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Abstract. We consider the problem of two-coloring n-uniform hyper-
graphs. It is known that any such hypergraph with at most 1

10

√

n

lnn
2n

hyperedges can be two-colored [7]. In fact, there is an efficient (requir-
ing polynomial time in the size of the input) randomized algorithm that
produces such a coloring. As stated [7], this algorithm requires random
access to the hyperedge set of the input hypergraph. In this paper, we
show that a variant of this algorithm can be implemented in the stream-
ing model (with just one pass over the input), using space O(|V |B),
where V is the vertex set of the hypergraph and each vertex is repre-
sented by B bits. (Note that the number of hyperedges in the hypergraph
can be superpolynomial in |V |, and it is not feasible to store the entire
hypergraph in memory.)
We also consider the question of the minimum number of hyperedges in
non-two-colorable n-uniform hypergraphs. Erdös showed that there ex-
ist non-2-colorable n-uniform hypegraphs with O(n22n) hyperedges and
Θ(n2) vertices. We show that the choice Θ(n2) for the number of ver-

tices in Erdös’s construction is crucial: any hypergraph with at most 2n
2

t

vertices and 2n exp( t

8
) hyperedges is 2-colorable. (We present a simple

randomized streaming algorithm to construct the two-coloring.) Thus,
for example, if the number of vertices is at most n

1.5, then any non-2-
colorable hypergraph must have at least 2n exp(

√

n

8
) ≫ n

22n hyperedges.
We observe that the dependence of exponential dependence on t in our
result is optimal up to constant factors.
Keywords: Property B, hypergraph coloring, streaming algorithm, ran-
domized algorithm

1 Introduction

Two colorability of uniform hypergraphs, also called Property B, is a well-studied
problem in hypergraph theory. A hypergraph is called two colorable if all its
vertices can be colored by either red or blue colors such that each hyperedge
contains vertices of either colors. Erdős [4] first showed by a simple probabilistic
argument that any n-uniform hypergraph with fewer than 2n−1 hyperedges is
2-colorable. Beck [3] used an algorithm of recoloring the vertices and improved
this result to show that any n-uniform hypergraph with at most n1/3−o(1)2n−1

hyperedges is 2-colorable. Radhakrishnan and Srinivasan [7] improved on Beck’s
recoloring algorithm and obtained the best known result on this problem. They



proved that any n-uniform hypergraph with at most 1
10

√

n
lnn2

n hyperedges can
be 2-colored. They also provided a randomized polynomial time algorithm that
2-colors any such hypergraph with high probability. An event happens with high
probability if for given any constant δ > 0, the probability of its happening is at
least 1− δ. In Section 2, we describe this algorithm which we refer to as delayed
recoloring algorithm throughout the rest of this paper.

The delayed recoloring algorithm assumes that all vertices and hyperedges of
the hypergraph can be stored in the random-access memory (RAM). A processor
can access RAM much faster than an external memory, and therefore it is ideal
if we can store the entire hypergraph in RAM. Unfortunately, the number of
hyperedges can be much larger than what the RAM can afford to store. For
example, the number of hyperedges can be as high as Ω(2n) when the size of
the vertex set is just O(n). This gives rise to the following question. If the
RAM has just about enough space to store the vertices, can we still obtain the
same coloring that the delayed recoloring algorithm obtains for any n-uniform
hypergraph having at most 1

10

√

n
lnn2

n hyperedges?
Before answering this question, let us first decide how we are going to store a

hypergraph in the external memory. Note that each hyperedge is a collection of n
vertices. If each vertex is represented by a B-bit long string, each hyperedge can
be stored as a sequence of nB bits. We store the hyperedges one after another
in the external memory, and store a terminal symbol when there are no more
hyperedges. The vertices can be explicitly stored before the hyperedges, but
we prefer that they are extracted while reading the hyperedges. This way, a
coloring algorithm can start working as soon as the first hyperedge is stored in
the external memory.

The algorithms that deal with limited RAM space are known as streaming
algorithms in the literature. This algorithmic paradigm have of late become
important, especially in the context of large data sets. It is motivated by the
fact that the RAM of a computer is limited, and the size of the data set is often
much larger than the size of the RAM. The data set can arrive as a continuous
data stream or be stored in an external memory, in which case it is sequentially
accessible over one or a small number of passes. However, only a minor fraction
of the data along with some local variables can be stored in the RAM at any
instant.

The challenge for any streaming algorithm is to minimize the following three
parameters: the number of passes over the data, maximum RAM requirement
at any instant and maximum processing time for any data item. On receiving
the complete data set, the algorithm should decide as fast as possible either
to start another pass or output an (approximately) accurate answer with high
probability. A number of important algorithms have been developed in streaming
model of computation, e.g., estimating frequency moments [1] and heavy hitters
[8] of a data stream. These algorithms find applications in the context of network
routing, where large amount of data flows through any router but each of them
have limited memory to process the data. In Section 3, we develop the following
streaming algorithm for hypergraph coloring.



Result 1 We provide a randomized one-pass streaming algorithm to 2-color
with high probability any n-uniform hypergraph that has at most 1
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hyperedges. This algorithm requires O(|V |B) RAM space at any instant and
O(nB|V |) processing time after reading each hyperedge. On reading the ter-
minal symbol, the algorithm spends O(nB|V |) time and then outputs the
coloring if and only if it is valid.

Note that if the number of edges is much smaller than 2n, then a random 2-
coloring will with high probability be a proper coloring. In that case, we have a
trivial streaming algorithm by choosing the coloring first, and verifying that it
does properly color all the edges in just one pass.

We next consider the question of the minimum number of hyperedges in
a non-2-colorable n-uniform hypergraph. Erdős [5] showed that there is an n-
uniform hypergraph with Θ(n22n) hyperedges that is not 2-colorable. This con-
struction uses Θ(n2) vertices. Erdős and Lovász [6] conjectured that any n-
uniform hypergraph with fewer than n2n hyperedges may be 2-colorable. We
study if constructing a counter-example to this conjecture is possible with o(n2)
vertices. Our result in Section 4 shows that with significantly fewer than n2 ver-
tices, we cannot construct a non-two-colorable hypergraph with fewer than n2n

hyperedges.

Result 2 For any n-uniform hypergraph with |V | ≤ n2

4 ln 2n and |E| < n2n,
we provide a randomized one-pass streaming algorithm that outputs a 2-

coloring with high probability. This algorithm requires O( n2

lnn ) RAM space
at any instant and O(n) processing time after reading each hyperedge. On
reading the terminal symbol, the algorithm spends O(1) time and then out-
puts a 2-coloring if and only if it is valid.

Let us elaborate on the last sentences in each of the results above. When the
algorithms terminate, we expect them to produce correct outputs with proba-
bility at least 1 − δ for any given constant δ > 0. Moreover, we insist that the
algorithms produce one-sided errors, i.e., they either produce correct colorings
or do not output any colorings. The motivation for insisting this is the following.
Both of our algorithms execute O(log 1

δ ) processes in parallel, where each process
has a small but constant probability of success. The probability that at least one
of these processes is successful then becomes at least 1− δ. To find out the one
that is successful, we must examine the correctness of the output of a process
after its termination. In each algorithm, we output a coloring if and only if we
find a successful process.

Result 1 is obtained by modifying the delayed recoloring algorithm to a
streaming version, and then showing that this modification results in the same
coloring as before. Result 2 is obtained by a simple application of the union
bound in probabilistic method.

1.1 Open questions

We point out two interesting questions that should be settled using existing
techniques.



– Can we show that no deterministic algorithm can match the performance
of our randomized algorithms? In particular, can we show that there are
two-colorable hypergraphs with (say) n2 vertices and (say) 2n edges such
that every deterministic one-pass streaming algorithm that is guaranteed to
two-color them requires superpolynomial (in n) RAM space?

– Our result on hypergraphs with O(n
2

t ) vertices does not improve on the
bound provided via the delayed recoloring algorithm when it t is small, say,
O(log n). We believe, it should be possible to combine our argument and
the delayed recoloring algorithm to show that if the number of vertices is
o(n2) then we can two-color hypegraphs with strictly more than 1
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hyperedges. We do not have such a result.

2 The Delayed Recoloring Algorithm

We will present the delayed recoloring coloring algorithm in this section. The
analysis of the algorithm can be found in Section 2 of [7].

We start by recalling our assumption that the vertices of the hypergraphs
are not explicitly stored in the external memory. With this assumption, the
delayed recoloring algorithm proceeds as follows. The I/O processor first reads
and stores all the hyperedges in RAM, and then extract the vertices from them.
Next, one of the |V |! permutations of the vertices is selected uniformly at random.
The algorithm then starts with a initial random coloring χ0(V ) of the vertices,
and attempts to flip the color of each vertex once in the order defined by the
permutation. A randomly generated boolean vector b(V ) is used to indicate
whether the color of a vertex is allowed to be flipped (b(v) = 1) or not (b(v) = 0).
If allowed, the color of a vertex is flipped if and only if it belongs to an initially
monochromatic hyperedge that continues to be monochromatic till this vertex
in considered. Let us now describe the algorithm in detail.

I/O (read). Read all the hyperedges and store them in RAM.

Step 1. Extract the vertices from these hyperedges.

Step 2. Select one of the |V |! permutations of the vertices uniformly at random.
Denote this permutation by P (V ) = [v1, v2, . . . v|V |].

Step 3. Color each vertex v ∈ V red or blue independently with probability 1
2 .

Denote this coloring by χ0(V ).

Step 4. Set b(v) = 1 with probability p (to be specified below) and b(v) = 0
with probability 1− p, independently for each vertex v ∈ V . Denote this vector
by b(V ).

Step 5. Recolor the vertices in |V | steps as follows.

Step 5(1). If v1 is contained in a hyperedge that is monochromatic in χ0(V ),
then flip the color of v1 if and only if b(v1) = 1. Denote this coloring by χ1(V ).

. . .



Step 5(i). If vi is contained in a hyperedge that is monochromatic in χ0(V )
and continues to be monochromatic in χi−1(V ), then flip the color of vi if
and only if b(vi) = 1. Denote this coloring by χi(V ).

I/O (write). Write the coloring χ|V |(V ) in external memory if and only if it is
a valid 2-coloring of the hypergraph.

Let χ(V ) = χ|V |(V ). It has been shown in [7] that if |E| ≤ 1
10

√

n
lnn2

n, then
1. Pr[there exists a monochromatic hyperedge in χ0(V ) that remains monochro-
matic in χ(V )] ≤ 2

10

√

n
lnn (1− p)n.

2. Pr[there exists a non-monochromatic hyperedge in χ0(V ) which became blue
in χ(V )] ≤ Pr[there exists a non-monochromatic hyperedge in χ0(V ) whose red
vertices became blue in χ(V )] ≤ 2np

100 lnn .
3. Pr[there exists a non-monochromatic hyperedge in χ0(V ) which became red
in χ(V )] ≤ Pr[there exists a non-monochromatic hyperedge in χ0(V ) whose blue
vertices became red in χ(V )] ≤ 2np

100 lnn .
Note that the above three events are the only bad events which can make the

2-coloring χ(V ) of a hypergraph invalid. The probability that any of these bad
events happens is at most 2

10

√

n
lnn (1− p)n + 4np

100 lnn . If p = lnn
2n , this probability

is at most 2
10

√

1
lnn + 2

100 . For any n ≥ 2, this quantity is less than ( 2
10

√

1
ln 2 +

2
100 ) <

1
2 . This means that the above algorithm produces a valid 2-coloring with

probability at least 1
2 .

To improve this success probability to at least 1 − δ for any given constant
δ > 0, we need to execute steps 2−5 of the algorithm O(log 1

δ ) times in parallel.
It can be seen that the probability that at least one of these parallel processes
succeeds in producing a valid coloring is at least 1 − δ. It takes O(n|E|B|V |)
time to check whether a coloring is valid. We choose any one of the successful
processes (if one exists) and write the coloring produced by it in the external
memory.

Let us verify that the delayed recoloring algorithm can be executed in
O(nB|V ||E|) time. Step 1 requires O(nB|V ||E|) time to identify all distinct
vertices and store them in a sequence Q. Step 2 can be implemented in O(B|V |2)
time as follows.

Initialize P (V ) to the permutation in which the vertices appear in Q. For each
1 ≤ i ≤ |V |, do the following three operations. First, generate a random number
j from [1, i]. Then, place the i-th vertex of Q at j-th position of permutation
P (V ). Vertices that used to appear on or after j-th position in P (V ) are now
shifted one place each to produce a modified P (V ).

Steps 3−4 can be implemented by creating bit-vectors for the set of vertices,
and therefore require O(|V |) time each. The k-th position in these bit-vectors
corresponds to the k-th position in the permutation P (V ). Finally, step 5(i)
requires O(nB|E|) time for any i, which implies that the total running time for
step 5 is O(nB|V ||E|).

Note that the I/O(read) step is the reason we require high RAM space re-
quirement in this implementation of the delayed recoloring algorithm. However,



this algorithm can be implemented by just storing the vertices and the hyper-
edges that are monochromatic after the first random coloring, and therefore
requires O(|V |B + nB

√

n
lnn ) RAM space at any instant. This implementation,

however, does not verify that the coloring is proper, and might output invalid
colorings. The algorithm in the next section is guaranteed never to do this.

3 An Efficient Streaming Algorithm

In this section, we present a modified algorithm that uses O(|V |B) RAM space
to store the vertices at any instant, but the total processing time remains asymp-
totically the same.

Assume that the hyperedges are stored in the external memory in the order
h1, h2, . . . , h|E|. The I/O processor reads the hyperedges from left to right and
stores only the current hyperedge in RAM. New vertices, if any, are extracted
form a hyperedge once it is read and stored in the RAM, along with previously
extracted vertices. The set of vertices after hyperedge hi is read is denoted by Vi.
Once hyperedge hi is read, the algorithm first assigns initial colors χ0 to vertices
belonging to Vi \Vi−1, and then attempts to recolor the vertices belonging to hi

in the order defined by a uniformly random permutation P (Vi) of the vertices
extracted so far. As before, a randomly generated boolean vector b(Vi) is used to
indicate whether the color of a vertex is allowed to be flipped (b(u) = 1) or not
(b(u) = 0). A vertex is recolored at most once. Let us now describe the modified
algorithm in detail.

Initialize V0 = Φ. For 1 ≤ i ≤ |E|, do each of the following steps.

I/O (read). Read the hyperedge hi and store it in RAM. Delete hi−1 from
RAM.

Step 1(i). Extract and add new vertices of hi to Vi−1, the set of vertices
currently stored in RAM. Denote this modified set of vertices by Vi. Note
that V|E| = V .

Step 2(i). Sequentially insert each vertex of Vi \ Vi−1 uniformly at random
into the existing random permutation P (Vi−1) of the vertices belonging to
Vi−1. If |Vi| = j, denote this permutation by P (Vi) = [v1, v2, . . . vj ].

Step 3(i). For each vertex u ∈ Vi \ Vi−1, set χ0(u) to red or blue indepen-
dently with probability 1

2 . Keep χ0(u) unchanged for each vertex u ∈ Vi−1.

Step 4(i). Set b(u) = 1 with probability p′ (to be chosen later) and b(u) = 0
with probability 1 − p′, independently for each vertex u ∈ Vi \ Vi−1. Keep
b(u) unchanged for each vertex u ∈ Vi−1.

Step 5(i). If hi is monochromatic in χ0(Vi), find the first (in permutation
P (Vi)) vertex u ∈ hi with b(u) = 1. Flip the color of u if and only if it has
not been flipped before. Keep the colors of the vertices belonging to Vi \ {u}
unchanged. Denote the new coloring of the vertices by χ

′

i(Vi).



I/O (write). Write the coloring χ
′

|E|(V ) in external memory if and only if it is
a valid 2-coloring of the hypergraph.

Let χ′(V ) = χ
′

|E|(V ). Recall that the original delayed recoloring algorithm

produces a coloring χ(V ) at its termination. We show below that χ′(V ) is the
same as χ(V ) for any given χ0(V ), P (V ) and b(V ).

Lemma 1. For each v ∈ V , χ′(v) = χ(v) for any given χ0, P and b.

Proof. First, let us assume to the contrary that there exists a vertex u with
χ0(u) = χ′(u) 6= χ(u). Let us also assume that h is a hyperedge that necessi-
tated u’s recoloring in the original algorithm. In other words, h was one of the
monochromatic hyperedges in χ0(V ) that remained monochromatic till u was
considered in one of the sub-steps of step 5. This must have happened due to the
fact that the vertices of h that appeared before u in P (V ) had their correspond-
ing b bits set to 0. Therefore, when h is considered in the modified algorithm,
u must be its first vertex (in permutation P (V )) with b(u) = 1. The color of u
is flipped in this step of the algorithm, if not already flipped in a previous step.
Thus, χ(u) 6= χ

′

(u). This contradicts the assumption above.
On the other hand, let us assume to the contrary that there exists a vertex

u′ with χ0(u
′) = χ(u′) 6= χ′(u′). Let h′ be the hyperedge that necessitated

the recoloring of u′ in the current algorithm. This means that all vertices (of
h′) before u′ (in permutation P (V )) had their b bits set at 0. This implies
that u′ must have been recolored in χ(V ), because h′ would have remained
monochromatic till u′-th recoloring sub-step of step 5. Thus, χ(u′) 6= χ

′

(u′).
Again, this contradicts the above assumption. 2

This lemma implies upper bounds on the probabilities of the following three
bad events:
1. Pr[there exists a monochromatic hyperedge in χ0(V ) that remains monochro-
matic in χ

′

(V )] ≤ 2
10

√

n
lnn (1− p′)n.

2. Pr[there exists a non-monochromatic hyperedge in χ0(V ) whose red vertices

became blue in χ
′

(V )] ≤ 2np′

100 lnn .
3. Pr[there exists a non-monochromatic hyperedge in χ0(V ) whose blue vertices

became red in χ
′

(V )] ≤ 2np′

100 lnn .
Note that if none of the above events takes place, the algorithm produces a

proper 2-coloring χ′(V ). It can be easily seen that the RAM requirement at any
instant is only O(|V |B). Note, however, that the above analysis does not have
the desirable property that it outputs only valid colorings. A straight-forward
check does not seem possible using O(|V |B) RAM space. We show below that
with carefully storing some vertices of a few hyperedges, we can in fact achieve
this using only O(nB) RAM space.

Checking whether a coloring is proper using O(nB) RAM space

In order to check whether the first event takes place for a hyperedge h, it is
sufficient to look into the corresponding χ0 and b bits as soon as the hyperedge



is read. The first event takes place for h if and only if it is monochromatic in
χ0 and all its b bits are set at 0. However, it is not immediately possible to
determine after reading h whether the second (similarly, the third) event takes
place because of it. Therefore, we mark h as a potentially blue hyperedge if all its
red vertices have their corresponding b bits set at 1. In h is such a hyperedge, we
store this subset Rh of red vertices in memory. At the end of |E|-th recoloring
step, we can check whether all red vertices of h flipped their colors or not. Note
that hyperedges those are not potentially blue cannot cause the second event.
Similarly, we can mark a hyperedge as potentially red and store its subset Bh

of blue vertices. For any given h, let us now calculate the expected number of
vertices in Rh.

E[|Rh|] =
n
∑

i=1

i ·
(

n

i

)

· 2−n(p′)
i
= np′2−n

n
∑

i=1

(

n− 1

i− 1

)

(p′)
i−1 ≤ np′2−nep

′n.

Therefore, the expected total number of vertices in Rh’s of all potentially blue
hyperedges is at most 1

10 ·
√

n
lnn · np′ · ep′n. By Markov’s inequality,

Pr[total number of vertices in Rh’s of all potentially blue hyperedges ≥ 100
10 ·

√

n
lnn · np′ · ep′n] ≤ 1

100 .

Similarly, we can bound by 1
100 the probability of the bad event that the

total number of vertices in Bh’s of all potentially red hyperedges is more than
100
10 ·

√

n
lnn · np′ · ep′n. As a result, the probability that any one of the bad

events takes place is at most 2
100 + 2

10

√

n
lnn (1− p′)n + 4np′

100 lnn . If p
′ = lnn

2n , the

probability of success is still at least 1
2 as in Section 2. However, the total number

of vertices in Rh’s of all potentially blue hyperedges is at most 10
√

n
lnn · lnn

2 ·√n =

O(n
√
lnn). To get the claimed bound on RAM space, we need to choose p′ more

carefully. In particular, we slightly reduce the value of p′.
If p′ = lnn

2n − ln lnn
2n , the probability that one of the bad events happens is

at most 2
100 + 2

10 + 2
100 . This means the the success probability is at least 76

100 .
With this value of p′, the total number of vertices in Rh’s of all potentially blue
hyperedges is at most 10

√

n
lnn · lnn

2 ·
√

n
lnn = O(n). Each vertex takes B bits

to store, and so total RAM space required to store all Rh’s and Rb’s is at most
O(nB). This implies that the total RAM space required for the algorithm is
O(|V |B + nB) = O(|V |B).

For any given constant δ > 0, we can repeat steps 1(i) to 5(i) of the algorithm
O(log 1

δ ) times in parallel to improve the probability of success to at least 1− δ.
The RAM requirement for this algorithm then becomes O(|V |B log 1

δ ).
It can be easily checked that the processing time for steps 1(i) to 5(i) is

O(nB|V |) for each 1 ≤ i ≤ |E|. This implies a total of O(nB|V ||E|) processing
time for the entire algorithm. On reading the terminal symbol, the algorithm
requires to look at the colors of O(n) vertices belonging to Rh’s and Rb’s to
determine the validity of the coloring, and O(nB|V |) processing time is required
for this purpose. This completes the proof of Result 1.



4 Coloring Uniform Hypergraphs with O( n
2

lnn
) Vertices

In this section, we first show that any hypergraph with at most n2

4 ln 2n vertices
and fewer than n2n hyperedges can be two colored. Erdős [5] constructed a
random n-uniform hypergraph with Θ(n2) vertices and n22n hyperedges that
is not 2-colorable [2]). Erdős and Lovász [6] conjectured that any n-uniform
hypergraph with fewer than n2n hyperedges may be 2-colorable. The following
lemma proves that constructing any counterexample to the conjecture of Erdős

and Lovász [6] requires more than n2

4 ln 2n vertices.

Lemma 2. Any n-uniform hypergraph with fewer than n2n hyperedges and at

most n2

4 ln 2n vertices can be 2-colored.

Proof. Let us assume that the hypergraph has 2Cn vertices (C is a function of
n). We partition the vertex set randomly into two parts and color each vertex in
one of them by red and the other by blue. Let us calculate the probability that
a hyperedge e is monochromatic in this coloring χ(V ). Let p be the probability
that e is monochromatic in χ(V ).

p =

(

2Cn−n
Cn

)

(

2Cn
Cn

) =
Cn · (Cn− 1) · (Cn− 2) · · · (Cn− n+ 1)

2Cn · (2Cn− 1) · (2Cn− 2) · · · (2Cn− n+ 1)

≤ 2−n · (1− 1

4C − 1
)

n

2 ≤ 2−n · e −n

8C−2 .

If C ≤ n
8 ln 2n , it follows that p is strictly less than 1

2n2n . Therefore, the
probability that at least one edge is monochromatic in the coloring χ(V ) is
at most |E| · 1

2n2n < 1
2 . This implies that there is a proper 2-coloring of the

hypergraph. 2

Note that the above proof suggests the following result. If C = n
t for a

parameter t, then there is a 2-coloring of a hypergraph with at most 2n exp( t8 )

hyperedges. This hypergraph has 2Cn = 2n2

t vertices. We show below by an
argument similar to the one used by Erdős [5] that if t = o(n), there exists

a hypergraph with 2n2

t vertices and O(n
2

t · 2n exp( t2 )) hyperedges that is not
2-colorable.

Consider a 2-coloring of the vertex set, whose size is 2n2

t . Pick a random
hyperedge of size n. The probability that this hyperedge is monochromatic is at
least

p =

(n
2

t

n

)

( 2n2

t

n

)

≥
(

n2

t − n
2n2

t − n

)n

≈ 2−n

(

1− t

2n

)n

≈ 2−n exp(
−t

2
).

Let S1, S2, . . . , Sr be uniformly and independently chosen hyperedges. The
probability that none of these hyperedges is monochromatic is at most



(

1− 2−n exp(−t
2 )
)r

2
2n2

t . If
(

1− 2−n exp(−t
2 )
)r

2
2n2

t < 1, there exists a hyper-
graph with r hyperedges that is not 2-colorable. Since (1−x)r ≤ exp(−xr), this

inequality is satisfied when r ≥ 2n2

t · 2n exp( t2 ) · ln 2.
Lemma 2 can be extended for k-coloring of n-uniform hypergraphs with ver-

tex set size O( n2

lnn ) but having fewer than nkn hyperedges.

Lemma 3. Any n-uniform hypergraph with fewer than nkn hyperedges drawn

from a set of at most (k−1)n2

4 ln 2n vertices can be k-colored.

Proof. As before, let us assume that the hypergraph has kCn vertices. We par-
tition the vertex set randomly into k parts and color them by k different colors.
Let us calculate the probability that a hyperedge e is monochromatic in this
coloring χ(V ). Let p be the probability that e is monochromatic in χ(V ).

p =

(

kCn−n
Cn−n

)

·
(

(k−1)·Cn
Cn

)

· · ·
(

Cn
Cn

)

(

kCn
Cn

)

·
(

(k−1)·Cn
Cn

)

· · ·
(

Cn
Cn

)
≤ k−n · (1− k − 1

2kC − 1
)

n

2 ≤ k−n · e
−n(k−1)
4Ck−2 .

If C ≤ (k−1)n
4k ln 2n , it follows that p is strictly less than 1

2nkn . Therefore, the
probability that at least one hyperedge is monochromatic in the coloring χ is
at most |E| · 1

2nkn < 1
2 . This implies that there is a proper k-coloring of the

hypergraph. 2

The above two lemmas also show that there exists an equitable k-coloring

of a hypergraph with fewer than nkn hyperedges if it has O( n2

lnn ) vertices. In
fact, both these proofs can easily be transformed into randomized streaming
algorithms to find such colorings. At the beginning, we store the colors of the

vertices (half red and remaining half blue) in a bitvector of size O( n2

lnn ). With the
arrival of each hyperedge, we just need to check whether it is monochromatic
by checking the corresponding bits. If there are fewer than nkn hyperedges,
the probability of success (no hyperedge is monochromatic) is at least 1

2 . By
repeating this algorithm log 1

δ times in parallel, we can improve the probability
of success to at least 1− δ. The memory space requirement for this algorithm is

O( n2

lnn log 1
δ ).

In the following, we derandomize this algorithm to k-color any hypergraph

with at most (k−1)n2

4 ln 2n vertices and fewer than nkn hyperedges. We derandomize
using conditional expectations, in a way it is used to derandomize the algorithm
to find a large cut in a graph [10]. We first provide the algorithm for k = 2.
Let us assume that |V | is even and the vertices are v1, v2, . . . , v|V |. The order of
vertices in which they are colored will be denoted by u1, u2, . . . , u|V |.

Step 1: Color v1 by red, and call this vertex u1.

Step 2: For j = 2 to n, calculate the expected number of monochromatic
hyperedges conditioned on coloring vj by red. Select the vertex that gives the
lowest expectation and color it by red. Call this vertex u2.

Step i ≤ |V |
2 : After the (i− 1)-th step, the colors of u1, u2, . . . , ui−1 are red.

For j = i to n, calculate the expected number of monochromatic hyperedges



conditioned on coloring vi by red. Select the i-th red vertex as the one that gives
the lowest expectation and call it ui.

Step |V |
2 + 1: Color all the remaining vertices by blue.

It can be easily seen that such an algorithm produces a deterministic 2-
coloring in time O(|V |2|E|). The space requirement, however, becomes O(|E|B).

A similar deterministic algorithm exists for k-coloring as well. We first find
the vertices with color1, followed by color2, . . ., colork.

5 Streaming and the Lovász Local Lemma

Radhakrishnan and Srinivasan [7] considered the local version of the problem of
2-coloring. In this section, we mention a streaming algorithm for this version.
In particular, we observe from the parallel version of the algorithm of Moser
and Tardos [11] that for any given constant ǫ > 0, there exists an O(log |V |)-
pass streaming algorithm to 2-color any n-uniform hypergraph none of whose

hyperedges intersects more than (1−ǫ)2n−1

e − 1 other hyperedges. This algorithm
requires O(|V |B) memory space. For such hypergraphs, it is an interesting open
problem to find an O(1)-pass streaming algorithm that uses asymptotically just
enough RAM space to store the vertices.

Moser and Tardos [11] recently proposed a parallel algorithm for Lovász Local
Lemma, which we describe below. Let X be a finite set of events determined by a
finite set P of mutually independent random variables, such that each event of X
is determined by a subset of the variables in P . Let GX denote the dependency
graph of the events, i.e., two events A and B are connected by an edge if and
only if they share common variables. For any event A ∈ X, we denote by N(A)
the events which are neighbors of A in GX . An assignment or evaluation of the
variables violates an event A if it makes A happen. With these notations, we
explain their algorithm:

Step 1. Evaluate each variable in P independently at random.

Step 2. If there exists at least one violated event in X, construct a maximal
independent set M of the sub-graph (of GX) induced by the violated events in
X. Independently perform random re-evaluation of each variable that belongs
to one of the events of M .

Step 3. If there are no violated events, output the current evaluation of the
variables. Otherwise, go to Step 2.

If a local condition is assumed to hold for each of the events, the follow-
ing theorem bounds the expected number of times Step 2 of the algorithm is
executed.

Theorem 1. [11] If ǫ > 0 and there exists real number assignments x : X →
(0, 1) such that

∀A ∈ X : Pr[A] ≤ (1− ǫ)x(A)
∏

B∈N(A)

(1− x(B)), (1)



then the algorithm executes step 2 an expected O( 1ǫ log
∑

A∈X
x(A)

1−x(A) ) number of

times before it finds an evaluation of P violating no event in X.

For each hyperedge h of a hypergraph H, let Xh denote the event that h

is monochromatic in a 2-coloring of H and let X = {Xh : h ∈ H}. Therefore,
Pr[Xh] = 21−n. If each hyperedge of H intersects at most (1−ǫ)2n−1

e − 1 other
hyperedges, we can assign x(Hh) =

e
(1−ǫ)2n−1 to satisfy Equation 1 for all Xh ∈

X. (We use (1− 1
r+1 )

r ≥ e−1 for any r ≥ 1.)
In our streaming algorithm, we start with a uniformly random coloring of

the vertices. Thereafter, Step 2 of the algorithm can be executed once in each
pass as follows. Whenever an hyperedge arrives, we mark and store its vertices in
memory if and only if it is monochromatic in the current coloring and does not in-

tersect with any of the previously marked hyperedges. Since at most |V |
n disjoint

hyperedges can be marked in one pass, only O(|V |B) memory space is required
to store all their vertices. At the end of each pass, we randomly re-evaluate the
colors of each of the marked vertices and return to the beginning of the sec-
ondary memory. The algorithm stops if and only if there are no monochromatic
hyperedges in the current coloring. By Theorem 1, this algorithm terminates

after O(log |E|
2n−1 ) = O(log |V |) expected number of passes.
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