Sm-Nd SYSTEMATICS AND INITIAL ⁸⁷**Sr**/⁸⁶**Sr IN THE PIPLIA KALAN EUCRITE.** G. Srinivasan^{1,2}, D. A. Papanastassiou¹, G. J. Wasserburg¹, N. Bhandari², and J. N. Goswami². ¹The Lunatic Asylum of the Charles Arms Laboratory, Division of Geological and Planetary Sciences, Mail Code 170-25, California Institute of Technology, Pasadena, CA 91125; USA ²Physical Research Laboratory, Navrangpura, Ahmedabad, 380 009 India (srini@gps.caltech.edu).

We have determined Sm-Nd isochrons for the Piplia Kalan eucrite. In a separate abstract we report also on the Al-Mg and Mn-Cr systems, using thermal ionization mass spectrometry (TIMS). In a recent report, Srinivasan et al. [1] identified the presence in this eucrite of excess ²⁶Mg, correlated with Al/Mg. This was the first report of excess ²⁶Mg in a eucrite. Because of the importance of this report we investigated the Sm-Nd system, especially for the purpose of identifying the initial ¹⁴⁶Sm/¹⁴⁴Sm in this meteorite. Piplia Kalan, a recent fall in India [2], is a monomict eucrite and consists of lithic clasts in a brecciated matrix. The lithic clasts show a large range in grain size and texture [2,3] but have similar bulk compositions, consistent with a single melt event. Major phases are pyroxene (55-65%) and plagioclase (25-45%), with chromite, ilmenite, and troilite as minor phases. While phosphates have not been identified petrographically, the Sm-Nd behavior during leaching (see below) clearly indicates that phosphates, or equally easily soluble phases, play a major role in the distribution of the rare earths (REE). This is similar to the earlier observations made from for the work on mesosiderites and the Ibitira eucrite [4-6]. Piplia Kalan shows evidence of shock and brecciation, with extensive microscopic intergrowths in plagioclase, making mineral separation harder. We chose a coarse grained lithology (~200 µm). For materials crushed and sieved in the range 60-125 µm, we obtained mineral separates using density separation, followed by magnetic separation. We measured a pyroxene (PX) separate without leaching. Based on the observation of only a small difference of Sm/Nd between the plagioclase and the unleached PX separates, we proceeded to apply a weak leach (2N HCl, cold, 10 minutes) to a second aliquot of the PX separate. We determined that large fractions of Sm and Nd (69% of Sm and 80% of Nd) were present in the PX leach. The Sm/Nd in the leach is relatively low, which is consistent with provenance from a residual phase with high REE concentrations, such as phosphate. The enhanced presence of Nd and the lower Sm/Nd in the leach result in a significantly higher Sm/Nd value in the PX residue. As a check that differential leaching did not disturb the Sm-Nd systematics in the PX residue, we analyzed also the Sm-Nd in the PX leach. The data are shown in Table 1 and in Fig. 1-2. We obtain a large range in measured 143 Nd/ 144 Nd from -20.5 ε u for the PL to +84.5 ε u for the PX. The data define an isochron which yields a ¹⁴⁷Sm- 143 Nd age of 4.57 ± 0.10 Ga and an initial (143 Nd/ 144 Nd)_{CHUR} of $-0.71 \pm 3.6 \epsilon u$. The data show small deviations from a single isochron, which are reflected in the relatively larger uncertainty in the age. The ¹⁴²Nd/¹⁴⁴Nd data are shown in Fig. 2. The data show a significant excess in 142 Nd/ 144 Nd in the PX and a small but significant deficit in ¹⁴²Nd/¹⁴⁴Nd in the plagioclase. We included in Table 1 the measurement of ¹⁴²Nd/¹⁴⁴Nd in a 2nd PX sample, which was greatly underspiked. The resultant uncertainties in Sm and Nd concentrations do not permit plotting this point, but the ¹⁴²Nd/¹⁴⁴Nd clearly shows the excess ¹⁴²Nd in the PX. These data permit the determination of the initial ¹⁴⁶Sm/¹⁴⁴Sm at the time of crystallization as equal to $(4.4 \pm 1.2) \times 10^{-3}$. We note that, given the relatively old ¹⁴⁷Sm-¹⁴³Nd age for this meteorite, the initial ¹⁴⁶Sm/¹⁴⁴Sm is lower than expected by about a factor of 2, corresponding to an interval equal to the half-life of ¹⁴⁶Sm (10^2 Ma) . This is shown in Fig. 3, where we have summarized data from this laboratory on eucrites, clasts from mesosiderites, and a silicate inclusion from the Caddo iron meteorite [4-6]. The relatively low initial ¹⁴⁶Sm/¹⁴⁴Sm in Piplia Kalan can not be considered consistent with the presence of live ²⁶Al. The possibility that the ¹⁴⁶Sm-¹⁴²Nd system is more susceptible to a partial resetting with only small effects being resolvable for the ¹⁴⁷Sm-¹⁴³Nd system has been discussed by [4,6]. We note that Kumar et al. (1998) [7] have determined the ¹⁴⁷Sm-¹⁴³Nd age of Piplia Kalan as 4.570 ± 0.023 Ga and the initial (¹⁴³Nd/¹⁴⁴Nd)_{CHUR} of -1.3 ± 0.7 ϵu . The results from both studies are consistent. ¹⁴²Ce mass interference prevented the determination of ¹⁴²Nd/¹⁴⁴Nd in the work by Kumar et al. [7]. We have also determined the 87Sr/86Sr in plagioclase from Piplia Kalan. We measured ${}^{87}\text{Sr}/{}^{86}\text{Sr} = 0.69923 \pm 0.00004$ and we calculate an initial $({}^{87}\text{Sr}/{}^{86}\text{Sr})_{I} = 0.69900 \pm 0.00004$, which is insensitive to the age of Piplia Kalan and indistinguishable from BABI [8]. This result is identical to the value determined by [7].

At this time we consider that the various dating schemes applied to Piplia Kalan indicate both preserved vestiges of early formation as well as evidence of disturbed systematics which do not permit the conclusive comparison of time scales for different parent-daughter systems, with a range in halflives as well as potentially different responses to shock and metamorphism. Given the brecciated nature of Piplia Kalan, it is possible that further detailed study will help elucidate some of the apparent inconsistencies.

Acknowledgment: Work supported by NASA. Division Contribution No.8603 (1021).

References: [1] Srinivasan G., Goswami J.N. & Bhandari N. (1998) *Meteoritics Planet. Sci.* **33** A148. [2] Vaya V.K. et al. (1996) *Current Science* **71** 254. [3] Shukla A. et al. (1997) *Meteoritics Planetary Sci.* **32** 611. [4] Stewart B. W., Papanastassiou D.A. & Wasserburg G.J. (1994) *Geochim. Cosmochim. Acta* **58** 3487. [5] Stewart B.W., Papanastassiou D.A. & Wasserburg G.J. (1996) *Earth Planet. Sci. Lett.* **143** 1. [6] Prinzhofer A., Papanastassiou D.A. & Wasserburg G.J. (1992) *Geochim. Cosmochim. Acta* **56** 797. [7] Kumar N., Gopalan K. and Bhandari N. (1998) submitted to *Geochim. Cosmochim. Acta.* [8] Papanastassiou D. A. & Wasserburg G.J. (1969) *Earth Planet Sci. Lett.* **5** 361.

Table 1. Piplia Kalan Sm-Nd Analytical Results.						
Sample	Density	Nd (ppm)	Sm (ppm)	¹⁴⁷ Sm/ ¹⁴⁴ Nd	ϵ^{142} Nd	ϵ^{143} Nd
PL	2.7	2.3503	0.6322	0.1627 ± 0.0009	-0.47 ± 0.32	-20.5 ± 0.41
PX	3.3	5.0856	1.7781	0.2121 ± 0.0003	-0.35 ± 0.31	7.2±0.33
PX-(R)	3.3	1.2858	0.7230	0.3404 ± 0.0007	1.00 ± 0.30	85.0±0.42
PX-(L)	3.3	5.1684	1.5810	0.1776 ± 0.0016	0.00 ± 0.39	-10.8 ± 0.43
PX-(R) #2 *					1.34 ± 0.40	84.5±0.30

Measured isotopic ratios relative to CHUR $\epsilon_R = (R/R_{CHUR} - 1)x10^4$ where $^{142}Nd/^{144}Nd_{CHUR} = 1.138305$ and $^{143}\text{Nd}/^{144}\text{Nd}_{\text{CHUR}} = 0.511847. \text{ The uncertainties in the measurement are } 2\sigma_{m}. \text{ *Concentrations of Sm and Nd}$ were not accurately determined due to underspiking; these data were not used for the isochron determinations.

