS(w), w ∈ T , in the recursive decomposition ofG. Clearly,B(v, γi) ⊆ Γ(p). From
Lemma 25, we have thatB ⊆ Z(p). SinceZ(p) consists only of clusters that belong toQ′ = p ∪ Q(p).
All the paths inQ′ appear in path separators ofT between the root andw. Since the depth ofT is at most
1 + log n, the total number of path separators involved inQ′ is at most1+ log n, each contributingk paths.
Therefore,|Q′| ≤ k(1 + log n).

From Lemma 26,B intersects with at most(2α′ + 3) clusters of each pathq ∈ Q′. Thus, the total
number of clusters ofPi intersectingB is at most(2α′ + 3)k(1 + log n) ≤ c2α

′k log n, for a constantc2,
as needed.

Lemma 28. Pi is a (α′, c2α′k log n, γi)-partition.

Proof. Every node inG belongs to a path in some path separator used by the algorithm. From Lemma 25,
each node in a pathp must be a member of some cluster which either belongs top or to a pathq ∈ Q(p).
Consequently, each nodev ∈ G will appear in some cluster of̂Iq of some pathq. Therefore,Pi is a partition
of G.

From Lemmas 24, the diameter of anyÎq is bounded byα′γi. Therefore, the diameter of each cluster in
Pi is at mostα′γi. From Lemma 27, each ball of radiusγi intersects at mostc2α′k log n clusters ofPi.

Theorem 29.We can obtain a hierarchical(O(log3 n), O(log4 n),Θ(log3 n))-partition of minor-free graph
G in polynomial time.

Proof. From Lemma 28, sincek = O(1), we can build a hierarchy of clusters by choosingα = α′ =
O(log3 n). Further, for each leveli, we can create the necessary padding around a root noder ∈ G of radius
γi, by creating a cluster that contains the ballB(r, γi). We can do this by using either of two methods. In
the first method, we can explicitly addr to the first separator inG, as an artificial path (with one node) that
needs to be processed first. This causes the size of the first separator to be of sizek + 1, and in the analysis
we replacek with k + 1. In the second method, we can merge all the clusters inB(r, γi) created by the
algorithm, giving a new cluster whose diameter is no more than three times the diameter of the old cluster.
Either way, the impact to the parameters of the clustering isa constant factor, giving the desired hierarchical
partition. It is easy to verify that all the steps of the algorithm can be performed in polynomial time with
respect to the size ofG and the parameters of the problem.

Corollary 30. A polylog(n)-stretch universal Steiner tree can be computed in polynomial time for any
minor-free graph.

References

[1] I. Abraham, Y. Bartal, and O. Neiman. Advances in metric embedding theory. InProceedings of ACM
STOC, 2006.

[2] I. Abraham and C. Gavoille. Object location using path separators. InProceedings of ACM PODC,
pages 188–197, 2006.

[3] I. Abraham, C. Gavoille, D. Malkhi, and U. Wieder. Strong-diameter decompositions of minor free
graphs. InProceedings of ACM SPAA, 2007.

[4] N. Alon, R. M. Karp, D. Peleg, and D. West. A graphtheoretic game and its application to the k-server
problem.SIAM J. Comput., 24(1):78–100, 1995.

[5] B. Awerbuch and D. Peleg. Sparse partitions. InProceedings of IEEE FOCS, pages 503–513, 1990.

20

[6] Y. Bartal. Probabilistic approximations of metric spaces and its algorithmic applications. InProceed-
ings of IEEE FOCS, pages 184–193, 1996.

[7] Y. Bartal. On approximating arbitrary metrices by tree metrics. InProceedings of ACM STOC, pages
161–168, 1998.

[8] D. Bertsimas and M. Grigni. On the space-filling curve heuristic for the euclidean traveling salesman
problem.Operations Research Letters, 8:241–244, 1989.

[9] A. Bhalgat, D. Chakrabarty, and S. Khanna. Optimal lowerbounds for universal and differentially
private steiner trees and tsps. InProceedings of APPROX, pages 75–86, 2011.

[10] T. Birk, I. Keidar, L. Liss, A. Schuster, and R. Wolff. Veracity radius - capturing the locality of
distributed computations. InProceedings of ACM SIGACT-SIGOPS PODC, 2006.

[11] C. Busch, R. LaFortune, and S. Tirthapura. Improved sparse covers for graphs excluding a fixed minor.
In Proceedings of ACM PODC, pages 61–70, 2007.

[12] M. Charikar, C. Chekuri, A. Goel, S. Guha, and S.A. Plotkin. Approximating a finite metric by a small
number of tree metrics. InProceedings of IEEE FOCS, pages 379–388, 1998.

[13] M. Elkin, Y. Emek, D. Spielman, and S. Teng. Lower-stretch spanning trees.special issue of SIAM
Journal on Computing for STOC’05, 38(2):608–628, 2008.

[14] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary metrics by tree
metrics. InProceedings of ACM STOC, pages 448–455, 2003.

[15] A. Goel and D. Estrin. Simultaneous optimization for concave costs: single sink aggregation or single
source buy-at-bulk. InProceedings of ACM-SIAM SODA, pages 499–505, 2003.

[16] A. Goel and I. Post. An oblivious o(1)-approximation for single source buy-at-bulk. InProceedings of
IEEE FOCS, pages 442–450, 2009.

[17] A. Goel and I. Post. One tree suffices: A simultaneous o(1)-approximation for single-sink buy-at-bulk.
In Proceedings of IEEE FOCS, pages 593–600, 2010.

[18] I. Gorodezky, R. D. Kleinberg, D. B. Shmoys, and G. Spencer. Improved lower bounds for the universal
and a priori tsp. InProceedings of APPROX-RANDOM, pages 178–191, 2010.

[19] A. Gupta, M. T. Hajiaghayi, and H. Räcke. Oblivious network design. InProceedings of ACM-SIAM
SODA, pages 970–979, 2006.

[20] M. T. Hajiaghayi, R. D. Kleinberg, and F. T. Leighton. Improved lower and upper bounds for universal
tsp in planar metrics. InProceedings of ACM-SIAM SODA, pages 649–658, 2006.

[21] L. Jia, G. Lin, G. Noubir, R. Rajaraman, and R. Sundaram.Universal approximations for tsp, steiner
tree, and set cover. InProceedings of ACM STOC, pages 386–39, 2005.

[22] P. Klein, S. A. Plotkin, and S. Rao. Excluded minors, network decomposition, and multicommodity
flow. In Proceedings of ACM STOC, 1993.

[23] G. Konjevod, R. Ravi, and F. Salman. On approximating planar metrics by tree metrics.Information
Processing Letters, 80(4):213–219, 2001.

21

[24] B. Krishnamachari, D. Estrin, and S. Wicker. Modellingdata-centric routing in wireless sensor net-
works. InProceedings of IEEE INFOCOM, 2002.

[25] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tag: A tiny aggregation service for ad hoc
sensor networks. InOSDI, 2002.

[26] S. Madden, R. Szewczyk, M. J. Franklin, and D. Culler. Supporting aggregate queries over ad-hoc
wireless sensor networks. InProceedings of IEEE WMCSA, 2002.

[27] D. Peleg.Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.

[28] L. K. Platzman and III J. J. Bartholdi. Spacefilling curves and the planar travelling salesman problem.
Journal of the ACM, 36(4):719–737, 1989.

[29] H. Räcke. Minimizing congestion in general networks.In Proceedings of IEEE FOCS, page 4352,
2002.

[30] S. Srinivasagopalan, C. Busch, and S.S. Iyengar. An oblivious spanning tree for single-sink buy-at-bulk
in low doubling-dimension graphs.IEEE Transactions on Computers, 99, 2011.

[31] M. Thorup. Compact oracles for reachability and approximate distances in planar digraphs.Journal
of ACM, 51(6):993–1024, 2004.

22

	1 Introduction
	1.1 Our results and techniques
	1.2 Related work

	2 Definitions and notations
	3 Strong partitions and Universal Steiner trees
	3.1 From a partition hierarchy to a universal Steiner tree
	3.1.1 A bottom-up divide-and-conquer algorithm
	3.1.2 Split and join: An improved top-down algorithm

	3.2 From universal Steiner trees to strong partitions

	4 Partition hierarchy for general graphs
	5 The Cluster Aggregation Problem
	6 Partition Hierarchy for Minor-free Graphs
	6.1 The algorithm
	6.2 The analysis

