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ABSTRACT 

In this paper an attempt to model wheat yield is made by exploiting characteristic interaction of cross-polarised SAR 
with wheat crop.  SAR backscatter from a crop field is affected by the density, structure, volume and the moisture 
content of various components of plant (viz. head, stem, leaf) alongwith soil moisture. Hence, to effectively handle the 
influence of each of these components of the plant on SAR backscatter, a plant parameter, termed as Interaction Factor 
(IF) is conceptualised by combining volume, moisture, height for each of the component and density of plant. For this 
purpose, detailed experiment over farmers’ fields was carried out in synchrony with SAR acquisition involving in-depth 
measurements on volume, moisture content and height of various components of wheat plant, number of grains, plant 
density and soil moisture. Stepwise regression analysis revealed that IFHead significantly affects the shallow incidence 
angle, cross-polarised C-band SAR backscatter. IFHead is also highly correlated to the number of grains. This is attributed 
to the fact that parameters of the wheat head from which IFHead is calculated, namely moisture, volume and height, 
determine eventual number of grains. The study offers an approach for estimating wheat yield by retrieving number of 
grains from shallow incidence angle cross-polarised SAR data. 
 
Keywords: Envisat-1 ASAR, SAR Backscatter, wheat yield, number of grains, head, leaf, stem, crop volume, crop 

biomass, crop moisture, soil moisture. 
 

1. INTRODUCTION 
Modelling yield of a crop is a challenging area of research for many researchers. Many approaches like biometric, 
econometric, weather indices, crop-weather and optical spectral models have been adopted to estimate crop yield. In 
addition to issues related to predictability, the scarcity of required database limits the use of most of these approaches. 
Optical spectral models involving single/multi-temporal optical remote sensing have also been widely used alone or in 
combination with other approaches like crop-weather.  However, it is difficult to operationally use the approach owing to 
the lack of long time-series of uniform spectral data. The basis of estimating wheat yield using optical remote sensing is 
the impact of crop vigour on spectral signatures in optical region of electromagnetic spectrum which is governed by the 
micro level interaction that takes place between a standing crop and sun radiation. The effect of atmosphere and soil 
background often results in low correlation of yield with canopy vigour. It is the basic difference in the sensitivity of 
optical and synthetic aperture radar (SAR) to the different component of a crop that makes SAR a promising tool for 
modelling crop yield. The first and foremost is the all weather capability of SAR along with its unique sensitivity 
towards structure, density and moisture content of a crop canopy, which gives SAR an edge over optical remote sensing. 

Modelling SAR backscatter from a vegetated area has been an active area of research [1]-[2]. A number of crop 
parameters have been used to describe crop plant like crop height, wet biomass, dry biomass, plant density etc.  It is well 
known that SAR is sensitive towards structure, density and moisture content of a crop plant [3]. Its sensitivity to the 
different components of a crop makes SAR a promising tool for characterising a crop plant. Several studies have been 
carried out to understand the effect of crop growth on temporal SAR backscatter [4]-[5].  
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SAR backscatter has been successfully used for crop classification [6]–[9].  The Michigan Microwave Canopy Scattering 
(MIMICS) model is one of the most successful models to predict SAR backscatter of forested land [10]. MIMICS has 
also been found to be useful even when adapted for agricultural applications like retrieval of crop biomass [11]. 
However, it is required to have a large number of parameters for adapting to MIMICS. Researchers have also attempted 
retrieval of various crop parameters using empirical as well as semi-empirical models like water cloud model.  The 
approach is to model SAR backscatter using plant descriptor parameter and then to invert the SAR backscatter model to 
retrieve the plant descriptor parameter used.   The crop parameters of interest have mostly been that of retrieval of crop 
height [12] and crop biomass [13]. Use of Leaf Area Index (LAI) has also been done as the substitute of plant descriptor 
to characterise SAR backscatter from crop covered fields [14]-[16]. Semi-empirical model developed by [17] has shown 
a good correlation with vegetation water mass at L-band VV polarisation. A study carried out by [18] using C and X 
bands confirmed that plant water content can be retrieved using Radar data. However,  taking only any one of the 
parameter of a crop is not sufficient to characterise the crop fully as SAR is sensitive to the structure and density of a 
crop as well as the crop moisture and moisture content of the underneath soil. Besides, the structure of the crop in terms 
of  the volume fraction and distribution of various components of a crop plant, like its head, leave, stem along with the 
moisture content of each of these component also significantly affects the radar backscatter. [19] have experimentally 
confirmed the effect of structure on SAR backscatter at X-band using ground based radar. It is felt that any single 
parameter is not sufficient to fully characterize the SAR interaction to crop. Therefore in this study, component wise 
volume, moisture, height and density has been combined to arrive at a plant parameter, which can better characterize the 
SAR interaction to different layers of wheat crop. The sensor parameters also play a significant role in the SAR 
sensitivity to crop plant because it is the sensor parameters like frequency, polarisation and angle of incidence that 
determines the dominance of the different component on to radar return signal. SAR backscatter from longer wavelength 
is influenced by most of the components of the crop along with that of underneath soil as longer wavelength penetrates 
deeper in the crop. However, shorter wavelength interacts mostly with the upper crop layer hence is likely to be less 
influenced by the underneath soil. Similarly, shallow angle of incidence is likely to intercept more of the crop as 
compared to steep angle of incidence due to higher path length within crop. The polarization of transmit and receive 
SAR signal also play an important role in the impact of various components of crop on to SAR backscatter. Experiment 
on wheat crop under controlled laboratory environment using a ground based SAR [20] indicated that most of the signal 
strength at C band cross-polarised data is observed to be from upper layer of a crop canopy. Thus, cross polarised SAR 
backscatter at shallow angle of incidence is expected to be mostly influenced by the upper layer, namely head of the 
wheat crop. In this study   cross polarised ENVISAT-1 ASAR data has been explored for modelling wheat yield in terms 
of number of grains which forms the head. The experiment for this purpose has been carried out over farmer’s fields. 
This paper describes the experimental setup, the proposed plant parameter, developed SAR backscatter model along with 
its validation, inversion of the SAR backscatter model to retrieve the proposed plant parameter and finally the model 
relating the retrieved plant parameter to the number of grains used to reach to wheat yield and validation of the same. 

2. DATASET AND STUDY AREA 
For the present study, cross polarized (VH) ENVISAT-1 ASAR IS4 data, dated 11th March 2005 and 04th March 2006, at 
36o (central) incidence angle has been acquired over parts of Saharanpur and Haridwar districts of India. ENVISAT-1 
operates at C-band (λ = 5.6 cm) with like as well as cross polarization mode along with varying incidence angles with 
nominal resolution of 30 meters for standard beam mode. Geographic Coordinates of the study area are 77° 28’ 36”E to 
77° 57’ 03”E and 29° 45’ 01”N to 30 ° 05’ 11”N. The study area is dominated by agriculture land and major portion of 
the study area is covered by the alluvial, well-drained loamy soils (both coarse & fine). Two major canals are passing 
from this region, one is Gang canal flowing from Northeast direction to Southeast direction and another is Yamuna canal 
flowing from Northwest to West direction. The major crops during the time of study were wheat and sugarcane. Besides 
satellite SAR data, 1:50,000 scale SOI (Survey of India) toposheets were used along with a GPS based mobile mapping 
System.  

3. EXPERIMENTAL SETUP 
This investigation involves conceptualisation and development of a plant parameter which describes SAR interaction to 
crop plant. Execution of such an investigation demands a very sound experimental plan to collect ground truth 
observation from sampling fields in synchrony with Envisat–1 ASAR passes. Since the experiment is conducted in 
farmers’ field, an important step here is to determine the optimum size of sampling field i.e. to arrive at the minimum 
required size of a farmer’s field such that the backscattering coefficient derived from the field actually represents the true 
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average backscatter of the field. This ensures developing a true relationship between backscattering coefficient and 
observed values of parameters from the farmers’ fields. The minimum size of sampling fields was determined using 
Statistical approach.  

3.1 Statistical Approach to Arrive at the Size of Sampling Field  
In case of SAR image, the problem of fading needs to be considered to determine the minimum size of the sampling unit 
(i.e. minimum size of the farmers’ fields appropriate for carrying out the sampling).  Fading is a phenomenon in radar 
system, due to which the random fluctuations of the return signal, observed from an area extensive target, produces 
speckles on the image. Therefore good estimates of the backscattering coefficients are obtained only if enough pixels are 
averaged over an area extended target like farmer’s field [21]. The number of pixels required to be averaged determines 
the size of the sampling unit, i.e. the field. 

If a resolution cell value is the amplitude of random return signal, the probability distribution function is described by 
Rayleigh distribution for the single look image [22].   
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where P(x) is the probability of a resolution cell to have an amplitude between x and  x + d x, µ is the mean value of x. 
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The number of resolution cells, N, required for an estimate of the average amplitude with a given error at a given 
confidence interval can be determined by the probability approach of arriving at an estimate of the µ as follows: 
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x  is the average of the N samples observation. 

By following the procedures as described by Patel, et. al., [23] we get the required sample size for an error of 10% on the 
signal amplitude i.e. α = 0.1, and at 90% confidence interval (Zα/2 = Z.05 = 1.64) as  

 N =  (1.64 * 0.523/0.1)2                                                             (4) 

Thus we get N = 74 for an error of 10% on the signal amplitude and at 90% confidence interval. Hence, 74 pixels should 
be averaged to get an estimate of backscattering co-efficient with an error of 10% on the signal amplitude and 90% 
confidence. 

For the case of 3 look, ENVISAT-1 ASAR data with nominal resolution of 30 meters, we get 74*30*30 = 66600 m2 area 
as the required size of sampling unit. Since multi-looking reduces the required size of samples to arrive at an estimate to 
backscattering coefficient by the number of looks, the minimum area to be taken as the size of the sampling unit is 
computed as 66600m2/3 = 22200 m2 = 148.99 x 148.99 m2  ~ 150x150 m2   to get an average signal amplitude with an 
error of 10 % at 90% confidence interval. Thus the required size of sampling field corresponds to 5x5 resolution cells on 
the Envisat-1 ASAR image. 

3.2 Measurements of Plant and Soil Parameters  
Identification of the sampling locations on SAR images has always been a challenging task particularly when only a 
single channel SAR data is used.  Whenever experiment is conducted over farmers’ fields, most of the time sampling 
fields have to be chosen in such a way that they have to fall near ground control points (GCPs) like rail/road/canal 
crossings. However it is not always feasible to identify the rail and road network unless the look direction and the 
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direction of rail/road lines are orthogonal to each other. If the road/rail lines are parallel to the look direction then it is 
difficult to detect them. Hence even when the sampling fields are chosen to fall at GCP’s like rail/road or road/road 
crossings, it is still not guaranteed that it will certainly be identified on the image. Moreover, if they are not near the 
sampling field then identification of sampling fields are extremely difficult. Therefore even with some amount of 
uncertainty, it becomes a compulsion to always select sampling fields near a ground control point. This in turn restricts 
the kind of variability in the characteristics of the sampling field that is required to carry out a specific study in farmers’ 
fields. Moreover the stringent requirement of farmers’ field size being larger than 150x150 m2 also adds to the 
restrictions. For example, one may not be able to locate enough number of large wheat fields near GCP’s which is 
required to carry out this particular study.  Particularly in India, the field size is often very small. It could even be less 
than 100m x 100m.  To overcome these difficulties the authors have come up with a practical solution that of using a 
Global Positioning System (GPS) based mobile mapping unit to trace the boundaries of each of the farmers’ sampling 
field as shown in figure-1.  Along with the field boundary, the road network that is being en-routed to collect the samples 
from farmer’s fields is also being mapped. The mobile mapping unit provides the vector layers in UTM projections with 
detailed information of each of the sampling field as output layer. Later on while carrying out image processing these 
vector layers are superimposed on the geo-referenced SAR images. Adopting this procedure not only ensured the 
identification of the farmer’s fields on SAR image with high accuracy, but also removed the restriction of selection of the 
sampling field at or near the GCP’s. At the same time it also ensured accurate assessment of the field size. 

 

Fig. 1. A typical example of the sampling field boundary as traced using GPS based mobile mapping unit. The sampling 
location within the sampling field are also shown. 

By adopting the above described approach, the experiment has been conducted on framer’s fields that were larger than 
150x150 m2. The data was collected during the month of March 2005 and March 2006 in synchrony with Envisat-1 
ASAR passes. Detailed field parameter collection was planned in order to fully characterise the backscattering response 
from the wheat crop. In order to fully characterise interaction of SAR to wheat crop, the crop was segmented in to three 
components namely, stem, leave and the head of the wheat plant. The parameters measured are volume, moisture and 
height/length of all the three individual components (head, leave and stem), moisture of the underlying soil alongwith 
percentage cover and plant density. For the purpose of measurement of volume and moisture of different component of 
the plant, twenty five plants from each of the sampling field were selected as depicted in figure-1. All the three 
components (head, leave and stem) of wheat plant were separated from each other by cutting each of the wheat plant. 
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Number of wheat grains were counted from the wheat heads. The fresh weights of all the three components were 
separately measured. Then volume of each of the components was separately measured using glass measuring cylinders 
as shown in figure-2.  

 

Fig. 2.. Measuring volume of different component of wheat crop 

Following the volume measurement, all these components were then oven dried at 85o C temperature for 24 hours in an 
electrical oven fitted with digital temperature controller. Once oven dried, the dry weight of these components was 
measured to arrive at dry biomass. The dry and wet biomass was used to arrive at moisture content of individual plant 
component. Volumetric soil samples at 0-5cm depth were collected from the soil underneath the wheat crop using a tube 
auger. Fresh weight of the soil samples was noted and the samples were oven dried at 105o C temperature for 24 hours. 
After oven drying of fresh soil samples, dry weights of the soil samples were noted and volumetric soil moisture was 
arrived using the fresh and dry weights of the soil samples and their respective bulk densities.  The bulk density of each 
of the sampling locations was derived with the help of undisturbed soil sample of known volume (100 cc) with the help 
of a core sampler. Field parameters recorded for each of the sampling field consist of  height/length of head (Hh), 
height/length of stem (Hs) and height/length of  that portion of plant, which occupies leaf (Hl), i.e from the point where 
the first leaf appear to the point from where the top leaf starts dropping sideways, plant hight (Hp), plant density(N), 
percentage cover, wet biomass of individual component of plant (namely head, leave, stem), wet biomass of plant, dry 
biomass of individual component of plant (namely head, leave, stem), dry biomass of  plant, ,moisture content of 
individual component of plant (namely Mh, Ml, Ms), moisture content of  plant (Mp), volume of individual component of 
plant (Vh, Vl, Vs), volume of plant (Vp) and volumetric soil moisture of underneath soil. For both the years, in the month 
of April, the time when wheat is ready to harvest, the sampling fields were revisited and the yield observations were 
made.  

4. INTERACTION OF RADAR SIGNAL WITH CROP PLANT 
SAR signal from a crop-covered field is affected by geometry and dielectric properties of the crop. A given crop can be 
characterised by the size, shape and dielectric properties of its various components. The proportion of horizontally and 
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vertically polarized components in the received backscatter is dependent on the polarization of the transmitted 
microwave signal and the relative orientation of the scattering elements present in the vegetation [24]. As compared to 
the like polarized SAR signal, cross-polarized SAR signal is likely to be more sensitive to vegetation volume owing to 
the depolarisation of signal that takes place during the multiple scattering of the incoming signal within the vegetation. 
At the same time structural properties of various components of the crop also significantly affect the cross polarised 
signal. The resultant backscatter is expected to be depending upon the fractional distribution of the different components 
of the crop having distinct structural and dielectric characteristics [25]-[26]. 

Thus in case of wheat crop, SAR backscatter can be considered as a composite of its interaction with head, leave and 
stem along with the moisture content of the underlying soil. At the same time, the distribution of the volume and 
moisture of each component of wheat plant determines the depth of penetration of a signal into a wheat crop. Therefore, 
it is neither the moisture content of each of these components nor the volume of each of these components that alone can 
fully describe the SAR backscatter from a wheat crop. Hence a plant parameter is conceptualised in this paper, which is 
combining the moisture content in a confined volume as well as the density as described in the following section. 

4.1 Conceptualisation of the Crop Parameter: The Interaction Factor 
As discussed in previous section, the interaction of SAR signal is not uniform over the crop plant. Different component 
of crop contains different moisture and the volume that each of the component occupies is also different. Thus, in order 
to account for the structure of crop, one needs to segment the plant in to different components. It is the moisture 
distribution in a given volume that affects the backscatter. Thus there is a need to have a plant parameter which is 
combining the volume as well as moisture of each of the component of the crop plant.  The quest to arrive at a plant 
parameter that is able to characterise the SAR interaction to a given crop has lead to conceptualisation of a plant 
parameter, namely the Interaction Factor. The term Interaction Factor is coined for this plant parameter owing to the fact 
that it is formulated in such a way that it tries to incorporate the factors which are responsible for the interaction of SAR 
signal to crop which in turn determines the resultant SAR backscatter. The Interaction Factor combines the moisture 
content in a confined volume for each of the component for the given field. The interaction factor for the wheat crop as 
whole is defined as follows: 

Interaction factor of whole plant (IFplant) = (Plant moisture * Volume of plant * plants density) / plant height 

= (MpVpN) / Hp      (5)  

The Interaction factor as defined above is taking in to consideration the moisture distribution in a confined volume per 
unit volume for the whole plant of the wheat crop. Since the structure of a given plant also significantly affects SAR 
backscatter along with the volume, moisture and density, the wheat plant is segmented into three components i.e. head, 
leave and stem. The component wise interaction factor for each of the segment namely, the Interaction factors for head 
(IFHead), leave (IFLeave) and stem (IFStem), were calculated on the same lines as that for the whole plant as given below: 

Interaction factor of head (IFHead) = Moisture content of head*Volume of head * plants density/ height of head 

= (MhVhN)/Hh       (6) 

Interaction factor of leave (IFLeave) = Moisture content of leave*Volume of leave*plant density/height of leave  

= (MlVlN)/Hl       (7) 

Interaction factor of leave (IFStem) = Moisture content of stem*Volume of stem*plant density/ height of stem 

= (MsVsN)/Hs       (8) 

5. DATA PROCESSING 
5.1 DN to σ° conversion 
The DN values of Envisat-1 ASAR image can vary for scene to scene, making it difficult to directly relate information 
between scenes. Hence for any quantitative analysis, it is necessary to convert the DN image data to calibrated radar 
backscatter (Sigma naught) data. For the Envisat-1 ASAR data, ‘BEST’ software was used to arrive at radiometricaly 
calibrated SAR backscatter image. First step is to convert the data to power. Once the image is converted to power, the 
radiometric effects for the incidence angle and absolute calibration constant were corrected. 
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Where DN is the digital number of SAR image, which is in Power. α is the local incidence angle at that pixel position in 
the range direction. The absolute calibration constant was taken from the header of Envisat-1 ASAR image.  The header 
information was also used for calculation of α, the local incidence angle at each pixel. These conversions yielded a 32bit 
real image of σ° in dB.  

5.2 Image Processing 
After conversion of DN to σ°, speckle suppression was carried out using Enhanced Lee-filtering algorithm [27]. 11-
March-2005 image of ENVISAT-1 ASAR S4 beam mode data was geo-referenced using the Ground Control Points 
(GCPs) from 1:50,000 scale Survey of India (SOI) topographic map and GPS measurements at the ground control points 
[28]. The Envisat-1 ASAR image of 04-Mar-2006 was then geo-referenced with respect to 11-Mar-2005 image of 
Envisat-1 ASAR. The vector layers of rail/road/canal network, farmer’s field boundaries, the actual sampling locations 
generated with the help of GPS based mobile mapping unit, were transferred on to the image. There after all the 46 
sampling fields locations were identified on the images and their backscattering coefficient values, σ0 were extracted 
from Envisat-1 ASAR images of 2005 and 2006. Out of these 46 observations, 10 were randomly selected for validation 
data set and the rest 36 were used to develop the model.   

6. RESULTS AND DISCUSSION 
In order to demonstrate the effectiveness of the concept of interaction factor, the analysis is carried out in two steps.  In 
the first step effect of a variety of vegetation parameters measured in the field along with the effect of soil moisture 
underneath wheat crop on SAR backscatter at VH polarisation (σ0

VH) has been examined. Next the SAR backscatter is 
modelled using the concept of interaction factor of individual layers which is proposed in this study. For this purpose, 
observations from 36 farmers’ fields were used. In the second step, SAR backscatter is validated using validation dataset 
consisting of observations from 10 sampling fields. The following subsection describes details of the developed models 
at each of these steps.  

6.1 Modelling Backscattering from Wheat 
Once the backscatter coefficient from cross-polarized (VH) ENVISAT-1 ASAR images were extracted for all the 46 
fields, the interaction factors of whole plant, head, leave and stem were arrived at using the ground observation from the 
corresponding wheat fields using expressions  (5), (6), (7) and (8). In order to appreciate the combined effect of the three 
interaction factors as defined in section 4.1, firstly empirical model relating σ0

VH to the IF(plant) and moisture content of 
soil underneath wheat crop was carried out using stepwise regression analysis. The soil moisture was excluded from the 
regression analysis with the criterion of probability of F to remove >= 0.10, and probability of F to enter <= 0.05. 

The model is given by  

σ0
VH = A + B * IF(plant)          (10) 

The R2 value was observed to be 0.71 with value of F statistic being 83.33 (Significance of F = 1.14E-10).  

Since the structure of wheat plant also plays an important role in the scattering/attenuation of incoming signal from a 
given crop field, in particular in our case for the wheat crop, it was felt that study of SAR backscatter in terms of 
component wise interaction factors would lead to more insight in to the interactions that takes place between SAR signal 
and different component of crop plant. Hence, an empirical model using stepwise linear regression analysis relating σο to 
the individual Interaction factors (i.e. IFleave , IFstem ,IFhead) and the moisture content of soil underneath wheat crop was 
performed as follows 

σ0
VH = A + B * Soil Moisture + C * IFleave + D * IFstem + E * IFhead     (11) 

The soil moisture, IFstem and IFleave were excluded from the regression analysis with the probability of F to remove >= 
0.10, and the probability of F to enter <= 0.05. 

Thus the model arrived at is   

σ0
VH = A  +  B * IFhead          (12) 

Proc. of SPIE Vol. 6410  641009-7

Downloaded from SPIE Digital Library on 10 May 2011 to 180.149.51.178. Terms of Use:  http://spiedl.org/terms



 

 

 

The R2 value was observed to be 0.78 with F value being 125.86 (Significance of F = 5.66E-13) with the standard error 
of y estimate observed to be 0.65. The study of the regression analysis results in terms of significance of F value and the 
coefficient of determination for the plant interaction factor (IFplant) and individual interaction factors, shows that the VH 
polarised C-band SAR backscatter at higher incidence angle is more sensitive to the upper component of the crop.  That 
is σ0

VH is affected most by IFhead as compared to the lower components of the crop (IFstem, IFleaf), moisture content of the 
soil. These findings support the soundness of the approach to segment the wheat crop and then examining the 
dependence of SAR backscatter on different layers.   

6.2 Validation of the Vegetation Backscatter Model 
Validation is an essential component of a statistical approach based analysis. It requires having a validation data set 
consisting of independent observations of the parameter to be estimated such that these observed values of the 
parameters are not used to arrive at an estimate of the parameter. Moreover the size of validation sample is equally 
important. In our study, the size of validation data set required have been determined using precision power approach as 
suggested by [29] keeping the criteria that the sample correlation coefficient is not to decrease by more than .05 no 
matter what the expected value of correlation coefficient is.  Using this approach with the R2 values of the original 
sample (with sample size=36) being 0.78, the size of validation set for the case of one parameter is obtained to be 08. 
Hence, 10 validation points, which were not included in deriving the regression models, formed the validation data set.    

 

Fig. 3.: Scatterplot showing observed and estimated SAR backscatter values for validation data set. 

Next, the validation of SAR backscatter from wheat field which was modelled using interaction factor of head (IFhead) 
was attempted. A validation data set consisting of 10 observations was used to arrive at estimated value of backscattering 
coefficient using the corresponding ground observation of the component wise interaction factors. Figure-3 shows the 
variation in estimated value of the backscattering coefficient for ten validation locations to the corresponding observed 
value of backscattering coefficient extracted from respective fields from the σο

VΗ images. 

It can be observed from the scatterplot given in figure-3 that the modelled σo
VH(model)

 is  in agreement with the observed 
σo

VH(observed). The rms error between observed and estimated σo
VH is 0.70 which is within the radiometric resolution of 

Envisat-1 ASAR. Thus the model developed in equation-12 is adequately able to characterise SAR interaction to wheat 
crop. 

6.3 Retrieval of IF(head) 
Since the SAR backscatter model given in section 6.1 is reasonably validated, IF(head) can be retrieved by inverted the 
SAR backscatter model given by equation-12 using the following equation   

IF(head) =A’ + B’*σo
VH

          (13) 

With the retrieved IF(head) one can make inferences on the upper layer of the canopy. A regression analysis was carried 
out, which resulted in the value of R2 as 0.78 with F value being 125.83 (Significance of F= 6 E-13).   
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6.4 Modelling number of Grains from plants/m2 
A close observation of  figure-4 (wheat head where number of grains can be clearly seen) reveals that one can actually  

Fig. 4. A typical wheat head where space allotted for each of  grains  can easily be counted. 

see the number  space allotted  for each of the grain and also  one can actually count the number of grains  that would  be 
available from that plant. Hence the number of grains at this stage of crop is also directly related to the  moisture content 
of the head and the volume of the head.  

 
Fig. 5.: Variation of number of wheat grains per square meter with Interaction Factor of Wheat head. 

 
To study the dependence of the number of grains on to the interaction factor of head, IFhead a scatter-plot showing the 
variation in number of grains with varying values of IFhead was studied as shown in figure-5. It was observed that a 
logarithmic curve represents the variation best. To retrieve the Number of grains from wheat plants/m2, regression 
analysis was carried out to develop the relationship between the observed number of grains and the Interaction factor for 
head from the corresponding sampling location. The regression model relating the number of grains to the interaction 
factor of Head is given by:     

Grains / m2  = A + B * Ln (IFhead)        (14) 

The coefficient of determination (R2) obtained in regression analysis was 0.77. Confidence level test using F statistic was 
performed for testing significance of the regression analysis, which yielded value of F =113.52  at level of significance 
of F = 2.24 E-12.    

As has been observed from the results discussed in section 6.2, when the canopy is segmented in to three layers 
representing the interaction of SAR with three layers of the wheat canopy, SAR backscatter is influenced most by the 
upper layer of the canopy. Since we are interested in extracting information on the head of the wheat crop, firstly   IF(head) 

Proc. of SPIE Vol. 6410  641009-9

Downloaded from SPIE Digital Library on 10 May 2011 to 180.149.51.178. Terms of Use:  http://spiedl.org/terms



 

 

25
27
29
31
33
35
37
39

25 27 29 31 33 35 37 39

Observed yield(q/ha)

Es
tia

m
te

d 
yi

el
d(

q/
ha

) One-One line-->

is retrieved using equation-13, next the retrieved IF(head) is used  for estimating the number of grains using the regression 
model given by equation-14 and the estimated grains are used to arrive at the yield of the sampling location with the help 
of average grain weight to accomplish the objective of modelling wheat yield.  

6.5 Validation of the yield model 
Since it is essential to validate the results arrived at by a statistical approach based analysis, the validation sample size 

was once again determined by the precision power approach as suggested by Brooks and Barcikowski [29]. The criteria  

Fig. 6.: Scatter-plot showing observed and estimated wheat yield for 10 validation fields in (q/ha) 

was that the sample correlation coefficient is not to decrease by more than .05 no matter what the expected value of 
correlation coefficient is. R2 values of the original sample (with sample size=36) being  0.78 for the number of grains of 
wheat crop per m2, the size of validation set for the case of one parameter is obtained to be 8. Hence the number of 
samples used for validation being 10 is more than that of the required sample size.   In order to validate the results, 
estimated values of IFHead were calculated using equation-13 for ten sampling fields which were not included for 
developing the model. The figure-6 shows the scatter plot between observed and estimated yield in (q/ha). The rms error 
values in terms of the percentage of observed values indicates that the error in estimating the wheat yield based upon the 
estimated number of grains arrived at by using equation-14 is of the order of 4.63 % (figure-7) of the observed value of 
the grains. The results of model validation are very encouraging and it indicates that it is feasible to model wheat yield in 
terms of number of grains using high-incidence angle cross-polarized SAR data. 

 

Fig. 7.: Percentage error in estimated yield for 10 validation fields 
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7. CONCLUSION 
In this study an approach to model wheat yield in terms of estimating number of grains by exploiting the characteristic 
SAR interaction to the different layers of wheat canopy is presented. The wheat crop was segmented in to three 
components namely, head, leave and stem. In order to achieve the goal of estimating number of wheat grains that is 
physically related to the volume and moisture of the head of wheat plant, the interaction of SAR backscatter to the head 
of wheat canopy is studied. Firstly the SAR backscatter is modelled using Interaction factor of head of the wheat canopy. 
It is observed that cross polarised C-band SAR is significantly related to IFhead. The number of grains is retrieved using 
the inverted canopy descriptor parameter, namely IFhead. Finaly, wheat yield is calculated using the number of grains. 
The rms error value in terms of the percentage of observed values indicates that the error in estimating the wheat yield is 
of the order of 4.63% of the observed value of the yield which highlights the soundness of the approach.  The significant 
outcome of the study is that it offers a direct approach to arrive at a very vital crop parameter that of number of grains by 
exploiting the interaction of cross polarised SAR with different components of wheat canopy by following a layered   
approach.   
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