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Two interesting cases of continued 
mating in monogenic and digenic 
systems 

v. Arunachalam 
Division of Genetics, Indian Agricultural Research Institute, 
New Delhi ] 10 012, India . 

Mating with a heterozygote, continued across 
generations, has been investigated ane·w. An interest­
ing single-gene system under this continued mating is 
presented and shown to extend, in general, to two· 
genes. Based on the results, a possible modified bi­
parental mating system of high practical significance 
is highlighted. Likewise, under continued selfing, the 
mean value of a quantitative trait has been derived, 
for the first time, in terms of recombination fraction 
and additive-additive interaction in a two-gene 
system. 

UNDERSTANDING the dynamic flow of gene and 
geno~ypic frequencies under specific systems of mating 
continued across generations is,- very essential in 
pred icting and directing. population improvement. The 
stochastic process of gene frequency changes is easy to 

work ou~ in terms of recurrence relationships. Such 
changes under popular systems of mating like selfing 
and sibbing continue to be the topics of discussion trt, 
many text books 1-4.. For instance, Kempthorne2 has 
discussed the case of full-sib mating with any number of' 
allel~s at a single locus. He identified seven general 
types of mating and worked out the changes in genotypic . 
frequencies which turned out to be complex, though 
elegant. Yet it would be useful for practical biologists if 
the theoretical logic is underlined using simple models 
li.ke that of a single diallelic locus. Having built such a 
basic fouhdation, it is equally important to ill':1strate the 
cOlnpiexities that would arise in cases of two or more 
genes; this would arrest the temptation to generalize 
results from one gene to many genes oblivious of the 
hurdles in the process. This paper aims to. highlight two 
interesting case studies - one in single and the other in 
two genes - that have not been dealt with in published' 
1 iterature to the best of the author's knowledge. 
Incidental infonnaJion of value to practical plant/animal 
breeding is also sought to be retrieved from these 
studies. 

Case 1. Continued mating to heterozygote· 

I n the process of illustrating Baye' s theorem of 'inverse' 
probability, Smith5 has described a system of mating 
that lends its~lf to illuminating an ~nteresting pheno­
menon. 

Initially, a cross is made between two heterozygotes. 
The resulting progeny is mated to a heterozygote and 
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Figure 1. Continued mating to a heterozygote. 

this· process is continued. We study the population 
structure in successive generations. 

~. 

The process is illustrated in Figure 1. Let Ai (i = 1, 3) 
penote, respectively the events that R is YY, Yy and yy. . 
Likewise, let B; (i = 1, 3) denote, respectively the events 
that Tis YY, Yy and yy . 

Denote P (R = A.) = x· r I I 

f~ (T = B;) = Zj (i = 1, 3) 

l~(T = BrlR = As) = mrs (r, s =.1,3) 

The matrix (m",.) is obviously given by 

1 1 
0 - -

2 4 

M= 
1 1 1 

-
2 2 2 

0 
1 1 
4 2 

From el1ementary principles, it is easily seen, for 
instance, that 

1 1 11 1 1 1 =---+_._+_._=-
4222422 

Thus, if Z; . (zl~' z2' z3) 

and 
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then Zl = MX 

1 1 
0 

1 1 - - - -
2 4 4 4 
1 1 1 1 1 - - - - -- -
2 2 2 2 2 

0 
1- I 1 1 - -
4 2 4 4 

This state is identical to the initial state. Therefore, the 
frequencies of possible genotypes in the second 
generation will again be given by Z2 = MZI = M MX 
= M2X, where 

3 1 1 - -
8 4 8 

M2= 1 1 1 - -
2 2 2 
1 1 3 
- - -
8 4 8 

Likewise, Z3 = M~ X, where 

5 1 ·3 - -
16 4 16 

M3 = 1 1 1 
2 2 2 
3 1 5 

16 4 16 

Note that the third row is the first row in reverse 
" 

order and the second row is constant in every genera-. 
Ion. 

The element m11 of matrix M in successive genera­
tions is: given by 2/4,3/8,5/16,9/32,17/64, ... in oth~r 
words, 

In = value of mll (or m33) in generation n 

11, 
= -4 + 1 for n = 1, 2, ... 2n+ , 

Similarly, Un = value ofm13 (or m31) in generation n 

1 
=--( 

2 n 

Thus, Zn = ArX. 

/) 

As n ~ 00, In ~ 114 and Un ~ 1/2, the giving 

1 1 1 -
4 4 4 

MOO = 1 1 1 
-

2 2 2 
1 1 1 - -
4 4 4 
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1 -
4 
1 

leading to Zoo = 2 

, 1 

4 

In general, Hardy-Weinberg equilibrium is maintain­
ed under six IPossible matings (random mating). But in 
this case, restricted mating to a heterozygote alone, viz. 
yy x Yy : Yy x Yy : yy x Yy, maintains such an 
equilibrium \vith initial frequencies of genotypes (1/4, 
1/2, 1/4). 

, , 

To examine whether the results extend to a general 
two-gene. case with linkage, let us consider an F] 
generation consisting of only, AB/ab, the coupling 

r 

double heterozygote. Let the recombination fraction be 
r. As describe:d earlier, let F2 be obtained by mating F 1 

with A 8/ ab a.nd F 3 by mating the progeny generation 
with AB/ab and so on (Table 1). On examining the 
frequency of the 10 resulting genotypes, it is easily seen 
that they can be arranged in 5 genotypic groups. 
Individual genotypes in each group' have identical 
frequencies (see Table 1). Further, we note that 

Table 1. Frequency of genotypes under heterozygote x hetero­
- zygote matings in two genes. 

Genotypic 
group 

I 

II 

III 

IV 

V 

AB AB 
-Fx-1 

ab J, ab 

AB 
, -F2 x-

ab 

leads to 

five groups of genotypes 

I. 
,-AB ab --AB' ab 

AB AB Ab aB - - - -II. 
Ab' aB' ab' ab 

III. 
Ab aB - -. Ab' aB 

IV. 
AB -ab 

V. 
Ab 
aB 

F2 

+(1-r)2 

+r(1-r) 

1.r 2 
4 

+(1- r)2 

..Lr 2 
2 

Frequency in . 

+(1-r)[(1-r)(1- 2r) + I] 

+r[(1-r)2 +1/4] 

1 2 -r (3-2r) 8 . 

! (1-r)[(I-r)(1-2r)+I] 

!r 2 (3-2r) 
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Table 2. Transition of genotypic group frequencies under 
linkage in two genes. 

Genotypic 
group* 

I 

II 

1 -
4 

o 

III 0 

* As in Table 1. 

r 0 

1 
4 
• 

o 

o 

F2 

9 
64 

3 
32 

1 
64 

r = 1/4 
( r = 1/2 

F3 F2 

33 ,I 1 -256 16 16 

13 1 1 - -128 8 8 

5 1 1 -
256 16 16 

genot~pic groups IV and V consist of coupling and 
repulsion double heterozygote's with twice, the 
frequenc.ies of groups I and III, respectively. Hence, for 
all practical purposes, it is enough to consider groups I, 
II and III only, whose frequencies in F2 and F3 have 
been derived (Table 1). .' 

Three distinct cases of r (r = 0, 1/4, 1/2) help rto 
. evaluate" under linkage, the trend in transition of 
frequencies from F2 to F3 in various groups (Table 2). 
When linkage is extremely strong (r ~ 0), the 
population consists of only AS/ AB, AB/ab and ab/ab 
which is identical to the one-gene case, gametes AB, ab 
behaving like alleles of a singl~ locus. In the case of. 
r = 1/2, equivalent to no linkage, the population remains 
in Hardy-Weinberg equilibrium. Therefore, this case is 
~lso ana.logous to the monogenic case. When the linkage 
IS not tIght (0 < r < 1/2), the frequencies of groups II 
and III, and, therefore, of V increase at the cost of I and 
IV. In other words, frequencies of homozygotes at both 
loci (AB/ AB, ab(ab) and of the coupling double 
heterozygote (AB/ab) decrease, consequently increasing 
heterozygosis. This result is similar to that derived in 
the single-gene case~ Thus, the results of the monogenic 
case hold broadly in the digenic case too. It is easy to 
visualize the corresponding results if we start with a 
repulsion double heterozygote in Fl. 

The mating ~ystem described above can be practised 
in F 2 and further generations in breeding for improved 
productivity in plants. At present even biparental mating 
(in F 2) that neither distinguishes parental genotypes nor 
restricts matings to heterozygous parents has been 
established to be superior than selfing in producing 
utilizable genetic variability. In this context, the present 
results focus sure clues to improve such variability still 
further. Even in polygenic systems (more relevant to 
practical plant breed~ng situations), it is possible to 
detect more likely heterozygotes. For instance, such 
genotypes would show significant improvement in the 
desired direction over the better parent for a number of 
characters (as per heterosis concepts). Restricting the' 
mating of the progeny population to such genotypes 
would scale up the frequency of matings involving a 
heterozygote. Further, by similar methods one can 
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Table 3. QT means in successive generations of selfing in' 
two linked genes. 

Generation QT mean' 

1 . 1 
2(ha +hb) +lX+IQ! 

(z+i/)(ha +hb)+iW(J _X2)+1.Q12 
. 4 

(: 1 )n-3 ( 1 )n-l - Z+ _ y2 
2 2 

x(h, + hb ) +iw(l-xn-I ) +( I f'lyn-, 
Foe IW 

x = 1/2 - r; w =: (1/2 - r)/(1/2 + r); y = r2 + (I - r)2; 

z = r(l - r)(l - r + r2). 

restrict the p.an!nts chosen from the progeny population 
to the most-hke:ly heterozygotes. Only more experiments 
w~th plant/animlals can provide confirmatory support and 
crystallize conc;epts with concrete application potential. 

Case 2. Continued selfing in two linked genes 

Selfing is th{~ most common method of advancing 
generations in plant breeding. The reduction of 
heterozygosity . under, selting' is well-known and 
recurrence relations have been developed for a single 
g~ne a~? t~o unlinked genes in the absence Qf linkage 
disequIlIbrIum. In the latter case, the' process ' is 
equivalent to a single gene except that- there are two' 
dominance effects (ha, hb) corresponding to the two 
genes .and consequently a dominance-dominance inter­
action, (I). Thl~ theory has been well documented2,4. 

It is generally believed that the final state; namely, 
complete absence of heterozygosity, will be reached 
asymptotically when factors like linkage disequilibrium, 
inbreeding and low recombination (recombination 

. ,fraction. r near zero) implying tight linkage are taken 
into account. The mean value for a quantitative trait 
(QT) decreas.es gradually over successive generations. 
In . a single gene, QT mean in the final state becomes 

. equal to (p - q)d, where p is the frequency of the 
dominant allele, q = 1 - P and d, h, -d represent' the QT 
values of dominant, homozygote, heterozygote and 
recessive homozygote, respectively, following Mather' 
and Jinks4. If, in addition, p = 1/2, the OT mean at the 
final state = 10. ' 

In the case of two genes, this result does not extend 
unconditionally. When the recombination fraction 
r = 1/2 and initial linkage disequilibrium D is absent in· 
large random mating populations, an equilibrium is 
maintained. On the other hand, continuous selfing will 
lead to·a final state in which the four homozygotes, viz. 
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Table 4. Changes in mean values of QT over successive generations of selfing in two linked genes 
for various values of recombination. 

Generation . I 
r=-

2 
1 

r=-
4 

r=O 

. F, 

F 3 
1 1 (5)2 5. -(h +1,)+_ - 1+-1 
4 a '~ 4 8 16 

1 1 3 
-(h +J.,)+-I+-i 4 a ''b 4 4 

Fn h.1 +hb +~ 
:2/.-1 4'1-' 

(h, +0,) + (5/Sr', +.!.(I 
2n- ' . 3 

I) 
4n-1 I 

+ 1- 1 II. +h, +1 ( I) 
2n-l 2n-l 

F.., 0 
1 . 
-/ 
3 

,. 

, I 

Ai)BB, AAb~~ aaBB and aabb (if the two genes are 
A-a; 8-b) ;will Qccur with equal frequencies if 
PI '::: P2 = :1/2, leading to a OT tnean value = O. This 
res'u'lt is then an extetlsion, of the result fron1 a single 

, • I . , " 

gene. 
,i Howev.er, when the recolnbination fraction 'i= 1/2, such 
{~sufts. do not extend. The recu~rence relations giving 
.the QT I meal) yalue in successive generations, not 
P4blished s6 far, have now been derived and presented 
inj'Tabie 3. The QT mean is shown to have contributions , 

of not only ha, hb and' but also i, the additive-additive 
interaction effect. 
. When r = 0, i.e. when there is complete linkage, the 
ot'mean in the final state (after a very large number of 

, I.' I. •• , , 

generations .~orresp9nding to F".,) = i, which goes on 
re~uc.in.g and .becoilles zero when r = 1 12 (corresponding 
"0;' . unlinked loci. as Jnentioned earlier). Broad 
extrapolation of these resuhs to a general polygenic case 

""I."'" .. 

would suggest that the QT Inean, after a very large 
nUlnber of generations, wou Id stj II be a function of 
interactions, including the additive-additive type, for 
the two-gene case (Tab Ie 4). In practice, it is not 
possible to attain the final state Foo. In addition, plant 
breeders advance, n10st often, progeny generations by a 
finite sanlple of selfings, which in reality, may lead to 
results far a\vay from the theoretical expectations (cf. 
Tables 3 and'4). 

It is thus clear that practical plant breeding situations 
suffer a few drawbacks: 
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(a) The number of matings to advance p~ogeny 

generations is finite and often too small to be 
amenable to theoretical formulation. Furth"er, the 
finite and ~m(J II progeny sizes maintained in 
practical breeding experiments cannot admit to a 
large number of successive seltings and, therefore, 
the F 00 state can rarely be approached. 

(b) Assumptions of. .. ,a large population, independent 
.: ~nd addit~ve genes on which theories are built4 

,cannot, in general, fit practical. plant breeding 
. shuations, grossly redu.cing the suitability of such 
theories. 

Nevertheless, the result that in a two-gene. system 
practising selfing t~e ()T tncan at the final state would 
be a function of the value of additive--additive effect and 
r, the reconlbination fraction. is signiticant. 
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