MASTER NEGATIVE NUMBER: 09295.25

Arunachalam, V. and Murty, B. R.

Computer Programmes for Some Problems in Biometrical Genetics-I. Use of Mahalanobis' D² in classificatory problems.

Indian Journal of Genetics and Plant Breeding, 27 (1967): 60-69.

Record no. D-6

2 3 4 5 6 7 8 9 10 11 12 13 14

COMPUTER PROGRAMMES FOR SOME PROBLEMS IN BIOMETRICAL GENETICS—I. USE OF MAHALANOBIS' D² IN CLASSIFICATORY PROBLEMS

B. R. Murty and V. Arunachalam

Division of Genetics, Indian Agricultural Research Institute, Delhi-12

(Accepted: 16-xii-1966)

During the various types of investigations on population dynamics carried out at the Division of Genetics, Indian Agricultural Research Institute, New Delhi, the assessment of genetic divergence between populations by multivariate analyses was found to be useful for classificatory problems as well as choice of parents for breeding work in crops with diverse breeding systems (Murty and Arunachalam, 1966).

While the initial work was limited to a few populations in each crop, the fundamental information on the factors influencing genetic divergence means scanning a large collection with as many characters related to fitness under natural and human selection included in the analysis. Similarly, the extraction of characteristic roots from characteristic equations involving several variables means several iterations. Since the magnitude of computations increase several-fold with an increase in the size of the matrices and the number of populations, the assessment of a large collection of germ plasm can be undertaken only with the facilities of a computer for accurate and rapid analysis.

During the past three years, programmes have been developed in the Biometrics Unit for problems involving multivariate analysis, canonical analysis, factor analysis, fractional and full diallel analyses for combining ability, serial analysis over different environments for assessment of genotype-environment interaction and similar problems encountered frequently in biological investigations.

Computer programmes which are of special interest, were recently published by some workers (Littlewood et al., 1964, Kobetich, 1964). Since the investigations carried out here are of particular interest to biological workers, in general, it is felt desirable to make these programmes available for such investigations.

These programmes are written in FORTRAN language for an IBM 1620 (Model II) computer and can easily be modified to suit the occasion in fields other than biology. For most of the plant breeding investigations of these types we come across, the programme is general enough to be used without any modification. The first of these programmes is on an assessment of divergence by the use of Mahalanobis' D²-statistic.

DESCRIPTION OF THE PROGRAMME

This programme is intended to compute D^2 values between all possible combinations for a maximum of 80 varieties and 10 characters. Upto 100 varieties with 10 characters (or any combination such that number of varieties \times number of characters is less than 1000), the programme will work without any alteration by changing the card No. 2 as For $\times 53$. For investigations involving more varieties and characters the programme can easily be modified. The methodology used in this programme is completely given by C. R. Rao (1952, 1958).

COMPUTATIONAL METHOD

The calculation of D² values involves three major steps:

- (i) A set of uncorrelated linear combinations (y's) is obtained by the pivotal condensation of the common dispersion matrix (Rao, 1952) of a set of correlated variables (x's).
- (ii) Using the relations between y's and x's, the mean values of different varieties for different characters are transformed into the mean values of a set of uncorrelated linear combinations (Y's).
- (iii) The D² between the ith and jth variety for k characters is calculated as $D_{ij}^2 = \sum (Y_{it} Y_{jt})^2$. The k component D-squares are calculated separately t=1

and added up to give D²_{ii}.

- (iv) The k component D-squares for each combination are ranked in descending order of magnitude, equal values, if occur, which are very rare, receiving same ranks.
- (v) The ranks are added up for each component D-square over all combinations and the rank totals are got.

Input Data—The input medium for all these programmes is 80-column punch cards. The following data are required as input data.

- (i) Title of the experiment not exceeding 80 letters punched in one card from columns 1-80.
- (ii) The number of characters and the number of varieties each occupying column 1 to 3 and 4 to 6 respectively of one punch card.
- (iii) The upper half of the common dispersion matrix designated as A-matrix i.e., $((a_{ij})), (j \ge i, i = 1, 2, ... n)$

(e.g.)
$$\begin{bmatrix} a_{11} & a_{12} \dots a_{1n} \\ & a_{22} \dots a_{2n} \\ & & 3_{nn} \end{bmatrix}$$

Each card contains 7 quantities, each quantity occupying 11 columns with four decimal digits, i.e., quantities 1, 2, 3, etc. occupying columns 1-11,

12-22, 23-33, etc. respectively of a card. The decimal point need not be punched. For e.g., if a 4×4 matrix is used with values

$$\begin{bmatrix} 832 \cdot 2382 & -0 \cdot 7632 & -0 \cdot 0078 & 6 \cdot 7002 \\ 11576 \cdot 2000 & 76 \cdot 3280 & -6 \cdot 0007 \\ 6766327 \cdot 1181 & -6650 \cdot 7634 \\ 181 \cdot 0705 \end{bmatrix}$$

the input will take the form

(Card 1, the 7 quantities occupying columns 1–77 of the card, b's representing blanks) 67663271181bb—66507634bbbb1810705 (Card 2, the remaining 3 quantities occupying columns 1–33). The computer will read the quantities as if the decimal point is placed after the 4th digit from the right of each quantity.

The format i.e., the mode of allotting columns to each quantity, may be changed if necessary according to the size of the quantities in individual experiments which requires changing the statement 11 in the programme.

(iv) The mean values for each character for each variety. The values of each of the characters for one variety are punched in one card.

The mean value for each character occupies 4 columns with one decimal digit. The characters are arranged in the same order as in the common dispersion matrix. The mean values for a variety are punched in one card in the case of 10 characters for e.g., from column 1 to 40 as indicated in (iii) above. Thus for each variety one card is used for the input of mean values.

Output.—The programme renders the following printed output in a neat form giving spaces and underlined sub-titles wherever necessary as in the example presented here.

- (i) Title of the experiment.
- (ii) y, the coefficients of x in the uncorrelated linear combinations.
- (iii) Uncorrelated mean values for each variety for each component y₁, y₂, etc.
- (iv) D-square values and ranks for each combination. All the component D-squares and the total D-square are printed out.
- (v) Rank totals.

In addition, the programme renders the mean values for each of the uncorrelated linear-combinations y_1 , y_2 etc. for each variety as punched output in cards. These cards can be used as such for doing the principal component analysis to be published as Part II of the paper. The values y_1 , y_2 etc. for one variety is punched in one card, similar to the input (iv), the change being that each quantity occupies 10 columns with four decimal digits.

The programme with the example of the data collected in this laboratory published in Sankhya, Vol. 27 (1965) is presented as an appendix. The input and printed output excluding punched output are given.

ACKNOWLEDGEMENT

Our thanks are due to the officer and members of the Mechanical Tabulation Unit, Institute of Agricultural Research Statistics, New Delhi for their help and for making the computer available for these investigations.

REFERENCES

- Kobetich, E.J. (1964). General Computer plotting subroutine, Trans. Kansas. Acad. Sci., 67: 640-45. Littlewood, R.K., Carmer, S.G. and Hittle, C.N. (1964. A computer programme for estimating combining abilities in relation to diallel crossing systems, Crop Sci., 4: 662-63.
- Majumdar, D.N. and Rao C.R. (1958). Bengal anthropometric survey, 1945; A statistical study, Sankhya, 19: 201-408.
- Murty, B. R. and Arunachalam, V. (1966). The nature of divergence in relation to breeding system in some crop plants, *Indian J. Genet.*, **26A:** 188–98.
- ———— Mathur, J.B.L. and Arunachalam, V. (1965). Self-incompatibility and genetic divergence in Brassica campestris var. brown sarson, Sankhya B, 27: 271-78.
- Rao, C.R. (1952). Advanced Statistical Methods in Biometrical Research, John Wiley & Sons, New York.

	APPENDIX	
‡	‡JOB 5	001
‡	‡FORX54	002
	COMPUTATION OF D-SQUARE VALUES-PROGRAMMED BY V. ARUNACHALAM, I.A.R.I.	003
	DIMENSION A(10, 10), B (10, 10), PA (10), PB (10, 10), X (20), Y (80, 10), DS (20)	004
	1, M (10), KT (10)	005
	250 READ 251, (DS (I), $I=1, 20$)	006
	251 FORMAT (20A4)	007
	PRINT 252, (DS (I), $I=1, 20$)	800
	252 FORMAT (1X, 20A4/1X, 80 (1H-)//)	009
\mathbf{C}	THE ABOVE CAUSES THE PRINTING OF THE TITLE OF THE EXPERIMENT	010
C	N-NO. OF CHARACTERS, IV-NO. OF VARIETIES	011
G	A(N, N)-COMMON DISPERSION MATRIX, B(N, N)-UNIT MATRIX	012
G	Y(IV, N)-UNCORRELATED MEANS MATRIX OF DIMENSION IV X N	013
a	DS (N)-COMPONENT D-SQUARES	014
	READ 1, N, IV	015
	1 FORMAT (213)	016
	NO = N-1	017
	IVV = IV-1	018
	FIV=IV	019
	READ 11, $((A(I,J), J=I, N), I=1)$	020
	11 FORMAT (7F 11·4)	021
	PA(1) = A(1, 1)	022
	DO 101 $I=1, N$	023
	101 B $(I, I) = 1$.	024
	DO 1010 $I=1$, NO	025
	IA = I + 1	026
	DO $10 J = IA$, N	027
	A(J,I) = A(I,J)	028
	B $(I, J) = 0$.	029
	10 B $(J, I) = B(I, J)$	030
	1010 CONTINUE	031
	DO 1001 $J=1$, N	032
	1001 PB $(1, J) = B(1, J)$	033
	DO $2 I=1$, NO	034
	L=I+1	035
	DO 12 $J=L$, N	036
	12 $A(I, J) = A(I, J)/A(I, I)$	037
	DO 121 $J=1$, I	038
	121 B(I, J)=B(I, J)/A(1, I)	039
	DO 114 K=L, N	040

Computer programmes for D² analysis

64

March, 1967]

	DO 112 $J=L$, N	041
	112 $A(K, J) = A(K, J) - A(K, I) * A(I, J)$	042
	DO 113 $J=1$, I	043
	113 B(K, J)=B (K, J)-A(K, I)* B(I, J)	044
	114 CONTINUE	045
	PA(L) = A(L, L)	046
	DO 1200 $J=1$, N	047
	1200 PB $(L, J) = B(L, J)$	048
	2 CONTINUE	049
	DO $8 I=1, N$	050
	8 PA $(I) = SQRTF (PA(I))$	051
	DO 80 $I = 1, N$	052
	DO 80 $J=1$, N	053
	80 $PB(I, J) = PB(I, J)/PA(I)$	054-
	PRINT 9	055
	9 FORMAT (1X, 59HCOEFFICIENTS OF X IN THE UNCORRELATED LINEAR FUNCTION	056
	1S OF Y/1X, 1H-, 19(3H*-*), 1H-//)	057
	PRINT 90, 1H	058
	90 FORMAT (1X, 65 (1H-)/29X, 15HCOEFFICIENTS OF// 10X, 4HX(1), 6X, 4HX(2), 6X,	059
	14HX(3), 6X, 4HX(4), 6X, 4HX(5), 6X, 4HX(6)/1X, 65(1H-)/)	060
	DO 91 $I=1, N$	061
	91 PRINT 92, I, $(PB(I, J), J=1, N)$	062 ⁻
	92 FORMAT (1X, 2HY(, I2, 1H), 6 (2X,F8.4)),	063
	PRINT 7000	064
	7000 FORMAT (/)	065
	PRINT 222	066
	222 FORMAT (1×24HUNCORRELATED MEAN VALUES/1X, 24 (1H-)//)	067
	PRINT 224	068
	224 FORMAT (1X,74(1H-)/1X,3HVAR, 5X, 4HY(1), 8X, 4HY(2), 8X,4HY(3), 8X, 4HY(4)	069
	1, 8X, 4HY(5), 8X, 4HY(6)1X, 74(1H-)//	070
	DO 215 KD=1, IV	071
	READ 212, $(X(J), J=1, N)$	072
	212 FORMAT (10F 4·1)	073
	DO 214 I=1, N	074
	Y(KD, I) = 0.	075
	DO 214 $J=1$, I	076
	214 Y(KD, I) = Y(KD, I) + PB (I, J) * X(J)	077
	215 PRINT 225, KD, $(Y (KD, I), I=1, N)$	078
	225 FORMAT (2X, I2, 3X, F8·3, 5(4X,F8·3))	079
C	STATEMENTS 224 AND 225 TO BE CHANGED FOR PROCESSING MORE THAN SIX	080

	Computer programmes for D^2 analysis							
*C	CHARACTERS UPTO TEN	081						
	DO 9991 I=1, IV	082						
	9991 PUNCH 9990, $(Y(I, J), J=1, N), I$	083						
	9990 FORMAT (6F10·4,17X,I2)	084						
	PRINT 7000	085						
	PRINT 216	. 086						
	216 FORMAT (53X,15HD-SQUARE VALUES/53X,15(1H-)//)	087						
	PRINT 217	088						
	217 FORMAT (21X, 5HCOMBN, 4X, 6HD1-SQR, 4X, 6HD2-SQR, 4X, 6HD3-SQR, 4X, 6HD4-SQR	089						
	C, 4X,6HD5-SQR, 4X, 6HD6-SQR, 4X, 8HD-SQUARE/21X, 77 (1H-)//)	090						
	DO 2213 $I=1$, N	091						
	2213 KT(I) = 0	092						
	DO 221 $KM=1$, IVV	093						
	KK = KM + 1	094						
	DO 221 $I=KK$, IV	095						
	DSS=0.	096						
	DO 223 $J=1$, N	097						
	DS(J) = Y(I, J) - Y(KM, J)	098						
	DS(J) = DS(J) * DS(J)	099						
	223 DSS = DSS + DS(J)	100						
	PRINT 218, KM, I, $(DS(J), J=1, N)$, DSS	101						
	21 FORMAT (21X, I2,1H-, I2, 3X, 6(F9·4,1X), 2X,F7·2)	102						
	8 DO 2212 LI=1, N	103						
	M(LI) = 1	104						
	DO 2211 LJ=1, N	105						
	IF (DS(LI)-DS(LJ)) 2210, 2211, 2211	106						
	2210 $M(LI) = M(LI) + 1$	107						
	2211 CONTINUE	108						
	2212 KT(LI) = KT(LI) + M(LI)	109						
	PRINT 2180, $(M(LI), LI=1, N)$	110						
	2180 FORMAT (22X,4HRANK, 2X, 6 (5X, 11, 4X)/)	111						
	221 CONTINUE	112						
	PRINT 2215, $(KT(I), I=1, N)$	113						
	2215 FORMAT (21X, 77(1H-)/16X, 10HRANK TOTAL, 2X,6 (3X, I4, 3X)/21X,77(1H-)//)	114						
· C	STATEMENTS 224, 225, 9990, 218, 2180, AND 2215 TO BE CHANGED FOR	115						
	PROCESSING MORE THAN SIX CHARACTERS UPTO TEN	116						
C	FORMAT AND DIMENSION STATEMENTS SHOULD BE ALTERED FOR PROCESSING MORE	117						
C	THAN 10 CHARACTERS AND 80 VARIETIES	118						
	PRINT 2216	119						

8

9

55

24

2216	FOR	MAT (1	0(/))								120	
	GO T	O 250									121	
	EN	D									122	
DATA ON BRASSICA-SANKHYA, B., VOL. 28, 1966												
6 1	10				٠.						124	
	97500 37800		-566	000	2400 14 7 500		-46000 24500	-31600 13400	1500 . 31600	423000	125	
			1624	00						8900	126	
	8	900	34 03	800	98700)	30400	490500	5700	43300	127	
	47 2	466	55	240	394	167				•	128	
	485	526	73	242	385	192					129	
	57 9	597	82	275	435	196					130·	
	511	426	66	243	342	167					131	
	594	414	76 .	328	208	151					132	

DATA ON BRASSICA-SANKHYA, B., VOL. 28, 1966
COEFFICIENTS OF X IN THE UNCORRELATED LINEAR FUNCTIONS OF Y

			OEFFICIENTS OF			
	X(1)	$\mathbf{X}(2)$	X(3)	X(4)	X (5)	X (6)
Y (1)	•3202	0.0000	0.0000	0.0000	0.0000	0.0000
Y (2)	.0929	· 1600	0.0000	0.0000	0.0000	0.0000
Y (3)	0855	- ⋅1035	1.0312	0.0000	0.0000	0.0000
Y (4)	.0908	0298	4211	· 2073	0.0000	0.0000
Y (5)	·0 02 5	0517	·1144	0299	.1529	0.0000
Y (6)	0079	·0035	- · 3044	0215	.0022	•5199
NCORRELATEI	D MEAN VALUES					
VAR	Y(1)	Y(2)	Y(3)	Y(4)	Y(5)	Y(6)
1	15.116	11.847	-3 · 192	5.560	3.649	6.370
2	15.532	12.928	-2·069	4.783	3.405	7.127
3	18 · 542	14.939	-2·680	5.731	3.831	6.951
4	16 · 365	11.569	$-1 \cdot 977$	5.633	3 · 188	5.972
5	19.023	12 · 148	-1.531	$7 \cdot 764$	1.082	4.552
6	19 · 183	12.403	-1.502	$7 \cdot 293$	1 · 141	4.014
7	24 · 179	17.247	-5.136	5.840	2.759	8.219
8	17.421	12.276	-1.384	5.747	3.754	6.684
9	23 · 186	16.062	-4·806	5.708	2 · 328	8 · 182
10	19.279	ì3·615	-2.501	7.287	3.352	5.686

D-SQUARE VALUES

COMBN	D1-SQR	D2-SQR	D3-SQR	D4-SQR	D5-SQR	D6-SQR	D-SQUARE
1–2 RANK	·1733 5	1·1694 2	1·2621 1	·6041 3	·0597 6	· 5720 4	3.84
1-3 RANK	11·7425 1	$9 \cdot 5588$ 2	·2622 4	·0291 6	· 0330 5	·3377 3	21.96
1–4 RANK	1·5600 1	·0772 5 etc	1·4766 2	·0052 6	·2129	· 1584	3 · 49
8–9 RANK	$33 \cdot 2307$ 1	$\substack{14 \cdot 3354 \\ 2}$	11·7132 3	·0015	2·0327 5	2·2438 4	63 · 55
8–10 RANK	$3 \cdot 4502$ 1	1·7943 3	1·2479 4	${\overset{2\cdot 3712}{2}}$	·1611 6	•9956 5	10.02
9–10 RANK	15·2656 1	5·9861 3	5·3145 4	2·4954 5	1·0491 6	${\overset{6\cdot 2290}{2}}$	36.33
RANK TOTAL	87	132	179	198	117	152	